首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
INGLE  S.; WEIS  D.; FREY  F. A. 《Journal of Petrology》2002,43(7):1241-1257
At Site 1137 on Elan Bank of the Kerguelen Plateau, a largeigneous province in the southern Indian Ocean, a fluvial, volcaniclastic,polymict conglomerate and a fluvial sandstone are intercalatedwith subaerially erupted tholeiitic basalt flows. Clasts recoveredfrom the conglomerate have highly variable lithologies, includingalkali basalt, rhyolite, trachyte, granitoid and gneiss. Majorand trace element abundances and whole-rock isotopic data forthe sandstones, the conglomerate matrix and representative clastsfrom the conglomerate are used to infer the origin of thesediverse rock types. The gneiss clasts show an affinity to crustalrocks from India, particularly those of the Eastern Ghats Beltand its possible East Antarctic corollary, the Rayner Complex.The felsic volcanic clasts are not genetically related to theintercalated basalt flows, despite being erupted contemporaneouslywith these basaltic magmas. These felsic volcanic clasts probablyformed from partial melting of evolved upper continental crust.The granitoid also probably formed by partial melting of continentalcrust and could be an intrusive equivalent of the felsic volcanicrocks. In contrast, the alkali basalt clasts have isotopic compositionsthat are more similar to those of the tholeiitic basalt flowsrecovered at Site 1137; however, these clasts are highly alkalic(tephrite to phonotephrite) and have a distinct petrogenesisfrom the tholeiitic basalt flow units. KEY WORDS: geochemistry; Indian Ocean; Kerguelen Plateau; large igneous provinces; Ocean Drilling Program  相似文献   

2.
The island of Lundy forms the southernmost igneous complex of the British Tertiary Volcanic Province (BTVP) and consists of granite (≈ 90%) emplaced into deformed Devonian sedimentary rocks (Pilton Shale) and associated with a swarm of dykes of dolerite/basalt, minor trachyte and rhyolite composition. The dolerites are of varied olivine basalt composition and are associated with peralkaline trachyte and subalkaline/peralkaline rhyolite with alkali feldspar and quartz ± alkali amphibole ± pyroxene mineralogy. The dyke swarm is therefore an anorogenic bimodal dolerite/basalt–trachyte/rhyolite BTVP association. Although the dyke association is bimodal in major element terms between dolerite/basalt and minor trachyte/rhyolite, the mineralogy and trace element geochemistry indicate that the dykes may be regarded as a cogenetic dolerite—peralkaline trachyte/rhyolite association with minor subalkaline rhyolites. Sr and Nd isotope data indicate derivation of these magmas from a similar BTVP mantle source (with or without minor contamination by Pilton Shale, or possibly Lundy granite). The petrogenesis of the Lundy dyke association is therefore interpreted in terms of extensive fractional crystallization of basaltic magma in a magma chamber of complex geometry below the (exposed) Lundy granite. Fractional crystallization of a representative dolerite magma (olivine ± clinopyroxene ± plagioclase) yields trachyte magma from which the crystallization of alkali feldspar (anorthoclase) ± plagioclase (oligoclase) + Fe–Ti oxide + apatite results in peralkaline rhyolite. Rarer subalkaline rhyolites result from fractionation from a similar dolerite source which did not achieve a peralkaline composition so allowing the crystallization and fractionation of zircon. The basalt–(minor trachyte)/rhyolite bimodality reflects rapid crystallization of basalt magma to trachyte (and rhyolite) over a relatively small temperature interval (mass fraction of melt, F = ≈ 0.15). The rapid high level emplacement of basalt, trachyte and rhyolite dyke magmas is likely to have been associated with the development of a substantial composite bimodal basalt–(minor trachytel)/rhyolite volcano above the BTVP Lundy granite in the Bristol Channel.  相似文献   

3.
Flood basalt provinces may constitute some of the most catastrophic volcanic events in the Earth's history. A popular model to explain them involves adiabatic ascent of plumes of anomalously hot peridotite from a thermal boundary layer deep in the mantle, across the peridotite solidus. However, peridotitic plumes probably require unreasonably high potential temperatures to generate sufficient volumes of magma and high enough melting rates to produce flood volcanism. This lead to the suggestion that low melting eclogitic or pyroxenitic heterogeneities may be present in the source regions of the flood basalts. In order to constrain petrogenetic models for flood basalts generated in this way, an experimental investigation of the melting relations of homogeneous peridotite + oceanic basalt mixtures has been performed. Experiments were conducted at 3.5 GPa on a fertile peridotite (MPY90)–oceanic basalt (GA1) compositional join. The hybrid basalt + peridotite compositions crystallised garnet lherzolite at subsolidus temperatures plus quenched ne-normative picritic liquids at temperatures just above the solidus, over the compositional range MPY90 to GA150MPY9050. The solidus temperature decreased slightly from ∼1500 °C for MPY90 to ∼1450 °C for GA150MPY9050. Compositions similar to GA130MPY9070 have 100% melting compressed into a melting interval which is approximately 50–60% smaller than that for pure MPY90, due to a liquidus minimum. During adiabatic ascent of hybrid source material containing a few tens of percent basalt in peridotite, the lower solidus and compressed solidus–liquidus temperature interval may conspire to substantially enhance melt productivity. Mixtures of recycled oceanic crust and peridotite in mantle plumes may therefore provide a viable source for some flood volcanics. Evidence for this would include higher than normal Fe/Mg values in natural primary liquids, consistent with equilibration with more Fe-rich olivine than normal pyrolitic olivine (i.e. <Fo89–92). Modelling of fractionation trends in West Greenland picrites is presented to demonstrate that melts parental to the Greenland picrites were in equilibrium at mantle P–T conditions with olivine with Fo84–86, suggesting an Fe-enriched source compared with normal peridotite, and consistent with the presence of a basaltic component in the source. Received: 29 October 1999 / Accepted: 3 February 2000  相似文献   

4.
攀枝花二叠纪火山岩发育有玄武岩和粗面岩的基性和碱性两个端元,区域上明显缺失中间过渡类型。玄武岩SiO_2含量处于45.65%~49.32%范围内,粗面岩SiO_2含量介于64.39%~69.17%之间,构成经典的"双峰式"火山岩特征组合。两者均具有富Na、贫K、轻稀土富集、轻重稀土明显分馏的特征。特征微量元素Nb/Ta、Th/Ta、Th/U比值变化相对较小,玄武岩分别为15.16、2.70和4.13,粗面岩分别为15.40、2.55和4.12,显示两者具有相似的地球化学属性。微量元素特征显示,除了Ti和Y等少数高场强元素不协调以外,玄武岩与粗面岩绝大多数微量元素变化规律相似,且Rb、Ce、Y、Nb、Hf、Ta等元素与洋岛玄武岩(OIB)特征一致,说明它们具有地幔柱构造系统下的岩浆属性,岩浆源于石榴石二辉橄榄岩岩石圈地幔的部分熔融。结合前人资料,攀枝花二叠纪双峰式火山岩的厘定,不仅暗示了岩浆形成于拉张的裂谷构造环境,也为西南地区二叠纪峨眉山大火成岩地幔柱成因提供支撑。  相似文献   

5.
The widespread late Carboniferous calc-alkaline and shoshonitic magmatic rocks in the Awulale mountain provide crucial constraints on the tectonic evolution of the western Tianshan. Here, we perform detailed petrological investigations as well as zircon U-Pb chronological, whole-rock geochemical and Sr-Nd isotopic analyses on these magmatic rocks from two geological sections along the Duku road. Magmatic rocks in the section I with zircon SHRIMP U-Pb ages of 306.8 Ma and 306.4 Ma are composed of medium-K calc-alkaline to shoshonitic basalt, trachy-andesite and trachyte, while those in the section II consist of shoshonitic trachy-andesite, trachyte with a U-Pb age of 308.1 Ma, and monzonite with a U-Pb age of 309.6 Ma. All these magmatic rocks are characterized by strong enrichments in large iron lithophile elements with depletions of Nb, Ta and Ti, indicating the origination from subduction-modified lithospheric mantle. The εNd(t) values of the rock samples collected from the section I (2.80–5.45) and section II (3.34–5.37) are generally higher than those of the Devonian to early Carboniferous arc-type magmatic rocks in the Yili-central Tianshan, suggesting that depleted asthenosphere might also be involved in their generation. Based on these geochemical data and petrological observations, we suggest that the early-stage (308.1–309.6 Ma) shoshonitic monzonite, trachy-andesite and trachyte in the section II were generated by mixing between mafic magmas and trachytic melts, while the late-stage (306.4–306.8 Ma) medium-K calc-alkaline to shoshonitic basalt, trachy-andesite and trachyte in the section I were produced by partial melting of depleted asthenospheric and metasomatized lithospheric mantle, followed by the processes of fractional crystallization and crustal contamination. Taking into account the available regional geological data, the subduction of south Tianshan ocean was probably ceased at ∼310 Ma, and these calc-alkaline and shoshonitic magmatic rocks in the Awulale mountain formed in a post-collisional setting subsequent to slab break-off.  相似文献   

6.
An integrated study on petrology and geochemistry has been carried out on the Late Carboniferous I-type felsic volcanics of the Liushugou Formation in the Bogda belt to constrain the late Paleozoic tectonic evolution of the Bogda belt. The felsic volcanics were dated to be 315 to 319 Ma and are composed of trachy-andesite–trachyte ignimbrites and rhyolite lavas. They are in conformable contact with high-Al basalt. The eruption of the felsic volcanics and high-Al basalt is not bimodal volcanism, but is related to bimodal magma (basaltic and rhyolitic magmas). MELTS modeling and comparison with previous basaltic melting experiments indicate that the felsic volcanics are likely produced by partial melting of hydrated mafic crust rather than fractional crystallization of high-Al basalt. It is also supported by relatively large amounts of felsic volcanics to high-Al basalts and remarkably different incompatible element ratios (e.g., Th/Zr, Nb/Zr and U/Zr) of the rocks. The Bogda felsic volcanics have positive εNd(t) values (6.2–7.4), low Pb isotopes and low zircon saturation temperatures, consistent with a derivation from a juvenile crust in an arc setting. The intermediate ignimbrites display melting–mingling textures and abundant feldspar aggregates and have various δEu ratios, indicating that magma mingling and feldspar fractionation processes may have played an important role in the genesis of the ignimbrites. In contrast, the Early Permian felsic rocks in this region are of post-collisional A-type. We therefore propose that the Bogda belt was an island arc in the Late Carboniferous and then switched to a post-collisional setting in the Early Permian due to the arc–arc collision at the end of the Late Carboniferous.  相似文献   

7.
Sanshui basin is one of the typical Mesozoic–Cenozoic intra-continental rift basins with voluminous Cenozoic volcanic rocks in southeastern China. Thirteen cycles of volcanic eruptions and two dominant types of volcanic rocks, basalt and trachyte–rhyolite, have been identified within the basin. Both basalt and trachyte–rhyolite members of this bimodal suit have high values of εNd (+2.3 to +6.2) and different Sr isotopic compositions (initial 87Sr/86Sr ratios are 0.70461–0.70625 and 0.70688–0.71266 for basalts and trachyte–rhyolite, respectively), reflecting distinct magma evolution processes or different magma sources. The results presented in this study indicate that both of the trachyte–rhyolite and basaltic magmas were derived from similar independent primitive mantle, but experienced different evolution processes. The trachyte-rhyolitic magma experienced significant clinopyroxene and plagioclase fractionational crystallization from deeper magma chamber with significant crustal contamination, while the basaltic magmas experienced significant olivine and clinopyroxene fractionational crystallization in shallower magma chamber with minor crustal contamination. New zircon U–Pb dating confirms an initial volcanic eruption at 60 Ma and the last activity at 43 Ma. Geologic, geochemical, and geochronological data suggest that the inception of the Sanshui basin was resulted from upwelling of a mantle plume. The Sanshui basin widened due to subsequent east–west extension and the subsequent volcanism constantly occurred in the center of the basin. Evidence also supports a temporal and spatial association with other rift basins in southeastern China. The upwelling mantle plume became more active during late Cenozoic time and most likely triggered opening of other basins, including the young South China Sea basin.  相似文献   

8.
The Neogene-Quaternary Harrat Rahat volcanic field is part of the major intercontinental Harrat fields in western Saudi Arabia.It comprises lava flows of olivine basalt and hawaiite,in addition to mugearite,benmorite,and trachyte that occur mainly as domes,tuff cones and lava flows.Based on opaque mineralogy and mineral chemistry,the Harrat Rahat volcanic varieties are distinguished into Group I(olivine basalt and hawaiite) and Group II(mugearite,benmorite and trachyte).The maximum forsterite content(~85) is encountered in zoned forsteritic olivine of Group I,whereas olivine of Group II is characterized by intermediate(Fo=50),fayalitic(Fo=25) and pure fayalite in the mugearite,benmorite and trachyte,respectively.The more evolved varieties of Group II contain minerals that show enrichment of Fe2+,Mn2+and Na+that indicates normal fractional crystallization.The common occurrence of coarse apatite with titanomagnetite in the benmorite indicates that P5+becomes saturated in this rock variety and drops again in trachyte.Cr-spinel is recorded in Group I varieties only and the Cr#(0.5) suggests lherzolite as a possible restite of the Harrat Rahat volcanics.The plots of Cr# vs.the forsterite content(Fo) suggest two distinct trends,which are typical of mixing of two basaltic magmas of different sources and different degrees of partial melting.The bimodality of Harrat Rahat Cr-spinel suggests possible derivation from recycled MORB slab in the mantle as indicated by the presence of high-Al spinel.It is believed that the subcontinental lithospheric mantle was modified by pervious subduction process and played the leading role in the genesis of the Harrat Rahat intraplate volcanics.The trachytes of the Harrat Rahat volcanic field were formed most probably by melting of a lower crust at the mantle-crust boundary.The increase in fO2 causes a decrease in Cr2 O3,and Al2 O3,and a strong increase in the proportion of Fe3+and Mg# of spinel crystallizing from the basaltic melt at T ~1200°C.The olivine-pyroxene and olivine-spinel geothermometers yielded equilibrium temperature in the range of 935-1025°C,whereas the range of <500-850°C from single-pyroxene thermometry indicates either post crystallization reequilibrium of the clinopyroxene,or the mineral is xenocrystic and re-equilibrated in a cooling basaltic magma.  相似文献   

9.
The Mid to Late Miocene intraplate alkaline volcanic suites of western Bohemia are relict of the intensive voluminous volcanism accompanied by large-scale uplift and doming. The association with the uplift of the NE flank of the Cheb–Domažlice Graben (CDG) is uncertain in view of the mostly transpressional tectonics of the graben. The volcanism is most probably of the Ohře/Eger Rift off-rift settings. Two cogenetic volcanic suites have been recognised: (i) silica-saturated to oversaturated consisting of olivine basalt–trachybasalt-(basaltic) trachyandesite–trachyte–rhyolite (13.5 to 10.2 Ma) and (ii) silica-undersaturated (significantly Ne-normative) (melilite-bearing) olivine nephelinite–basanite–tephrite (18.3 to 6.25 Ma). A common mantle source is suggested by similar primitive mantle-normalised incompatible element patterns and Sr–Nd–Pb isotopic compositions for the assumed near-primary mantle-derived compositions of both suites, i.e., olivine basalt and olivine nephelinite. Apparently, they were generated by different degrees of partial melting of a common mantle source, with garnet, olivine and clinopyroxene in the residuum. Negative Rb and K anomalies indicate a residual K-phase (amphibole/phlogopite) and melting of partly metasomatised mantle lithosphere. The evolution of the basanite–olivine basalt–trachybasalt-(basaltic) trachyandesite–trachyte–rhyolite suite suggests the presence of an assimilation–fractional crystallization process (AFC). Substantial fractionation of olivine, clinopyroxene, Fe–Ti oxide, plagioclase/alkali feldspar and apatite accompanied by a significant assimilation of magma en route by crustal material is most evident in evolved member, namely, trachytes and rhyolites. The magmas were probably sourced by both sub-lithospheric and lithospheric partly metasomatised mantle. The evolution of the (melilite-bearing) olivine nephelinite–basanite–tephrite suite is less clear because of its limited extent. Parental magma of both these rock suites is inferred to have originated by low-degree melting of the mantle source initiated at ca. 18 Ma and reflects mixing of asthenosphere-derived melts with isotopically enriched lithospheric melts. The older Oligocene alkaline rocks (29–26 Ma) occur within the Cheb–Domažlice Graben (CDG) locally but are significant in the closely adjacent neighbouring western Ohře Rift. The Sr–Nd–Pb isotopic composition of primitive volcanic rocks of both suites is similar to that of the European Asthenospheric Reservoir (EAR). Initial Pb isotopic data plot partly above the northern hemisphere reference line at radiogenic 206Pb/204Pb ratios of ∼19 to 20, and indicate the presence of a Variscan crustal component in the source.  相似文献   

10.
The only significant silicate intrusive rock type in the Dicker Willem carbonatite complex is trachyte, forming, in places, an anastomosing array of minor intrusions cutting basement gneiss close to the carbonatite contact. Bodies are predominantly composite breccias, composed of trachyte clasts, commonly in the form of ellipsoidal pellets, enclosed within, and sharply delineated from, a matrix of carbonatite. Despite close temporal and spatial relationships to carbonatite magmatism, the ultrapotassic, quartz-normative composition and isotope systematics of the trachytes preclude any genetic derivation from the carbonatitic and ijolitic rocks of the central complex. Sr, Nd and Pb isotope ratios of trachytes strongly resemble those of the highest grade, potassic fenites, whose metasomatic trend converges from the unaltered basement gneiss towards the homogeneous signature of the nepheline sövite–sövite–ijolite suite. Trachytes are interpreted as forming by melting of a cupola of high-grade fenite in response to the advective heat flux from rising carbonatite magma or fluid. Mixed carbonatite and trachyte were emplaced in a fluidised system as contemporaneous, but genetically unrelated, immiscible magmas.  相似文献   

11.
长白山天池老虎洞期火山活动地质特征及成因意义   总被引:6,自引:0,他引:6       下载免费PDF全文
郑祥身  许湘希 《地质科学》1998,33(4):426-434
长白山天池火山老虎洞期火山活动发生在更新世晚期白头山组碱性粗面岩喷发之后,火山活动的产物主要为玄武岩质火山碎屑岩和少量玄武岩质或粗面岩质熔岩;老虎洞组火山岩的稀土元素地球化学特征介于早期玄武岩和气象站组碱流岩两者之间,将二者有机地联系在一起,使整个天池火山岩的演化趋势更加清晰。老虎洞组火山岩的存在充分证明了天池火山的粗面岩类与该区早期的大量玄武岩具有成因联系。长白山天池火山活动的成因并非简单地用西太平洋板块的俯冲作用所能解释的。  相似文献   

12.
Rare dunite and 2-pyroxene gabbro xenoliths occur in banded trachyte at Puu Waawaa on Hualalai Volcano, Hawaii. Mineral compositions suggest that these xenoliths formed as cumulates of tholeiitic basalt at shallow depth in a subcaldera magma reservoir. Subsequently, the minerals in the xenoliths underwent subsolidus reequilibration that particularly affected chromite compositions by decreasing their Mg numbers. In addition, olivine lost CaO and plagioclase lost MgO and Fe2O3 during subsolidus reequilibration. The xenoliths also reacted with the host trachyte to form secondary mica, amphibole, and orthopyroxene, and to further modify the compositions of some olivine, clinopyroxene, and spinel grains. The reaction products indicate that the host trachyte melt was hydrous. Clinopyroxene in one dunite sample and olivine in most dunite samples have undergone partial melting, apparently in response to addition of water to the xenolith. These xenoliths do not contain CO2 fluid inclusions, so common in xenoliths from other localities on Hualalai, which suggests that CO2 was introduced from alkalic basalt magma between the time CO2-inclusion-free xenoliths erupted at 106±6 ka and the time CO2-inclusion-rich xenoliths erupted within the last 15 ka.  相似文献   

13.
《Comptes Rendus Geoscience》2019,351(5):366-374
This study focuses on the mafic-ultramafic lavas of the Early Carboniferous outcrop in Mangxin, southwestern Yunnan, China. Picrites with 26–32 wt% MgO and a quenched texture are the most significant components of this rock association. This article divides the Mangxin picrites into two types. The mantle potential temperature (Tp) of these picrites is higher than the Tp range of mid-ocean ridges and reaches that of mantle plumes. According to their geochemical characteristics, type-1 picrites probably formed from the melting of the mantle plume head and were contaminated by the ambient depleted mantle, whereas type-2 picrites formed from the melting of mantle plume tails. These plume-related mafic-ultramafic rocks in Mangxin and the ocean island basalt (OIB)-carbonate rock associations in many areas of the Changning–Menglian belt provide significant evidence for the improvement of previous models of the Palaeotethyan oceanic plateau.  相似文献   

14.
Radiogenic isotopic dating and Lu–Hf isotopic composition using laser ablation-inductively coupled plasma-mass spectrometry(LA-ICP-MS)of the Wude basalt in Yunnan province from the Emeishan large igneous province(ELIP)yielded timing of formation and post-eruption tectonothermal event.Holistic lithogeochemistry and elements mapping of basaltic rocks were further reevaluated to provide insights into crustal contamination and formation of the ELIP.A zircon U–Pb age of 251.3±2.0 Ma of the Wude basalt recorded the youngest volcanic eruption event and was consistent with the age span of 251-263 Ma for the emplacement of the ELIP.Such zircons hadεHf(t)values ranging from7.3 to+2.2,identical to those of magmatic zircons from the intrusive rocks of the ELIP,suggesting that crust-mantle interaction occurred during magmatic emplacement,or crust-mantle mixing existed in the deep source region prior to deep melting.The apatite U–Pb age at 53.6±3.4 Ma recorded an early Eocene magmatic superimposition of a regional tectonothermal event,corresponding to the Indian–Eurasian plate collision.Negative Nb,Ta,Ti and P anomalies of the Emeishan basalt may reflect crustal contamination.The uneven Nb/La and Th/Ta values distribution throughout the ELIP supported a mantle plume model origin.Therefore,the ELIP was formed as a result of a mantle plume which was later superimposed by a regional tectonothermal event attributed to the Indian–Eurasian plate collision during early Eocene.  相似文献   

15.
Petrological and geochemical studies on some volcanic and sub-volcanic rocks from the Lower Benue rift indicate that they are basalts, basaltic and doleritic sills, trachybasalt and trachyte which generally belong to the alkali basalt series. The alkaline affinity is clearly evident in both their normative and modal mineral compositions, as well as their chemical compositions. The generally high fractionation indices [(La/Yb)N] are 7.06 to 17.65 for the basaltic rocks and 23.59 to 135. 35 for the trachytic rocks, against low values commonly seen in subalkaline (tholeiitic) series, with strong enrichments in the incompatible elements. All this strongly supports their alkaline affinity. The basaltic rocks are generally fine-grained and porphyritic, consisting of phenocrysts of clinopyroxene and olivine in the groundmass of the same minerals together with plagioclase. The clinopyroxene is either diopside or clinoenstatite. The trachyte consists of oligoclase, orthoclase, biotite, quartz and exhibits typical trachytic, flow structure. The basaltic and doleritic sills are commonly altered, with calcite and epidote as common alteration prod-ucts. This alteration, which is reflected in the erratic behaviour of K2O, MnO and P2O5 on Harker variation diagrams, high values of LOI, strong depletions in the more mobile LILE (Rb, K, Ba and Sr) and high Th/Ta ratios, is attributed to the effects of an aqueous fluid phase and crustal contamination. On the whole, the mineralogical, as well as major-, trace-elements and REE data suggest that the rocks are co-genetic and most likely derived from differentiation of an alkali olivine-basalt magma, generating through variable low degrees of partial melting of probably an enriched lithospheric (upper) mantle following an asthenospheric uplift (mantle plume or intumescence) with HIMU signa-tures in a within-plate continental rift tectonic setting. This corroborates earlier results obtained for the intrusive rocks in the region.  相似文献   

16.
Chemical and Sr, Nd and Pb isotopic compositions of Late Cenozoic to Quaternary small-volume phonolite, trachyte and related mafic rocks from the Darfur volcanic province/NW-Sudan have been investigated. Isotope signatures indicate variable but minor crustal contributions. Some phonolitic and trachytic rocks show the same isotopic composition as their primitive mantle-derived parents, and no crustal contributions are visible in the trace element patterns of these samples. The magmatic evolution of the evolved rocks is dominated by crystal fractionation. The Si-undersaturated strongly alkaline phonolite and the Si-saturated mildly alkaline trachyte can be modelled by fractionation of basanite and basalt, respectively. The suite of basanite–basalt–phonolite–trachyte with characteristic isotope signatures from the Darfur volcanic province fits the compositional features of other Cenozoic intra-plate magmatism scattered in North and Central Africa (e.g., Tibesti, Maghreb, Cameroon line), which evolved on a lithosphere that was reworked or formed during the Neoproterozoic.  相似文献   

17.
The Axum–Adwa igneous complex consists of a basalt–trachyte (syenite) suite emplaced at the northern periphery of the Ethiopian plateau, after the paroxysmal eruption of the Oligocene (ca 30 Ma) continental flood basalts (CFB), which is related to the Afar plume activity. 40Ar/39Ar and K–Ar ages, carried out for the first time on felsic and basaltic rocks, constrain the magmatic age of the greater part of the complex around Axum to 19–15 Ma, whereas trachytic lavas from volcanic centres NE of Adwa are dated ca 27 Ma. The felsic compositions straddle the critical SiO2-saturation boundary, ranging from normative quartz trachyte lavas east of Adwa to normative (and modal) nepheline syenite subvolcanic domes (the obelisks stones of ancient axumites) around Axum. Petrogenetic modelling based on rock chemical data and phase equilibria calculations by PELE (Boudreau 1999) shows that low-pressure fractional crystallization processes, starting from mildly alkaline- and alkaline basalts comparable to those present in the complex, could generate SiO2-saturated trachytes and SiO2-undersaturated syenites, respectively, which correspond to residual liquid fractions of 17 and 10 %. The observed differentiation processes are consistent with the development of rifting events and formation of shallow magma chambers plausibly located between displaced (tilted) crustal blocks that favoured trapping of basaltic parental magmas and their fractionation to felsic differentiates. In syenitic domes, late- to post-magmatic processes are sometimes evidenced by secondary mineral associations (e.g. Bete Giorgis dome) which overprint the magmatic parageneses, and mainly induce additional nepheline and sodic pyroxene neo-crystallization. These metasomatic reactions were promoted by the circulation of Na–Cl-rich deuteric fluids (600–400 °C), as indicated by mineral and bulk rock chemical budgets as well as by δ18O analyses on mineral separates. The occurrence of this magmatism post-dating the CFB event, characterized by comparatively lower volume of more alkaline products, conforms to the progressive vanishing of the Afar plume thermal effects and the parallel decrease of the partial melting degrees of the related mantle sources. This evolution is also concomitant with the variation of the tectono-magmatic regime from regional lithospheric extension (CFB eruption) to localized rifting processes that favoured magmatic differentiation.  相似文献   

18.
Based on laboratory and theoretical modeling results, we present the thermal and hydrodynamical structure of the plume conduit during plume ascent and eruption on the Earth’s surface. The modeling results show that a mushroom-shaped plume head forms after melt eruption on the surface for 1.9 < Ka < 10. Such plumes can be responsible for the formation of large intrusive bodies, including batholiths. The results of laboratory modeling of plumes with mushroom-shaped heads are presented for Ka = 8.7 for a constant viscosity and uniform melt composition. Images of flow patterns are obtained, as well as flow velocity profiles in the melt of the conduit and the head of the model plume. Based on the laboratory modeling data, we present a scheme of a thermochemical plume with a mushroom-shaped head responsible for the formation of a large intrusive body (batholith). After plume eruption to the surface, melting occurs along the base of the massif above the plume head, resulting in a mushroom-shaped plume head. A possible mechanism for the formation of localized surface manifestations of batholiths is presented. The parameters of some plumes with mushroom-shaped heads (plumes of the Altay-Sayan and Barguzin-Vitim large-igneous provinces, and Khangai and Khentei plumes) are estimated using geological data, including age intervals and volumes of magma melts.  相似文献   

19.
Data on the composition, inner structure, and magma sources of giant batholith in the Central Asian Orogenic Belt are analyzed with reference to the Khangai batholith. The Khangai batholith was emplaced in the Late Permian–Early Triassic (270–240 Ma) and is the largest accumulations (>150000 km2) of granite plutons in central Mongolia. The plutons are dominated by granites of normal alkalinity and contain subalkaline granites and more rare alkaline granites. The batholith is hosted in the Khangai zonal magmatic area, which consists of the batholith itself and surrounding rift zones. The zones are made up of bimodal basalt–trachyte–comendite (pantellerite) or basalt-dominated (alkaline basalt) volcanic associations, whose intrusive rocks are dominated by syenite and granite, granosyenite, and leucogranite. Both the batholith and the rift zones were produced within the time span of 270–240 Ma. Although the rocks composing the batholith and its rift surroundings are different, they are related through a broad spectrum of transitional varieties, which suggests that that the mantle and crustal melts could interact at various scale when the magmatic area was produced. A model is suggested to explain how the geological structure of the magmatic area and the composition of the magmatic associations that make up its various zones were controlled by the interaction between a mantle plume and the lithospheric folded area. The mantle melts emplaced into the lower crust are thought to not only have been heat sources and thus induced melting but also have predetermined the variable geochemical and isotopic characteristics of the granitoids. In the marginal portions of the zonal area, the activity of the mantle plume triggered rifting associated with bimodal and alkaline granite magmatism. The formation of giant batholiths was typical of the evolution of the active continental margin of the Siberian paleocontinent in the Late Paleozoic and Early Mesozoic: the Khangai, Angara–Vitim, and Khentei batholiths were formed in this area within a relatively brief time span between 300 and 190Ma. The batholiths share certain features: they consist of granitoids of a broad compositional range, from tonalite and plagiogranite to granosyenite and rare-metal granites; and the batholiths were produced in relation to rifting processes that also formed rift magmatic zones in the surroundings of the batholiths. The large-scale and unusual batholith-forming processes are thought to have occurred when the active continental margin of the Late Paleozoic Siberian continent overlapped a number of hotspots in the Paleo- Asian Ocean. This resulted in the origin of a giant anorogenic magmatic province, which included batholiths, flood-basalt areas in Tarim and Junggar, and the Central Asian Rift System. The batholiths are structural elements of the latter and components of the zonal magmatic areas.  相似文献   

20.
张维  方念乔 《地球科学》2014,39(1):37-44
广东三水盆地的演化伴随着强烈的火山活动.为研究三水盆地各类岩石之间的演化关系, 对在盆地内的玄武岩、粗面岩和流纹岩样品进行常量、微量元素地球化学分析.对样品的地球化学投图表明: 玄武岩样品表现为轻稀土富集的板内玄武岩稀土配分模式, 而其微量元素也具有Nb、Ti富集、Sr弱亏损的特征, 由部分熔融产生;粗面岩与流纹岩样品稀土与微量元素配分模式相似, 两类岩石均经历以斜长石为主的分离结晶过程.华南陆缘在始新世早期处于与红海相似的大陆裂谷环境, 喷发来源于深部软流圈地幔的岩浆, 但在42 Ma之后, 火山活动因区域挤压作用而停止.其后的南海扩张可能是两种作用的叠加影响的结果.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号