共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract Evaporation is an important reference for managers of water resources. This study proposes a hybrid model (BD) that combines back-propagation neural networks (BPNN) and dynamic factor analysis (DFA) to simultaneously precisely estimate pan evaporation at multiple meteorological stations in northern Taiwan through incorporating a large number of meteorological data sets into the estimation process. The DFA is first used to extract key meteorological factors that are highly related to pan evaporation and to establish the common trend of pan evaporation among meteorological stations. The BPNN is then trained to estimate pan evaporation with the inputs of the key meteorological factors and evaporation estimates given by the DFA. The BD model successfully inherits the advantages from the DFA and BPNN, and effectively enhances its generalization ability and estimation accuracy. The results demonstrate that the proposed BD model has good reliability and applicability in simultaneously estimating pan evaporation for multiple meteorological stations. Citation Chang, F.J., Sun, W., and Chung, C.H., 2013. Dynamic factor analysis and artificial neural network for estimating pan evaporation at multiple stations in northern Taiwan. Hydrological Sciences Journal, 58 (4), 813–825. 相似文献
2.
The issue of selecting appropriate model input parameters is addressed using a peak and low flow criterion (PLC). The optimal artificial neural network (ANN) models selected using the PLC significantly outperform those identified with the classical root‐mean‐square error (RMSE) or the conventional Nash–Sutcliffe coefficient (NSC) statistics. The comparative forecast results indicate that the PLC can help to design an appropriate ANN model to improve extreme hydrologic events (peak and low flow) forecast accuracy. Copyright © 2001 John Wiley & Sons, Ltd. 相似文献
3.
The primary objective of this study is to investigate the possibility of including more temporal and spatial information on short‐term inflow forecasting, which is not easily attained in the traditional time‐series models or conceptual hydrological models. In order to achieve this objective, an artificial neural network (ANN) model for short‐term inflow forecasting is developed and several issues associated with the use of an ANN model are examined in this study. The formulated ANN model is used to forecast 1‐ to 7‐h ahead inflows into a hydropower reservoir. The root‐mean‐squared error (RMSE), the Nash–Sutcliffe coefficient (NSC), the A information criterion (AIC), B information criterion (BIC) of the 1‐ to 7‐h ahead forecasts, and the cross‐correlation coefficient between the forecast and observed inflows are estimated. Model performance is analysed and some quantitative analysis is presented. The results obtained are satisfactory. Perceived strengths of the ANN model are the capability for representing complex and non‐linear relationships as well as being able to include more information in the model easily. Although the results obtained may not be universal, they are expected to reveal some possible problems in ANN models and provide some helpful insights in the development and application of ANN models in the field of hydrology and water resources. Copyright © 2002 John Wiley & Sons, Ltd. 相似文献
4.
The emergence of artificial neural network (ANN) technology has provided many promising results in the field of hydrology and water resources simulation. However, one of the major criticisms of ANN hydrologic models is that they do not consider/explain the underlying physical processes in a watershed, resulting in them being labelled as black‐box models. This paper discusses a research study conducted in order to examine whether or not the physical processes in a watershed are inherent in a trained ANN rainfall‐runoff model. The investigation is based on analysing definite statistical measures of strength of relationship between the disintegrated hidden neuron responses of an ANN model and its input variables, as well as various deterministic components of a conceptual rainfall‐runoff model. The approach is illustrated by presenting a case study for the Kentucky River watershed. The results suggest that the distributed structure of the ANN is able to capture certain physical behaviour of the rainfall‐runoff process. The results demonstrate that the hidden neurons in the ANN rainfall‐runoff model approximate various components of the hydrologic system, such as infiltration, base flow, and delayed and quick surface flow, etc., and represent the rising limb and different portions of the falling limb of a flow hydrograph. Copyright © 2004 John Wiley & Sons, Ltd. 相似文献
5.
多层及高层框架结构地震损伤诊断的神经网络方法 总被引:12,自引:4,他引:12
本文提出了强震后多层及高层框架结构地震损伤诊断的神经网络方法。文中在提出有结点损伤的梁柱有限元刚度矩阵的基础上,建立了有结点损伤框架结构的有限元模型。通过完好结构和有损伤结构的有限元分析,获取二者应变模态差值作为损伤标识量,并输入径向基(RBF)神经网络进行训练,得到了框架结构结点损伤诊断的神经网络系统。数值仿真分析结果表明,此神经网络可以对多层及高层框架结构结点各种程度的损伤做出成功诊断。 相似文献
6.
7.
Combined open channel flow is encountered in many hydraulic engineering structures and processes, such as irrigation ditches and wastewater treatment facilities. Extensive experimental studies have conducted to investigate combined flow characteristics. Nevertheless, there is no simple relationship that can fully describe the velocity profiles in a turbulent flow. The artificial neural network (ANN) has great computational capability for solving various complex problems, such as function approximation. The main objective of this study is to evaluate the applicability of the ANN for simulating velocity profiles, velocity contours and estimating the discharges accordingly. The velocity profiles measured by an acoustic doppler velocimeter in the open channel of the Chihtan purification plant, Taipei, with different discharges at fixed measuring section and different depths are presented. The total number of data sets is 640 and the data sets are split into two subsets, i.e. training and validation sets. The backpropagation algorithm is used to construct the neural network. The results demonstrate that the velocity profiles can be modelled by the ANN, and the ANN constructed can nicely fit the velocity profiles and can precisely predict the discharges for the conditions investigated. Copyright © 2005 John Wiley & Sons, Ltd. 相似文献
8.
考虑上部结构的刚度和阻尼,使用神经网络控制算法计算基底摩擦力的大小,研究了滑移隔震结构的半主动控制。对计算实例的分析表明,通过半主动控制的滑移隔震结构不但具有较好的隔震效果,且能有效地减小基底的最大滑移量及残余位移。为对比各种控制方法的控制效果,文中还利用Bang-Bang控制和瞬时最优控制算法对滑移隔震结构进行了半主动控制。对比分析表明,基于神经网络控制算法的控制效果优于其它控制算法,具有反馈量少,稳健性强等特点。 相似文献
9.
In China, 9·5% of the landmass is karst terrain and of that 47,000 km2 is located in semiarid regions. In these regions the karst aquifers feed many large karst springs within basins of thousands of square kilometres. Spring discharges reflect the fluctuation of ground water level and variability of ground water storage in the basins. However, karst aquifers are highly heterogeneous and monitoring data are sparse in these regions. Therefore, for sustainable utilization and conservation of karst ground water it is necessary to simulate the spring flows to acquire better understanding of karst hydrological processes. The purpose of this study is to develop a parsimonious model that accurately simulates spring discharges using an artificial neural network (ANN) model. The karst spring aquifer was treated as a non‐linear input/output system to simulate the response of karst spring flow to precipitation and applied the model to the Niangziguan Springs, located in the east of Shanxi Province, China and a representative of karst springs in a semiarid area. Moreover, the ANN model was compared with a previous time‐lag linear model and it was found that the ANN model performed better. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
10.
AbstractArtificial neural networks (ANNs) have recently been used to predict the hydraulic head in well locations. In the present work, the particle swarm optimization (PSO) algorithm was used to train a feed-forward multi-layer ANN for the simulation of hydraulic head change at an observation well in the region of Agia, Chania, Greece. Three variants of the PSO algorithm were considered, the classic one with inertia weight improvement, PSO with time varying acceleration coefficients (PSO-TVAC) and global best PSO (GLBest-PSO). The best performance was achieved by GLBest-PSO when implemented using field data from the region of interest, providing improved training results compared to the back-propagation training algorithm. The trained ANN was subsequently used for mid-term prediction of the hydraulic head, as well as for the study of three climate change scenarios. Data time series were created using a stochastic weather generator, and the scenarios were examined for the period 2010–2020.
Editor Z.W. Kundzewicz; Associate editor L. SeeCitation Tapoglou, E., Trichakis, I.C., Dokou, Z., Nikolos, I.K., and Karatzas, G.P., 2014. Groundwater-level forecasting under climate change scenarios using an artificial neural network trained with particle swarm optimization. Hydrological Sciences Journal, 59(6), 1225–1239. http://dx.doi.org/10.1080/02626667.2013.838005 相似文献
11.
利用人工神经元网络方法,提出了一种从连续的地震数据中检测出地震事件的方法。该方法分两步,首先,低阈值的STA/LTA算法从连续的波形中检测出类似地震事件;其次利用神经元网络方法,区分事件是地震事件还是噪声事件。通过对数据检测结果比较,找出了适合地震检测的神经元网络训练方法和神经元传递函数。在对天山流动台阵其中两个台的检测结果表明,在连续约两个月数据中,39RLS台检测出地震75个,30RNA台检测出地震95个,证明该方法对地震事件检测来说是一种有效的方法。 相似文献
12.
WenJun Zhang GuangHua Liu HongQing Dai 《Stochastic Environmental Research and Risk Assessment (SERRA)》2008,22(1):123-133
Neural networks are universal approximators for nonlinear functions. This study aimed to develop an algorithm for functional
link artificial neural network (FLANN), and to simulate insect’s food intake dynamics using the algorithm. Complete Matlab
codes for FLANN algorithm were given in the paper. Conventional models and FLANN were used to modeling accumulated food intake
of the larva of a holometabolous insect, Spodoptera litura. Simulation performance of FLANN was compared against conventional models and sensitivity analysis was conducted on FLANN.
The results showed that the FLANN algorithm performed better than conventional models in the simulation of dynamics and temperature–time
dependent relationship of larva’s food intake. The conventional models like fractional function, polynomial function, and
exponential function were indicated to simulate the food intake dynamics at a higher accuracy but their performances were
worse than FLANN. Both multivariate linear regression and trend surface model were used to describe temperature–time dependent
relationship of food intake. The overall trend for this relationship could be simulated using these models, however, the simulation
accuracy of these models was lower than FLANN. Sensitivity analysis showed that Legendre functions, Chebyshov functions, and
trigonometric functions, used as the basis functions in FLANN, yielded better fitness than Laguerre functions and Hermite
functions. The mean squared error of simulation using Legendre functions, Chebyshov functions, and trigonometric functions
decreased as the increase of the number of these basis functions. Simulation performance also varied with the change of type
of nonlinear functions and parameter values in the function. Linear function, negative exponential function and power function
were the best nonlinear functions, which yielded more stable outputs as the change of parameter values. 相似文献
13.
Risk evaluation of heavy snow disasters using BP artificial neural network: the case of Xilingol in Inner Mongolia 总被引:3,自引:2,他引:3
Ji-dong Wu Ning Li Hui-juan Yang Chun-hua Li 《Stochastic Environmental Research and Risk Assessment (SERRA)》2008,22(6):719-725
According to disaster and risk evaluation theory, we proposed an indicator system containing environmental possibilities with
hazard, disaster inducing factors and disaster bearing bodies to analyze the risk of heavy snow disaster in Xilingol, Inner
Mongolia, based on the analysis of heavy snow events that have occurred in the last several decades. A risk evaluation model
of heavy snow disaster was established using back-propagation artificial neural network (BP-ANN). Data obtained from a number
of heavy snow events samples were used to train artificial neural network (ANN). The objective of this study is to produce
a new evaluation model using BP-ANN for heavy snow risk analysis. As a result, BP-ANN model showed an advantage in heavy snow
risk evaluation in Xilingol compared to the conventional method of evaluation criteria equation (ECE) introduced by Inner
Mongolia Municipality Animal Husbandry Bureau. Thus, the BP-ANN model provides an alternative method for heavy snow risk analysis
in the area. 相似文献
14.
A neural network with two hidden layers is developed to forecast typhoon rainfall. First, the model configuration is evaluated using eight typhoon characteristics. The forecasts for two typhoons based on only the typhoon characteristics are capable of showing the trend of rainfall when a typhoon is nearby. Furthermore, the influence of spatial rainfall information on rainfall forecasting is considered for improving the model design. A semivariogram is also applied to determine the required number of nearby rain gauges whose rainfall information will be used as input to the model. With the typhoon characteristics and the spatial rainfall information as input to the model, the forecasting model can produce reasonable forecasts. It is also found that too much spatial rainfall information cannot improve the generalization ability of the model, because the inclusion of irrelevant information adds noise to the network and undermines the performance of the network. Copyright © 2005 John Wiley & Sons, Ltd. 相似文献
15.
Stream temperature modelling using artificial neural networks: application on Catamaran Brook,New Brunswick,Canada 总被引:2,自引:0,他引:2
Fish habitat and aquatic life in rivers are highly dependent on water temperature. Therefore, it is important to understand andto be able to predict river water temperatures using models. Such models can increase our knowledge of river thermal regimes as well as provide tools for environmental impact assessments. In this study, artificial neural networks (ANNs) will be used to develop models for predicting both the mean and maximum daily water temperature. The study was conducted within Catamaran Brook, a small drainage basin tributary to the Miramichi River (New Brunswick, Canada). In total, eight ANN models were investigated using a variety of input parameters. Of these models, four predicted mean daily water temperature and four predicted maximum daily water temperature. The best model for mean daily temperature had eight input parameters: minimum, maximum and mean air temperatures of the current day and those of the preceding day, the day of year and the water level. This model had an overall root‐mean‐square error (RMSE) of 0·96 °C, a bias of 0·26 °C and a coefficient of determination R2 = 0·971. The model that best predicted maximum daily water temperature was similar to the first model but excluded mean daily air temperature. Good results were obtained for maximum water temperatures with an overall RMSE of 1·18 °C, a bias of 0·15 °C and R2 = 0·961. The results of ANN models were similar to and/or better than those observed from the literature. The advantages of artificial neural networks models in modelling river water temperature lie in their simplicity of use, their low data requirement and their good performance, as well as their flexibility in allowing many input and output parameters. Copyright © 2008 Crown in the right of Canada and John Wiley & Sons, Ltd. 相似文献
16.
基于主成分的时间域航空电磁数据神经网络反演仿真研究(英文) 总被引:5,自引:0,他引:5
传统上,时间域航空电磁数据通过拟合迭代反演计算得到大地模型,然而,由于航空电磁数据道间的较强相关性,导致病态反演,并引起超定问题;同时电磁数据的相关性使其与模型参数的映射关系复杂,增加了反演的复杂度。采用主成分分析法将航空电磁数据变换为正交的较少数量的主成分,不仅降低了数据道间的相关性,减小了数据量,同时压制了数据的不相关噪声。本文利用人工神经网络(ANN)逼近主成分与大地模型参数间的映射关系,避免了传统反演算法中雅克比矩阵的复杂计算。层状模型的主成分神经网络与数据神经网络的反演结果对比显示,主成分神经网络反演方法网络结构简单,训练步数少,反演结果好,特别是对于含噪数据。准二维模型的主成分ANN、数据ANN以及Zhody方法的反演结果显示了主成分神经网络具有更接近真实模型的反演效果,进一步证明了主成分神经网络反演方法适合海量航空电磁探测数据反演。 相似文献
17.
The purpose of this study is to develop landslide susceptibility analysis techniques using an arti?cial neural network and to apply the newly developed techniques to the study area of Yongin in Korea. Landslide locations were identi?ed in the study area from interpretation of aerial photographs, ?eld survey data, and a spatial database of the topography, soil type and timber cover. The landslide‐related factors (slope, curvature, soil texture, soil drainage, soil effective thickness, timber age, and timber diameter) were extracted from the spatial database. Using those factors, landslide susceptibility was analysed by arti?cial neural network methods. The landslide susceptibility index was calculated by the back‐propagation method, which is a type of arti?cial neural network method, and the susceptibility map was made with a geographic information system (GIS) program. The results of the landslide susceptibility analysis were veri?ed using landslide location data. The validation results showed satisfactory agreement between the susceptibility map and the existing data on landslide location. A GIS was used to ef?ciently analyse the vast amount of data, and an arti?cial neural network to be an effective tool to maintain precision and accuracy. The results can be used to reduce hazards associated with landslides and to plan land use and construction. Copyright © 2003 John Wiley & Sons, Ltd. 相似文献
18.
19.
Özgür Kişi 《水文研究》2009,23(2):213-223
This paper reports on investigations of the abilities of three different artificial neural network (ANN) techniques, multi‐layer perceptrons (MLP), radial basis neural networks (RBNN) and generalized regression neural networks (GRNN) to estimate daily pan evaporation. Different MLP models comprising various combinations of daily climatic variables, that is, air temperature, solar radiation, wind speed, pressure and humidity were developed to evaluate the effect of each of these variables on pan evaporation. The MLP estimates are compared with those of the RBNN and GRNN techniques. The Stephens‐Stewart (SS) method is also considered for the comparison. The performances of the models are evaluated using root mean square errors (RMSE), mean absolute error (MAE) and determination coefficient (R2) statistics. Based on the comparisons, it was found that the MLP and RBNN computing techniques could be employed successfully to model the evaporation process using the available climatic data. The GRNN was found to perform better than the SS method. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
20.
Artificial neural networks (ANNs) have been applied successfully in various fields. However, ANN models depend on large sets of historical data, and are of limited use when only vague and uncertain information is available, which leads to difficulties in defining the model architecture and a low reliability of results. A conceptual fuzzy neural network (CFNN) is proposed and applied in a water quality model to simulate the Barra Bonita reservoir system, located in the southeast region of Brazil. The CFNN model consists of a rationally‐defined architecture based on accumulated expert knowledge about variables and processes included in the model. A genetic algorithm is used as the training method for finding the parameters of fuzzy inference and the connection weights. The proposed model may handle the uncertainties related to the system itself, model parameterization, complexity of concepts involved and scarcity and inaccuracy of data. The CFNN showed greater robustness and reliability when dealing with systems for which data are considered to be vague, uncertain or incomplete. The CFNN model structure is easier to understand and to define than other ANN‐based models. Moreover, it can help to understand the basic behaviour of the system as a whole, being a successful example of cooperation between human and machine. Copyright © 2006 John Wiley & Sons, Ltd. 相似文献