共查询到20条相似文献,搜索用时 309 毫秒
1.
Derek N. Mottershead 《地球表面变化过程与地形》1997,22(5):491-506
Three dated structures up to 450 years in age display the effects of coastal weathering of the greenschist of which they are constructed. A variety of weathering forms is present. The various topographic surfaces of the structures create variation in weathering environments and consequent weathering processes and rates. Weathering is enhanced by direct exposure to salt-bearing spray and by humid conditions, and apparently limited by direct exposure to solar radiation. The maximum rates of weathering on the three surfaces approximate to 0·6 mm a−1 over this period, consistent with measured contemporary weathering rates for a natural surface formed by this rock type in a nearby coastal location. © 1997 by John Wiley & Sons, Ltd. 相似文献
2.
Yukinori Matsukura Akira Maekado Hisashi Aoki Tetsuya Kogure Yoshihiko Kitano 《地球表面变化过程与地形》2007,32(7):1110-1115
In Kikai‐jima, south‐western Japan, many pedestal rocks have developed on the surface of Holocene raised coral‐reef terraces with known dates of emergence. Pedestals are formed just under boulders, which are considered to have been transported by tsunami and settled on a reef flat before emergence. On the assumption that boulders protect the underlying limestone terrace from rainfall solution, the rate of surface lowering of these limestone terraces was evaluated from the height of pedestals and the period of their formation. The result showed that the mean lowering rate over 6000 years is 205 mm/ky. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
3.
The Sr isotopic systematics in the weathering profiles of biotite granite and granite porphyry in southern Jiangxi Province were investigated. The results showed that during the chemical weathering of granites, remarked fractionation occurred between Rb and Sr. During the early stages of chemical weathering of granites, the released Sr/Si and Sr/Ca ratios are larger than those of the parent rocks, and the leaching rate of Sr is higher than those of Si, Ca, K, Rb, etc. Dynamic variations in relative weathering rates of the main Sr-contributing minerals led to fluctuation with time in 87Sr/86Sr ratios of inherent and released Sr in the weathering crust of granite. Successive weathering of biotite, plagioclase and K-feldspar made 87Sr/86Sr ratios in the weathering residues show such a fluctuation trend as to decrease first, increase, and then decrease again till they maintain stable. This work further indicates that when Sr isotopes are used to trace biogeochemical processes on both the catchment and global scales, one must seriously take account of the prefer-ential release of Sr from dissolving solid phase and the fluctuation of 87Sr/86Sr ratios caused by the variations of relative weathering rates of Sr-contributing minerals. 相似文献
4.
S.T. Nelson B. Barton M.W. Burnett J.H. McBride L. Brown I. Spring 《地球表面变化过程与地形》2020,45(12):2940-2953
The Hawaiian Islands permit investigation of tropical chemical weathering rates and processes on a single rock type, basalt. Chronosequences are investigated as a function of rainfall due to the varying age of each island, including Kauai (~4 Ma), Oahu (~2 Ma), and Hawaii's Kohala Peninsula (~0.3 to 0.17 Ma). Understanding tropical critical zone (CZ) development is vital given the large populations in developing countries that rely on it. HVSR (horizontal-to-vertical spectral ratio) seismic soundings on Kauai indicate that ~60% of the variability in laterite thickness is due to gradients in precipitation, with errors in erosion corrections and variability in the original permeability structure of the volcanic sequence playing important roles. Basalts have higher horizontal than vertical hydraulic conductivity (Kh > Kv) , and local variability in likely drives much of the remaining differences in laterite thickness. HVSR is well suited for estimating laterite thickness as it has been shown to reliably detect the base of the weathering profile, is rapid (20 min/sounding), highly portable, and occupies a very small footprint. Comparison of Kauai and Oahu weathering profiles suggests that the Oahu laterites are fully or nearly fully formed, despite being half the age of Kauai. By contrast, the young laterites on Kohala (~170 to ~300 ka) exhibit greatly contrasting thicknesses, where coastal laterites are thick and interior laterites are thin, suggesting that early weathering on shield volcanoes produces wedge-shaped laterites near the coast. With time, the thick (coastal) end of the wedge propagates upslope such that a fully developed, constant-thickness laterite carapace can form in ~2 Ma or less. The development of thickened coastal laterites on young substrates depends on greater water–rock ratios as vertically infiltrating water upslope is diverted laterally. This view of laterite development is very different compared to endmember models of continental weathering and CZ development. © 2020 John Wiley & Sons, Ltd. 相似文献
5.
We present a model of chemical reaction within hills to explore how evolving porosity (and by inference, permeability) affects flow pathways and weathering. The model consists of hydrologic and reactive-transport equations that describe alteration of ferrous minerals and feldspar. These reactions were chosen because previous work emphasized that oxygen- and acid-driven weathering affects porosity differently in felsic and mafic rocks. A parameter controlling the order of the fronts is presented. In the absence of erosion, the two reaction fronts move at different velocities and the relative depths depend on geochemical conditions and starting composition. In turn, the fronts and associated changes in porosity drastically affect both the vertical and lateral velocities of water flow. For these cases, estimates of weathering advance rates based on simple models that posit unidirectional constant-velocity advection do not apply. In the model hills, weathering advance rates diminish with time as the Darcy velocities decrease with depth. The system can thus attain a dynamical steady state at any erosion rate where the regolith thickness is constant in time and velocities of both fronts become equal to one another and to the erosion rate. The slower the advection velocities in a system, the faster it attains a steady state. For example, a massive rock with relatively fast-dissolving minerals such as diabase – where solute transport across the reaction front mainly occurs by diffusion – can reach a steady state more quickly than granitoid rocks in which advection contributes to solute transport. The attainment of a steady state is controlled by coupling between weathering and hydrologic processes that force water to flow horizontally above reaction fronts where permeability changes rapidly with depth and acts as a partial barrier to fluid flow. Published 2020. This article is a U.S. Government work and is in the public domain in the USA. 相似文献
6.
Differences in weathering response characteristics of fine‐ and coarse‐grained Stanton Moor sandstone samples were assessed in a laboratory weathering simulation experiment using a variable combination of salt weathering and freeze/thaw cycles. Preliminary analysis of permeability characteristics identified similar mean values for each type of Stanton sandstone but significant differences in the range of values between the two sample sets, with coarse‐grained samples of Stanton Moor sandstone displaying a restricted range of values in comparison to fine‐grained samples which showed much greater within‐block variation. Data indicated that the greater the range in initial permeability values, the greater the potential for salt and moisture ingress and retention and hence eventual disruption of the fabric of the stone. Experimental data also identified different stages in decay sequences, with significant structural change occurring during the initial preparatory stage before material breakdown and loss became apparent. Evidence suggests that relatively minor structural and mineralogical differences between samples of the same stone type can have a significant influence on weathering behaviour, resulting in distinct rates and patterns of breakdown. Copyright © 2005 John Wiley & Sons, Ltd. 相似文献
7.
Transient storage of floodwaters in aquifers is known to attenuate peak flows in rivers and drive subsurface dissolution. Transient aquifer storage could be enhanced in watersheds overlying karst aquifers where caves facilitate surface and groundwater exchange. Few studies, however, have examined controls on, or magnitudes of, transient aquifer storage or flood peak attenuation in karstic watersheds. Here we evaluate flood peak attenuation with multiple linear regression analyses of 10 years of river and groundwater data from the Suwannee River, which flows over the karstic upper Floridan aquifer in north-central Florida and experiences frequent flooding. Regressions show antecedent river stage exerts the dominant control on magnitudes of transient aquifer storage, with recharge and time to peak having secondary controls. Specifically, low antecedent stages result in larger magnitudes of transient aquifer storage and thus greater flood attenuation than conditions of elevated antecedent stage. These findings suggest subsurface weathering, including cave formation and enlargement, caused by transient aquifer storage could occur on a more frequent basis in aquifers where groundwater table elevation is lowered due to anthropogenic or climatic influences. Our work also shows that measures of groundwater table elevation prior to an event could be used to improve predictive flood models. © 2018 John Wiley & Sons, Ltd. 相似文献
8.
Landscape curvature evolves in response to physical, chemical, and biological influences that cannot yet be quantified in models. Nonetheless, the simplest models predict the existence of equilibrium hillslope profiles. Here, we develop a model describing steady‐state regolith production caused by mineral dissolution on hillslopes which have attained an equilibrium parabolic profile. When the hillslope lowers at a constant rate, the rate of chemical weathering is highest at the ridgetop where curvature is highest and the ridge develops the thickest regolith. This result derives from inclusion of all the terms in the mathematical definition of curvature. Including these terms shows that the curvature of a parabolic hillslope profile varies with distance from the ridge. The hillslope model (meter‐scale) is similar to models of weathering rind formation (centimeter‐scale) where curvature‐driven solute transport causes development of the thickest rinds at highly curved clast corners. At the clast scale, models fit observations. Here, we similarly explore model predictions of the effect of curvature at the hillslope scale. The hillslope model shows that when erosion rates are small and vertical porefluid infiltration is moderate, the hill weathers at both ridge and valley in the erosive transport‐limited regime. For this regime, the reacting mineral is weathered away before it reaches the land surface: in other words, the model predicts completely developed element‐depth profiles at both ridge and valley. In contrast, when the erosion rate increases or porefluid velocity decreases, denudation occurs in the weathering‐limited regime. In this regime, the reacting mineral does not weather away before it reaches the land surface and simulations predict incompletely developed profiles at both ridge and valley. These predictions are broadly consistent with observations of completely developed element‐depth profiles along hillslopes denuding under erosive transport‐limitation but incompletely developed profiles along hillslopes denuding under weathering limitation in some field settings. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
9.
We explore the contribution of fractures (joints) in controlling the rate of weathering advance for a low‐porosity rock by using methods of homogenization to create averaged weathering equations. The rate of advance of the weathering front can be expressed as the same rate observed in non‐fractured media (or in an individual block) divided by the volume fraction of non‐fractured blocks in the fractured parent material. In the model, the parent has fractures that are filled with a more porous material that contains only inert or completely weathered material. The low‐porosity rock weathers by reaction‐transport processes. As observed in field systems, the model shows that the weathering advance rate is greater for the fractured as compared to the analogous non‐fractured system because the volume fraction of blocks is < 1. The increase in advance rate is attributed both to the increase in weathered material that accompanies higher fracture density, and to the increase in exposure of surface of low‐porosity rock to reaction‐transport. For constant fracture aperture, the weathering advance rate increases when the fracture spacing decreases. Equations describing weathering advance rate are summarized in the ‘List of selected equations’. If erosion is imposed at a constant rate, the weathering systems with fracture‐bounded bedrock blocks attain a steady state. In the erosional transport‐limited regime, bedrock blocks no longer emerge at the air‐regolith boundary because they weather away. In the weathering‐limited (or kinetic) regime, blocks of various size become exhumed at the surface and the average size of these exposed blocks increases with the erosion rate. For convex hillslopes, the block size exposed at the surface increases downslope. This model can explain observations of exhumed rocks weathering in the Luquillo mountains of Puerto Rico. Published 2017. This article is a U.S. Government work and is in the public domain in the USA 相似文献
10.
目的:探讨基于体表面积(BSA)和固定碘速率给药,不同浓度对比剂对CT肝静脉成像质量的影响。方法:选取2020年1月至11月符合纳入标准,行上腹部增强CT扫描的患者130例,根据所用对比剂浓度不同,分为高浓度组(62例)和低浓度组(68例),高浓度组对比剂为碘帕醇(含碘370mg/mL),低浓度组对比剂为碘佛醇(含碘320mg/mL);根据BSA计算患者所用对比剂的总量,固定碘速率注射,进行分期动态扫描。选取肝静脉期数据行肝静脉血管重建,对图像质量进行评价,测量两组图像肝静脉和肝实质的CT值及其标准差值,计算信噪比和对比噪声比,并对图像质量进行主观评分;采用独立样本t检验比较两组间客观评价指标的差异,采用Mann-Whitney U检验比较主观评分的差异。结果:高、低浓度组图像评分分别为(3.74±0.47)分和(3.77±0.53)分,差异无统计学意义;两组间肝静脉左、中、右三支主干和同层面肝实质的CT值、SD值、SNR及肝静脉相对于肝实质的CNR,差异无统计学意义。结论:基于BSA及固定碘速率注射对比剂,两种不同浓度对比剂在肝静脉CT成像中的效果同样清晰利于诊断。 相似文献
11.
Weathering of bedrock creates and occludes permeability, affecting subsurface water flow. Often, weathering intensifies above the water table. On the contrary, weathering can also commence below the water table. To explore relationships between weathering and the water table, a simplified weathering model for an eroding hillslope was formulated that takes into account both saturated and unsaturated subsurface water flow (but does not fully account for changes in dissolved gas chemistry). The phreatic line was calculated using solutions to mathematical treatments for both zones. In the model, the infiltration rate at the hill surface sets both the original and the eventual steady-state position of the water table with respect to the weathering reaction front. Depending on parameters, the weathering front can locate either above or below the water table at steady state. Erosion also affects the water table position by changing porosity and permeability even when other hydrological conditions (e.g. hydraulic conductivity of parent material, infiltration rate at the surface) do not change. The total porosity in a hill (water storage capacity) was found to increase with infiltration rate (all else held constant). This effect was diminished by increasing the erosion rate. We also show examples of how the infiltration rate affects the position of the water table and how infiltration rate affects weathering advance. Published 2020. This article is a U.S. Government work and is in the public domain in the USA 相似文献
12.
It has been hypothesized that many soil profiles reach a steady‐state thickness. In this work, such profiles were simulated using a one‐dimensional model of reaction with advective and diffusive solute transport. A model ‘rock’ is considered, consisting of albite that weathers to kaolinite in the presence of chemically inert quartz. The model yields three different steady‐state regimes of weathering. At the lowest erosion rates, a local‐equilibrium regime is established where albite is completely depleted in the weathering zone. This regime is equivalent to the transport‐limited regime described in the literature. With an increase in erosion rate, transition and kinetic regimes are established. In the transition regime, both albite and kaolinite are present in the weathering zone, but albite does not persist to the soil–air interface. In the weathering‐limited regime, here called the kinetic regime, albite persists to the soil–air interface. The steady‐state thickness of regolith decreases with increasing erosion rate in the local equilibrium and transition regimes, but in the kinetic regime, this thickness is independent of erosion rate. Analytical expressions derived from the model are used to show that regolith production rates decrease exponentially with regolith thickness. The steady‐state regolith thickness increases with the Darcy velocity of the pore fluid, and in the local equilibrium regime may vary markedly with small variations in this velocity and erosion rate. In the weathering‐limited regime, the temperature dependences for chemical weathering rates are related to the activation energy for the rate constant for mineral reaction and to the ΔH of dissolution, while for local equilibrium regimes they are related to the ΔH only. The model illustrates how geochemical and geomorphological observations are related for a simple compositional system. The insights provided will be useful in interpreting natural regolith profiles. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
13.
Micro- and macroscale experiments which document the dynamics of salt damage to porous stone have yielded data which expose weaknesses in earlier interpretations. Previously unexplained differences are found in crystal morphology, crystallization patterns, kinetics and substrate damage when comparing the growth of mirabilite (Na2SO4. 10H2O) and thenardite (Na2SO4) versus halite (NaCl). The crystallization pattern of sodium sulphate was strongly affected by relative humidity (RH), while a lesser RH effect was observed for sodium chloride. Macroscale experiments confirmed that mirabilite (crystallizing at RH > 50 per cent) and thenardite (crystallizing at RH < 50 per cent) tend to form subflorescence in highly localized areas under conditions of constant RH and temperature. This crystallization pattern was more damaging than that of halite, since halite tended to grow as efflorescence or by filling the smallest pores of the stone in a homogeneous fashion, a result which contradicts Wellman and Wilson's theoretical model of salt damage. Low RH promoted rapid evaporation of saline solutions and higher supersaturation levels, resulting in the greatest damage to the stone in the case of both sodium sulphate and sodium chloride crystallization. At any particular crystallization condition, sodium chloride tended to reach lower supersaturation levels (resulting in the crystallization of isometric crystals) and created negligible damage, while sodium sulphate reached higher supersaturation ratios (resulting in non-equilibrium crystal shapes), resulting in significant damage. ESEM showed no damage from sodium sulphate due to hydration. Instead, after water condensation on thenardite crystals, rapid dissolution followed by precipitation of mirabilite took place, resulting in stone damage by means of crystallization pressure generation. It is concluded that salt damage due to crystallization pressure appears to be largely a function of solution supersaturation ratio and location of crystallization. These key factors are related to solution properties and evaporation rates, which are constrained by solution composition, environmental conditions, substrate properties, and salt crystallization growth patterns. When combined with a critical review of salt damage literature, these experiments allow the development of a model which explains variations in damage related to combinations of different salts, substrates and environmental conditions. Copyright © 1999 John Wiley & Sons, Ltd. 相似文献
14.
Based on the study of groundwater isotope(2H and 18O, 34S, 15N, 3H, 14C) in Changzhou, Wuxi and Suzhou area, it is found that the deep confined groundwater has no pollution on the whole, whereas the shallow groundwater is polluted to a different degree in the area. The deep confined aquifers (main exploitation aquifers) in Changzhou area and in Wuxi and Suzhou area likely belong to two different aquifers. The main exploitation aquifers in Changzhou area are not connected with those in Wuxi and Suzhou area, or they are connected but not expedited. The lateral run-off of groundwater is at present directed to the exploitation center because of overexploitation of the deep groundwater for a long time, but the flowing speed of groundwater is still extremely slow. The deep confined groundwater is in a close to half close state. The 14C age of groundwater varies from 10000 a BP to 38000 a BP, with the oldest groundwater found at the nearest exploitation center (along the line of three cities of Changzhou, Wuxi and Suzhou) and the youngest at the furthest exploitation center. 相似文献
15.
Natural ecosystems in the region of the lower Tarim River in northwestern China strongly deteriorated since the 1950s due to an expanding desertification. As a result, the downstream Tarim River reaches became permanently dry land. This historical evolution in land‐use change is typically the result of the anthropogenic impact on natural ecosystems. On the basis of a spatially distributed hydrological catchment model bidirectionally linked with a fully hydrodynamic MIKE11 river model, land‐use changes characterized by historical changes in leaf area index (LAI) of vegetation, as well as the evolution of irrigated surface areas, can be causally related to changes in water resources (groundwater storage and surface water resources). An increased surface area of irrigated (agricultural) land, together with a majority of inefficient irrigation methods, did lead to a strong increase of water resources consumption of the farmlands located in the upper Tarim River area. Evidently, this evolution influenced available water resources downstream in the Tarim basin. As a result, farmland has been gradually relocated to the upstream regions. This has led to reduced flows from the upper Tarim stream, which subsequently accelerated the dropping of the groundwater level downstream in the basin. This study moreover demonstrates that land surface biomass changes (cumulative LAI) along the lower Tarim River are strongly related to the changes in groundwater storage. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
16.
Temporal variation of chemical and mechanical weathering in NE Iceland: Evaluation of a steady-state model of erosion 总被引:2,自引:0,他引:2
E.S. Eiriksdottir P. Louvat S.R. Gislason N.
skarsson J. Hardardttir 《Earth and Planetary Science Letters》2008,272(1-2):78-88
This study critically assesses the temporal sensitivity of the steady-state model of erosion that has been applied to chemical and mechanical weathering studies of volcanic islands and the continents, using only one sample from each catchment. The model assumes a geochemical mass balance between the initially unweathered rock of a drainage basin and the dissolved and solid loads of the river.Chemical composition of 178 samples of suspended and dissolved inorganic river constituents, collected in 1998–2002, were studied from five basaltic river catchments in NE Iceland. The Hydrological Service in Iceland has monitored the discharge and the total suspended inorganic matter concentration (SIM) of the glacial rivers for ~ four decades, making it possible to compare modelled and measured SIM fluxes.Concentration of SIM and grain size increased with discharge. As proportion of clay size particles in the SIM samples increased, concentrations of insoluble elements increased and of soluble decreased. The highest proportion of altered basaltic glass was in the clay size particles.The concentration ratio of insoluble elements in the SIM was used along with data on chemical composition of unweathered rocks (high-Mg basalts, tholeiites, rhyolites) to calculate the pristine composition of the original catchment rocks. The calculated rhyolite proportions compare nicely with area-weighted average proportions, from geological maps of these catchments.The calculated composition of the unweathered bedrock was used in the steady-state model, together with the chemical composition of the suspended and dissolved constituents of the river. Seasonal changes in dissolved constituent concentrations resulted in too low modelled concentrations of SIMmod at high discharge (and too high SIMmod at low discharge). Samples collected at annual average river dissolved load yielded SIMmod concentrations close to the measured ones. According to the model, the studied rivers had specific mechanical denudation rates of 1.3–3.0 kg/m2/yr whereas the average measured rates were 0.8–3.5 kg/m2/yr which are among the highest on Earth.This study validates the use of a steady-state model of erosion to estimate mechanical weathering rates at the scale of a river catchment when the collected riverine dissolved load represents the average chemical composition over a mean hydrological year. 相似文献
17.
Paolo Benettin Scott W. Bailey Andrea Rinaldo Gene E. Likens Kevin J. McGuire Gianluca Botter 《水文研究》2017,31(16):2982-2986
We introduce a new representation of coupled solute and water age dynamics at the catchment scale, which shows how the contributions of young runoff waters can be directly referenced to observed water quality patterns. The methodology stems from recent trends in hydrologic transport that acknowledge the dynamic nature of streamflow age and explores the use of water age fractions as an alternative to the mean age. The approach uses a travel time‐based transport model to compute the fractions of streamflow that are younger than some thresholds (e.g., younger than a few weeks) and compares them to observed solute concentration patterns. The method is here validated with data from the Hubbard Brook Experimental Forest during spring 2008, where we show that the presence of water younger than roughly 2 weeks, tracked using a hydrologic transport model and deuterium measurements, mimics the variation in dissolved silicon concentrations. Our approach suggests that an age–discharge relationship can be coupled to classic concentration–discharge relationship, to identify the links between transport timescales and solute concentration. Our results highlight that the younger streamflow components can be crucial for determining water quality variations and for characterizing the dominant hydrologic transport dynamics. 相似文献
18.
Stephen McCabe Daniel McAllister Patricia A. Warke Miguel Gomez‐Heras 《地球表面变化过程与地形》2015,40(1):112-122
Stone surfaces are sensitive to their environment. This means that they will often respond to exposure conditions by manifesting a change in surface characteristics. Such changes can be more than simply aesthetic, creating surface/subsurface heterogeneity in stone at the block scale, promoting stress gradients to be set up as surface response to, for example, temperature fluctuations, can diverge from subsurface response. This paper reports preliminary experiments investigating the potential of biofilms and iron precipitation as surface‐modifiers on stone, exploring the idea of block‐scale surface‐to‐depth heterogeneity, and investigating how physical alteration in the surface and near‐surface zone can have implications for subsurface response and potentially for long‐term decay patterns. Salt weathering simulations on fresh and surface‐modified stone suggest that even subtle surface modification can have significant implications for moisture uptake and retention, salt concentration and distribution from surface to depth, over the period of the experimental run. The accumulation of salt may increase the retention of moisture, by modifying vapour pressure differentials and the rate of evaporation. Temperature fluctuation experiments suggest that the presence of a biofilm can have an impact on energy transfer processes that occur at the stone surface (for example, buffering against temperature fluctuation), affecting surface‐to‐depth stress gradients. Ultimately, fresh and surface‐modified blocks mask different kinds of system, which respond to inputs differently because of different storage mechanisms, encouraging divergent behaviour between fresh and surface‐modified stone over time. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
19.
Two small experimental catchments were established in the south-west of Western Australia to study the effects of logging and subsequent regeneration on the mechanism of streamflow generation. Following a six year pre-treatment calibration period (1976–1981), one catchment (March Road) was logged and reforested in 1982 and the other (April Road South) remained as a control. Logging resulted in an increase in groundwater levels and subsequently groundwater discharge area. The deep, permanent groundwater levels in the valley and upslope areas rose until 1986 and then began to decline. The maximum rise was 5 m in the upslope areas. The duration of shallow, intermittent groundwater system, perched on underlying clay, was extended from 2–3 months in winter before logging to 5–6 months after logging. The shallow groundwater level rose in the valley and began to discharge at the ground surface in 1986. Logging resulted in an increase in streamflow. The maximum increase (≈18% of annual rainfall) was in 1983, one year after logging. The increase in streamflow was due to a substantial decrease in interception and evapotranspiration, increased recharge to the shallow groundwater system, decreased soil moisture deficit and consequently an increase in throughflow. The increase in base flow was about twice that of quick flow. The changes in streamflow and its components in the subsequent years were closely related to the groundwater discharge area. Most of the quick flow was generated as saturation excess overland flow from the groundwater discharge area in the valley. The expansion of the groundwater discharge area, increased soil moisture content, higher groundwater level and the presence of the shallow groundwater system for the extended periods were responsible for the process of streamflow generation. 相似文献
20.
Barret L. Kurylyk Dylan J. Irvine Sean K. Carey Martin A. Briggs Dale D. Werkema Mariah Bonham 《水文研究》2017,31(14):2648-2661
Groundwater flow advects heat, and thus, the deviation of subsurface temperatures from an expected conduction‐dominated regime can be analysed to estimate vertical water fluxes. A number of analytical approaches have been proposed for using heat as a groundwater tracer, and these have typically assumed a homogeneous medium. However, heterogeneous thermal properties are ubiquitous in subsurface environments, both at the scale of geologic strata and at finer scales in streambeds. Herein, we apply the analytical solution of Shan and Bodvarsson ( 2004 ), developed for estimating vertical water fluxes in layered systems, in 2 new environments distinct from previous vadose zone applications. The utility of the solution for studying groundwater‐surface water exchange is demonstrated using temperature data collected from an upwelling streambed with sediment layers, and a simple sensitivity analysis using these data indicates the solution is relatively robust. Also, a deeper temperature profile recorded in a borehole in South Australia is analysed to estimate deeper water fluxes. The analytical solution is able to match observed thermal gradients, including the change in slope at sediment interfaces. Results indicate that not accounting for layering can yield errors in the magnitude and even direction of the inferred Darcy fluxes. A simple automated spreadsheet tool (Flux‐LM) is presented to allow users to input temperature and layer data and solve the inverse problem to estimate groundwater flux rates from shallow (e.g., <1 m) or deep (e.g., up to 100 m) profiles. The solution is not transient, and thus, it should be cautiously applied where diel signals propagate or in deeper zones where multi‐decadal surface signals have disturbed subsurface thermal regimes. 相似文献