首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The Rozna Mine is one of the last active uranium mines in Europe. When the mine is closed and flooded, the natural groundwater flow pattern will be partly restored. Re-established groundwater flow system will be associated with an increase of groundwater discharge into draining rivers and streams. Since the groundwater inflows to streams can be contaminated by the mine water, the groundwater drainage characteristic of fractured aquifer should be carefully identified. Several methods of groundwater discharge zones identification were used including morphological analysis, thermometry, and electrical conductivity (EC) measurements. Stream temperatures and EC at more than 700 points in the area covering about 85 km2 were measured. The measurements were performed during winter period, when stream discharges were low and there was a maximum temperature contrast. There was a frequent presence of preferential discharge zones with resulting anomalous temperatures and electric conductivity values of stream water. The results show evident correlation of discharge zones with surface morphology and geological settings. Just like the aquifer discharge characteristics, the aquifer is strongly heterogeneous. The thermometry supported by measurement of EC proved to be a useful tool for large-scale investigation of groundwater flow and drainage in fractured aquifers.  相似文献   

2.
With the development of mining of iron deposits in China, groundwater invasion and the impacts of groundwater drainage, such as regional groundwater table lowering, overlapping cones of depression, subsidence, and water quality deterioration are environmental problems which endanger mining production and human life. Effective prevention of water invasion or timely determination of the mechanism of water bursting and rational design of drainage plans are the most urgent mining challenges. The mechanism of water invasion and the environment impacts on the groundwater system of the Gaoyang Iron Mine, China were dealt with in this paper. A systematical investigation of the hydrogeological conditions and monitoring of groundwater dynamics of the mine were completed. Results show that the limestone of the middle Ordovician System constitutes the under floor of the iron deposit. This limestone is the main source of water invasion into the mine. Groundwater dynamic equilibrium conditions are broken due to mine drainage. Water invasion and drainage have caused a serious impact on the groundwater environment of the area.  相似文献   

3.
 The Dawu well field, one of the largest in China, supplies most of the water for the Zibo City urban area in Shandong Province. The field yields 522,400–535,400 m3/d from an aquifer in fractured karstic Middle Ordovician carbonate rocks. Much of the recharge to the aquifer is leakage of surface water from Zihe Stream, the major drainage in the area. Installation of the Taihe Reservoir in 1972 severely reduced the downstream flow in Zihe Stream, resulting in a marked reduction in the water table in the Dawu field. Since 1994, following the installation of a recharge station on Zihe Stream upstream from the well field that injects water from the Taihe Reservoir into the stream, the groundwater resources of the field have recovered. An average of 61.2×103 m3/d of groundwater, mostly from the Ordovician aquifer, is pumped from the Heiwang iron mine, an open pit in the bed of Zihe Stream below the Taihe Reservoir. A stepwise regression equation, used to evaluate the role of discharge from the reservoir into the stream, confirms that reservoir water is one of the major sources of groundwater in the mine. Received, May 1998 / Revised, May 1999 / Accepted, June 1999  相似文献   

4.
以徐州东部废弃矿井为例,太原组灰岩含水层为研究对象,通过建立废弃矿井地区地下水流系统模型,运用数值模拟技术对区域地下水流场演变过程进行研究,揭示矿井废弃地区地下水流场演化的一般规律为:煤矿关闭前,为满足生产生活需要,矿井进行大量排水、抽水工作,矿区形成若干降落漏斗,如位于矿区西部的青山泉煤矿和北部的韩桥煤矿内均存在大面积降落漏斗,中心水位低于-25 m。受水力梯度影响,地下水向低洼的矿坑处汇集,原生地下水流系统遭到破坏。矿井闭坑后,原有排水系统全部停止工作,地下水位缓慢回升,降落漏斗逐渐减小,根据模型模拟结果,发现水位回升速度随矿井关闭时间的增加而减慢:在矿井关闭第1年内,水位回升速度较大,为1.14 m/a;关闭第3年时,水位回升速度减少至0.165 m/a;矿井关闭10年时,地下水最高水位为-16.55 m,从关闭第3年至第10年的7年时间内,水位回升速度仅0.039 m/a,矿区地下水流系统得到恢复,模拟区最终形成自北向南的近似稳定的地下水径流场。  相似文献   

5.
露天煤矿开采过程中的矿坑疏排水是引起地下水资源流失的重要原因,寻求新的控水方法势在必行。以内蒙古赤峰市元宝山露天煤矿为研究对象,根据研究区水文地质与露天煤矿开发特征,分析了露天开采驱动下帷幕墙体建设对地下水系统控制的基本原理,得出帷幕墙体渗透能力越弱、厚度越大、与补给水体距离越近是帷幕墙减少露天采坑涌水的基本思路。将露天采矿疏排水与地下水系统数值仿真研究结合,对露天煤矿开采与帷幕墙建设对矿坑疏排水强度影响程度进行预测分析,模拟结果显示,采用针对主要涌水段的局部帷幕工程方案,地下水仍然以露天矿采坑为降落漏斗中心,区域流场形态基本未发生重大变化,在未帷幕区段地下水发生了强烈的侧向绕流现象,初期(300 d)矿坑残余涌水量较之现有矿坑排水量最大减幅 37.16%,而残余涌水量随时间增大趋势明显。按准全封闭型帷幕方案建墙后,地下水基本未发生绕流现象,矿井残余涌水量为先减小后增大的趋势,最大减幅达85.79%,且后期涌水量增加幅度不大,可见准封闭型帷幕建设方案较之局部帷幕方案对矿坑整体涌水量的减排作用显著。通过分析露天煤矿开采侧向帷幕控水规律,构建帷幕阻水条件下地下水系统仿真模型,评价帷幕截水减排效果,以期为露天矿区煤–水资源协调开发提供科学依据。   相似文献   

6.
Flooded underground mines are attractive for groundwater heat pump systems, as the voids created during mining operations enhance the subsurface permeability and storage capacity, which allows the extraction of significant volumes of groundwater without requiring extensive drilling. Heat exchange at a flooded mine is, however, difficult to predict because of the complex geometry of the underground network of tunnels. A case study is presented here to demonstrate that numerical simulations of groundwater flow and heat transfer can help assess production temperatures required to optimize the design of a heat pump system that uses mine water. A 3D numerical model was developed for the Gaspé Mines located in Murdochville, Canada, where a district heating and cooling system is being studied. The underground mining tunnels and shafts are represented in the model with 1D elements whose flow and heat transfer contributions are superimposed to those of the 3D porous medium. The numerical model is calibrated to simultaneously reproduce the groundwater rebound that occurred when the mine closed and the drawdown measured during a pumping test conducted in a former mining shaft. Predictive simulations over a period of 50 years are subsequently performed to minimize pumping rate and determine maximum heat extraction rate.  相似文献   

7.
丘陵地区地下水资源不丰富,依赖于地下水的生态环境也比较脆弱。在开采该地区的矿产资源过程中,采矿排水对周边地下水资源的影响应成为值得注意的问题。以安徽省庐江县某一铁矿为例,采用解析法和数值法分别对该矿矿坑涌水量进行预测,并将两种方法的预测结果进行了对比分析。结果表明:在-500 m开采条件下,计算结果分别为41991.44 m3/d和3150 m3/d,得出数值法更适合水文地质复杂条件下矿坑用水量的预测,且与实测结果较为吻合,具有一定实用性,可为矿山制定防排水方案提供依据。  相似文献   

8.
Turquoise Lake is a water-supply reservoir located north of the historic Sugarloaf Mining district near Leadville, Colorado, USA. Elevated water levels in the reservoir may increase flow of low-quality water from abandoned mine tunnels in the Sugarloaf District and degrade water quality downstream. The objective of this study was to understand the sources of water to Dinero mine drainage tunnel and evaluate whether or not there was a direct hydrologic connection between Dinero mine tunnel and Turquoise Lake from late 2002 to early 2008. This study utilized hydrograph data from nearby draining mine tunnels and the lake, and stable isotope (δ18O and δ2H) data from the lake, nearby draining mine tunnels, imported water, and springs to characterize water sources in the study area. Hydrograph results indicate that flow from the Dinero mine tunnel decreased 26% (2006) and 10% (2007) when lake elevation (above mean sea level) decreased below approximately 3004 m (approximately 9855 feet). Results of isotope analysis delineated two meteoric water lines in the study area. One line characterizes surface water and water imported to the study area from the western side of the Continental Divide. The other line characterizes groundwater including draining mine tunnels, springs, and seeps. Isotope mixing calculations indicate that water from Turquoise Lake or seasonal groundwater recharge from snowmelt represents approximately 10% or less of the water in Dinero mine tunnel. However, most of the water in Dinero mine tunnel is from deep groundwater having minimal isotopic variation. The asymmetric shape of the Dinero mine tunnel hydrograph may indicate that a limited mine pool exists behind a collapse in the tunnel and attenutates seasonal recharge. Alternatively, a conceptual model is presented (and supported with MODFLOW simulations) that is consistent with current and previous data collected in the study area, and illustrates how fluctuating lake levels change the local water-table elevation which can affect discharge from the Dinero mine tunnel without physical transfer of water between the two locations.  相似文献   

9.
大南湖北露天煤矿首采区东南部需要揭露Ⅲ火烧岩区一部分,这使得烧变岩水成为露天煤矿矿井充水的主要水源。资源勘探阶段的水文地质资料表明,烧变岩区赋水空间发育、透水能力强,储存量非常可观,但由于受资源勘探阶段水文地质勘探工程量制约,水文地质条件未能详细查明,现有水文地质成果尚不能满足首采区对烧变岩水疏排设计的要求。对烧变岩地下水资源进行模拟开采性抽水试验,获取Ⅲ火烧区的水文地质参数,利用数值模拟的方法,运用MODFLOW软件建立了III火烧区地下水数值模型,并模拟计算出了Ⅲ火烧区地下水储存量。经验证,本次模拟所取得成果与煤矿实际情况相符,能够作为首采区矿坑疏排水设计依据。   相似文献   

10.
刘德朋  杨蕴  李金华 《江苏地质》2012,36(4):428-433
矿坑涌水是矿产安全开发的主要威胁,如何精确地预测开采涌水量直接关系到矿山开发远景和生产安全。以某拟建铁矿为例,建立地下水系统水文地质概念模型和数学模型,并对地下水流模型的参数进行识别校正和敏感性分析,采用有限差分数值模拟方法,评价矿体-400、-500、-600m共3个开采水平的矿坑开采涌水量。计算结果表明,数值模拟技术可以系统地描述矿区地下水系统,评价涌水量的主要来源,并对后期矿产开采和水量的优化配置具有指导意义。  相似文献   

11.
Large amounts of groundwater are discharged during underground mining operations. As a result, the drawdown of groundwater, known as aquifer dewatering, is common in mining areas. Because of variability in permeability between different media in mines, mine drainage occurs primarily as non-continuous flow. However, calculations of mine water yield are usually made based on the continuous flow theory, and therefore often produce erroneous results. This study predicts the water yield of a mine using the module MODFLOW and incorporating the non-continuous flow theory into the calculation. Using this method, the predicted water yield of a mine was approximately 50 % lower than that predicted using the continuous flow theory. The model also demonstrates that the rate of mine drainage varies over time; there is initially a decrease in the rate of drainage which gradually approaches a constant value. Double level flow occurs when there is non-continuous flow in continuous media, which can effectively minimize the influence of mine drainage on upper aquifers and relieve the conflict between groundwater supply and drainage in the mining area.  相似文献   

12.
地下水资源是北京供水系统的支柱,设立地下水水源地保护区,是保护水源地最大可能免受人类活动影响、保证水质安全的重要措施。论文以北京市某典型水源地为例,在收集相关水文地质勘查、长期动态观测、水源地开采现状、规划及周边污染源调查等成果资料的基础上,建立了地下水系统水文地质概念模型,模拟出地下水流场。通过质点追踪技术,计算水源地水力捕获带范围。综合考虑水源地周边地形、地物和潜在风险污染源等因素,确定了水源地保护区的范围。结果表明,数值模拟法能客观详细地刻画实际地下水含水层的结构与水文地质条件,划分结果可靠、准确,能为地下水管理部门提供有效合理的保护依据。  相似文献   

13.
现有的井群疏干、地下巷道集中排水、地表地下联合疏干方法都已比较成熟有效,但当矿区的地下水系统由非均质各向异性、低渗透性含水介质组成时,井群疏干受到低渗透性含水层和高倾角裂隙的制约,无法达到良好的疏干效果。地下巷道集中排水方法一次性工程投入很大,含水层富水性极度不均时易造成许多不必要的浪费;地表地下联合疏干方法的地面部分对矿坑边坡安全和采场作业都会造成一定的影响。结合马钢集团南山矿业公司高村露天铁矿的地下水疏干技术研究专项,调查分析了矿区地质和水文地质条件,含水介质特点及含水层富水特征,借助GMS软件建立了高村矿区地下水水流模型,提出了辐射井疏干技术的设想,并依据前人提出的"渗流-管流耦合模型"模拟辐射井,完成了此类矿山的地下水辐射井疏干方法的初步研究。  相似文献   

14.
陕北能源化工基地资源开发引起的植被生态风险   总被引:4,自引:1,他引:4  
董英  张茂省  卢娜  刘洁 《地质通报》2008,27(8):1313-1322
地下水和煤炭资源开发是否会破环生态环境,以及会给生态环境安全带来多大的风险,是陕北能源化工基地资源开发和生态环境保护中不可逾越的课题。以陕北能源化工基地生态环境最为脆弱的风沙滩地区为研究区,在研究地下水位埋深与植被生态关系的基础上,建立了不同地貌类型、不同潜水水位埋深对应的植被群落类型和植被指数的分布关系,利用Modflow软件建立了风沙滩地区地下水流数值模拟模型,采用蒙特卡洛方法建立了植被生态随机模型,根据地下水水位埋深与植被生态的关系实现了地下水流模型和植被生态模型的耦合求解,对地下水资源和煤炭资源开发可能引起的植被生态变化进行预测和风险评估。  相似文献   

15.
山东淄博沣水泉域岩溶水系统模拟及水源地优化开采预测   总被引:3,自引:2,他引:1  
沣水泉域岩溶水系统是淄博市及周边地区最主要的供水水源,因原有大武水源地水质严重污染,急需开辟新的水源地,故须重新开展泉域岩溶水资源评价和开采规划工作。文章在充分概化研究区水文地质概念模型的基础上,借助FeFlow软件,建立了基于等效连续介质的三维非均质各向异性岩溶水模型,并利用2016年水位动态数据对模型进行识别和验证。经模型计算可知,在2000-2015年,研究区岩溶地下水日均补给量为104.47万m3/d,排泄量为80.27万m3/d,正均衡24.20万m3/d。对原大武水源地与新增刘征水源地优化开采方案预测的结果表明,最优开采方案为:(1)保持大武水源地现状35.91万m3/d开采条件下,刘征水源地最大开采量为5.5万m3/d,刘征 -大武富水地段最大可开采量为41.41万m3/d;(2)满足刘征 -大武富水地段最大开采条件,大武水源地最大可减采至33.41万m3/d,刘征最大开采量为8万m3/d。   相似文献   

16.
本文从系统观点出发,分析了矿区岩溶水供排结合的水文地质条件,提出了以供代排,合理的规划蔚县矿区地下水资源的供排结合方案。应用有限元数值模拟与最优化技术建立供排结合水量规划的教学模型,求出了蔚县矿区最佳水源地位置和最佳的供水开采量与疏干量,实现了较好的经济效益。  相似文献   

17.
地下水赋存状态与渗流条件的改变及其造成的土体中孔隙水压力的变化是造成岸坡失稳的重要因素。通过模型试验和数值计算(EMU法)检验了降水速率对岸坡稳定性的影响,初步验证了虹吸排水法能够减小岸坡内地下水与库水位之间的水位差,并改善渗流路径,为其在工程中的应用提供了依据。  相似文献   

18.
Beijing is a city of severe water shortage. The groundwater plays a key role in the water supply. However, the groundwater level has been gradually descending due to extensive pumping in consecutive drought years. How to satisfy the water demand and recover the groundwater level is an urgent work. With the implementation of the South to North Water Transfer Project, an opportunity has been provided for restoration of groundwater under over exploitation. On the basis of hydrogeology conditions of the Beijing plain, as well as the high-performance parallel computing platforms, a groundwater flow numerical model was established. And dynamic monitoring data of groundwater levels were used to calibrate the numerical model. The calculation results fit well with the measured data in the calibrated model. Therefore, the calibrated model can be used to predict the dynamic change of groundwater levels in the Beijing plain. The results show that several obvious depression cones of groundwater have been formed because of the rapid decline of groundwater levels in the Beijing plain in recent years. After the implementation of the South to North Water Transfer project and due to the restrictions on groundwater exploitation, the area of cone of depression will be reduced to different degrees, the central water level of depression cone will increase, and some cones of depression around wellhead will disappear. It is a benefit to relieve water shortage and control the development of land subsidence and the deterioration of the ecological environment.  相似文献   

19.
 The development of a petrochemical industry may be responsible for petrochemical contamination of karst-fractured aquifers in an urban water supply system. In the Dawu Well Field, a karst-fractured aquifer in Zibo City, in the east of China, has been seriously polluted by petrochemicals from the operation of petrochemical plants. More than 60 species of organic contaminants have been detected in the water supply wells of the Liuhang-Hougao zone, in the west part of Dawu Well Field. Investigations indicate that contaminants are transported from the petrochemical plants to the karst-fractured aquifer along karst fractures and the Jinling Fault. In the groundwater, concentrations of pollutants vary with depth. Concentrations are greater with depth because of the transmissibility of the Jinling fault. The local convective flow field has a significant influence on transportation of contaminants. Hydraulic barriers can prevent the transportation of contaminants and they can be removed by extraction. Received: 22 October 1999 · Accepted: 14 February 2000  相似文献   

20.
大面积采动矿区水环境灾害特征及防治措施   总被引:1,自引:0,他引:1  
矿山采动前后,相应伴生水系调整和水体污染,产生水环境灾害。以阜新新邱矿区为研究对象,在对环境地质情况调查分析基础上,主要从水资源流失、废旧地下采场和露天矿坑积水、矿区地表和地下水质污染等方面探讨了矿区水环境灾害的形成及特征。大面积的开采,造成矿区水资源流失严重,矿山停采后,地下水位逐渐恢复;废旧地下采场和露天矿坑形成的积水,在入渗过程中,通过运移累积、吸附转化、溶解解析和离子交换等水岩作用对地下水产生污染;矿区矿井抽排水和河流水质污染物不同程度超标。针对矿山水环境灾害,建议采用矿山地质环境治理、修建防排水及净水设施、水环境监测等手段进行防治,以使矿区环境得到根本改善。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号