首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A semi‐analytical solution of the one‐dimensional transport for considering a three‐member decay chain in a single fracture with pulse and Heaviside input sources has been studied using the Laplace transform and its numerical inversion. The results reveal that breakthrough curves of dimensionless concentration for the decay chain of Np‐237, U‐233, and Th‐229 in the fracture can be well demonstrated in the temporal and spatial domains. The conditions with and without retardation effects are also compared. During the preliminary screening phase the solutions are suitable for performance assessment on radioactive waste disposal sites under a one‐dimensional single fracture condition. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
Uncertainty analysis of radioactive nuclide transport for one-dimensional single fracture has been studied. First order differential analysis is applied to introduce analytical form of output expectation and variance for contaminant transport equation, by regarding uncertainty of dispersion coefficient and retardation factor. Breakthrough curve of dimensionless concentration is demonstrated by taking I-129 as radioactive nuclide in fracture transport. It is possible to pick up critical ranges in spatial and temporal domain from the output variance. From the viewpoint of preliminary performance assessment for nuclear waste disposal the parameter importance in such system can be substantially measured in the site characterization in future.  相似文献   

3.
We have investigated non‐Darcian flow to a vertical fracture represented as an extended well using a linearization procedure and a finite difference method in this study. Approximate analytical solutions have been obtained with and without the consideration of fracture storage based on the linearization procedure. A numerical solution for such a non‐Darcian flow case has also been obtained with a finite difference method. We have compared the numerical solution with the approximate analytical solutions obtained by the linearization method and the Boltzmann transform. The results indicate that the linearized solution agrees generally well with the numerical solution at late times, and underestimates the dimensionless drawdown at early times, no matter if the fracture storage is considered or not. When the fracture storage is excluded, the Boltzmann transform solution overestimates the dimensionless drawdown during the entire pumping period. The dimensionless drawdowns in the fracture with fracture storage for different values of dimensionless non‐Darcian hydraulic conductivity β approach the same asymptotic value at early times. A larger β value results in a smaller dimensionless drawdown in both the fracture and the aquifer when the fracture storage is included. The dimensionless drawdown is approximately proportional to the square root of the dimensionless time at late times.  相似文献   

4.
We determine the attenuation structure of a three‐dimensional medium based on first pulse‐width measurements from microearthquake data. Ninety‐five microearthquakes from a seventy stations local network were considered in this study. Measurements of the first half cycle of the wave, the so‐called rise time τ were carried out on high quality velocity seismograms and inverted to estimate the P‐waves intrinsic quality factor Qp. The results of this investigation indicate that first pulse width data from a local microearthquake network permit retrieval with sufficient accuracy of the heterogeneous Qp structure. The inferred attenuation variability corresponds to the known geological formations in the region.  相似文献   

5.
Measurements of radioactive in situ-produced cosmogenic nuclide concentrations in surficial material exposed to cosmic rays allow either determining the long-term denudation rate assuming that the surface studied has reached steady-state (where production and losses by denudation and radioactive decay are in equilibrium) (infinite exposure time), or dating the initiation of exposure to cosmic rays, assuming that the denudation and post-depositional processes are negligible. Criteria for determining whether a surface is eroding or undergoing burial as well as quantitative information on denudation or burial rates may be obtained from cosmogenic nuclide depth profiles. With the refinement of the physical parameters involved in the production of in situ-produced cosmogenic nuclides, a unique well-constrained depth profile now permits determination of both the exposure time and the denudation rate affecting a surface. In this paper, we first mathematically demonstrate that the exponential decrease of the in situ-produced 10Be concentrations observed along a depth profile constrains a unique exposure time and denudation rate when considering both neutrons and muons. In the second part, an improved chi-square inversion model is described and tested in the third part with actual measured profiles.  相似文献   

6.
In this paper the dynamic response of two and three pounding oscillators subjected to pulse‐type excitations is revisited with dimensional analysis. Using Buckingham's Π‐theorem the number of variables that govern the response of the system is reduced by three. When the response is presented in the dimensionless Π‐terms remarkable order emerges. It is shown that regardless of the acceleration level and duration of the pulse all response spectra become self‐similar and follow a single master curve. This is true despite the realization of finite duration contacts with increasing durations as the excitation level increases. All physically realizable contacts (impacts, continuous contacts, and detachments) are captured via a linear complementarity approach. The study confirms the existence of three spectral regions. The response of the most flexible among the two oscillators amplifies in the low range of the frequency spectrum (flexible structures); whereas, the response of the most stiff among the two oscillators amplifies at the upper range of the frequency spectrum (stiff structures). Most importantly, the study shows that pounding structures such as colliding buildings or interacting bridge segments may be most vulnerable for excitations with frequencies very different from their natural eigenfrequencies. Finally, by applying the concept of intermediate asymptotics, the study unveils that the dimensionless response of two pounding oscillators follows a scaling law with respect to the mass ratio, or in mathematical terms, that the response exhibits an incomplete self‐similarity or self‐similarity of the second kind with respect to the mass ratio. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
In this study, the fate and transport of aqueous benzene was investigated in a laboratory‐scale homogeneous aquifer by conducting a two‐dimensional plume test. Benzene solution was introduced as a pulse type along the width of the aquifer model through a recharge zone situated at the upper‐left part of the model and followed by a steady state flow. Solution samples were collected at various locations on the front side of the model to capture two‐dimensional plumes at discrete time intervals. The benzene plumes showed a moderate retardation relative to chloride plumes observed from the previous study conducted for the same aquifer model. The retardation factor was obtained from the ratio of travel distances of benzene peaks to chloride peaks from the injection point, computed using a line integral method. Mass recovery of aqueous benzene revealed that there was a significant reduction of benzene mass, indicating the occurrence of volatilization and/or irreversible sorption during transport. Thus, retardation along with volatilization and/or irreversible sorption may be important processes affecting the fate and transport of aqueous benzene in the aquifer model. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

8.
During bedload movement by saltation, streamwise momentum is transferred from the ?ow to the saltating grains. When the grains collide with other grains on the bed or in the ?ow, streamwise momentum is reduced, and there is a decrease in streamwise ?ow velocity and an increase in ?ow resistance, herein termed bedload transport resistance fbt. Based on experiments in two ?umes with ?xed and mobile plane beds and previously published data, an equation is developed that may be used to predict fbt for both capacity and non‐capacity ?ows. The variables in this equation are identi?ed by dimensional analysis and the coef?cients are determined by non‐linear regression. This equation applies to rough turbulent open‐channel ?ows, where the relative submergence is between 1 and 20 and the entire sediment load moves by saltation. An investigation of the relative magnitudes of fbt and grain resistance fc suggests that where dimensionless shear stress θ is less than 1 and saltation is the dominant mode of bedload transport, fbt/fc increases with θ but never exceeds 1. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

9.
Unsteady bedload transport was measured in two c. 5 m wide anabranches of a gravel‐bed braided stream draining the Haut Glacier d'Arolla, Switzerland, during the 1998 and 1999 melt seasons. Bedload was directly sampled using 152 mm square Helley–Smith type samplers deployed from a portable measuring bridge, and independent transport rate estimates for the coarser size fractions were obtained from the dispersion of magnetically tagged tracer pebbles. Bedload transport time series show pulsing behaviour under both marginal (1998) and partial (1999) transport regimes. There are generally weak correlations between transport rates and shear stresses determined from velocity data recorded at the measuring bridge. Characteristic parameters of the bedload grain‐size distributions (D50, D84) are weakly correlated with transport rates. Analysis of full bedload grain‐size distributions reveals greater structure, with a tendency for transport to become less size selective at higher transport rates. The bedload time series show autoregressive behaviour but are dif?cult to distinguish by this method. State–space plots, and associated measures of time‐series separation, reveal the structure of the time series more clearly. The measured pulses have distinctly different time‐series characteristics from those modelled using a one‐dimensional sediment routing model in which bed shear stress and grain size are varied randomly. These results suggest a mechanism of pulse generation based on irregular low‐amplitude bedforms, that may be generated in‐channel or may represent the advection of material supplied by bank erosion events. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

10.
Repeatability of seismic data plays a crucial role in time‐lapse seismic analysis. There are several factors that can decrease the repeatability, such as positioning errors, varying tide, source variations, velocity changes in the water layer (marine data) and undesired effects of various processing steps. In this work, the complexity of overburden structure, as an inherent parameter that can affect the repeatability, is studied. A multi‐azimuth three‐dimensional vertical‐seismic‐profiling data set with 10 000 shots is used to study the relationship between overburden structure and repeatability of seismic data. In most repeatability studies, two data sets are compared, but here a single data set has been used because a significant proportion of the 10 000 shots are so close to each other that a repeatability versus positioning error is possible. We find that the repeatability decreases by a factor of approximately 2 under an overburden lens. Furthermore, we find that the X‐ and Y‐components have approximately the same sensitivity to positioning errors as the Z‐component (for the same events) in this three‐dimensional vertical‐seismic‐profiling experiment. This indicates that in an area with complex overburden, positioning errors between monitor and base seismic surveys are significantly more critical than outside such an area. This study is based on a three‐dimensional three‐component vertical‐seismic‐profiling data set from a North Sea reservoir and care should be taken when extrapolating these observations into a general four‐dimensional framework.  相似文献   

11.
Flow in a single fracture (SF) is an important research subject in groundwater hydrology, hydraulic engineering, radioactive nuclear waste repository and geotechnical engineering. An abruptly changing aperture is a unique type of SF. This study discusses the relation between the values of the critical Reynolds number (Rec) for the onset of symmetry breaking of flow and the expansion ratio (E) of SF, which is defined as the ratio between the outlet (D) and inlet (d) apertures. This study also investigates the effect of inlet aperture d on Rec for flow in an SF with abruptly changing apertures (SF‐ACA) using the finite volume method. Earlier numerical and experimental results showed that flow is symmetric in respect to the central plane of the SF‐ACA at small Reynolds number (Re) but becomes asymmetric when Re is sufficiently large. Our simulations show that the value of Rec decreases with the increasing E, and the relationship between the logarithm of Rec and E can be described accurately using either a quadratic polynomial function or a logarithmic function. However, the relationship of Rec and d for a given E value is vague, and Rec becomes even less sensitive to d when E increases. This study also reveals that the hydraulic gradient (J) and flow velocity (v) follow a super‐linear relationship that can be fitted almost perfectly by the Forchheimer equation. The inertial component (Ji) of J increases monotonically with Re, whereas the viscous component (Jv) of J decreases monotonically with Re. The Re value corresponding to equal inertial and viscous components of J (named as the transitional point Re) decreases when E increases, and such a transitional point Re should be closely related to the critical Reynolds number Rec, although a rigorous theoretical proof is not yet available. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
This study presents analytical solutions of the three‐dimensional groundwater flow to a well in leaky confined and leaky water table wedge‐shaped aquifers. Leaky wedge‐shaped aquifers with and without storage in the aquitard are considered, and both transient and steady‐state drawdown solutions are derived. Unlike the previous solutions of the wedge‐shaped aquifers, the leakages from aquitard are considered in these solutions and unlike similar previous work for leaky aquifers, leakage from aquitards and from the water table are treated as the lower and upper boundary conditions. A special form of finite Fourier transforms is used to transform the z‐coordinate in deriving the solutions. The leakage induced by a partially penetrating pumping well in a wedge‐shaped aquifer depends on aquitard hydraulic parameters, the wedge‐shaped aquifer parameters, as well as the pumping well parameters. We calculate lateral boundary dimensionless flux at a representative line and investigate its sensitivity to the aquitard hydraulic parameters. We also investigate the effects of wedge angle, partial penetration, screen location and piezometer location on the steady‐state dimensionless drawdown for different leakage parameters. Results of our study are presented in the form of dimensionless flux‐dimensionless time and dimensionless drawdown‐leakage parameter type curves. The results are useful for evaluating the relative role of lateral wedge boundaries and leakage source on flow in wedge‐shaped aquifers. This is very useful for water management problems and for assessing groundwater pollution. The presented analytical solutions can also be used in parameter identification and in calculating stream depletion rate and volume. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
We use a numerical model describing cosmogenic nuclide acquisition in sediment moving through the upper Gaub River catchment to evaluate the extent to which aspects of source area geomorphology and geomorphological processes can be inferred from frequency distributions of cosmogenic 21Ne (21Nec) concentrations in individual detrital grains. The numerical model predicts the pathways of sediment grains from their source to the outlet of the catchment and calculates the total 21Nec concentration that each grain acquires along its pathway. The model fully accounts for variations in nuclide production due to changes in latitude, altitude and topographic shielding and allows for spatially variable erosion and sediment transport rates. Model results show that the form of the frequency distribution of 21Nec concentrations in exported sediment is sensitive to the range and spatial distribution of processes operating in the sediment's source areas and that this distribution can be used to infer the range and spatial distribution of erosion rates that characterise the catchment. The results also show that lithology can affect the form of the 21Nec concentration distribution indirectly by exerting control on the spatial pattern of denudation in a catchment. Model results further indicate that the form of the distribution of 21Nec concentrations in the exported sediment can also be affected by the acquisition of 21Nec after detachment from bedrock, in the diffusive (hillslope) and/or advective (fluvial) domains. However, for such post‐detachment nuclide acquisition to be important, this effect needs to at least equal the nuclide acquisition prior to detachment from bedrock. Copyright © 2009 John Wiley and Sons, Ltd.  相似文献   

14.
The relationship between the longitudinal dispersion (DL) and Peclet number (Pe) is crucial for predicting and simulating tracer through the variable‐aperture fracture. In this study, the roughness of the self‐affine fracture wall was decomposed into primary roughness (relatively large‐scale waviness) and secondary roughness (relatively small‐scale waviness) by a multiscaled wavelet analysis technique. Based on the complete dispersion mechanism (diffusion, macrodispersion, and Taylor dispersion) in the variable‐aperture fracture, three relationships (second‐order, power‐law, and linear relationships) between the DL and Pe were investigated at large and small scales, respectively. Our results showed that the primary roughness mostly controlled the Taylor dispersion mechanism, whereas the secondary roughness was a dominant factor for the macrodispersion mechanism. Increasing the Hurst exponent and removing the secondary roughness led to the decreasing range of Pe where macrodispersion mechanism dominated the solute transport. It was found that estimating the DL from the power‐law relationship based on Taylor dispersion theory resulted in considerable errors, even in the range of Pe where the Taylor dispersion mechanism dominated. The exponent of the power‐law relationship increased as the secondary roughness was removed. Analysing the linear relationship between the DL and Pe revealed that the longitudinal dispersivity αL increased linearly. However, this linear increase became weak as the Taylor dispersion mechanism dominated. In the range of Pe where the macrodispersion mechanism dominated, increasing the Hurst exponent caused the increase of αL and the secondary roughness played a significant role in enhancing the αL. As the Taylor dispersion mechanism dominated, the αL was insensitive to the influence of multiscale roughness in variable‐aperture fractures.  相似文献   

15.
Laboratory tests using Jet Erosion Testing (JET) apparatus, impinging normally on a horizontal boundary, were conducted to determine the critical shear stress (τc) of non‐cohesive soil samples. A three‐dimensional (3D) SonTek/YSI 16 MHz Micro‐Acoustic Doppler Velocimeter (MicroADV) was used to measure turbulent kinetic energy (TKE) at a radial limit of entrainment in the wall jet zone and the measurements were used to calculate τc of the samples. The results showed that TKE increases exponentially with increasing particle size. The τc from this study were comparable (R2 = 0.8) to the theoretical τc from Shields diagram after bed roughness scale ratio (D/ks), due to the non‐uniform bed conditions, was accounted for. This study demonstrated that JET and TKE can be used to determine τc of non‐cohesive soils. The use of JET and TKE was found to be faster and easier when compared to the conventional approach of using flumes. A relationship of TKE at the onset of incipient motion (TKEc) and samples’ D50 developed in this study can be used to predict τc of non‐cohesive soils under similar non‐uniform conditions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
Terrestrial cosmogenic nuclide (TCN) concentrations measured in river sediments can be used to estimate catchment‐wide denudation rates. By investigating multiple TCN the steadiness of sediment generation, transport and depositional processes can be tested. Measurements of 10Be, 21Ne and 26Al from the hyper‐ to semi‐arid Rio Lluta catchment, northern Chile, yield average single denudation rates ranging from 12 to 75 m Myr–1 throughout the catchment. Paired nuclide analysis reveals complex exposure histories for most of the samples and thus the single nuclide estimates do not exclusively represent catchment‐wide denudation rates. The lower range of single nuclide denudation rates (12–17 m Myr–1), established with the noble gas 21Ne, is in accordance with palaeodenudation rates derived from 21Ne/10Be and 26Al/10Be ratio analysis. Since this denudation rate range is measured throughout the system, it is suggested that a headwater signal is transported downstream but modulated by a complex admixture of sediment that has been stored and buried at proximal hillslope or terrace deposits, which are released during high discharge events. That is best evidenced by the stable nuclide 21Ne, which preserves the nuclide concentration even during storage intervals. The catchment‐wide single 21Ne denudation rates and the palaeodenuation rates contrast with previous TCN‐derived erosion rates from bedrock exposures at hillslope interfluves by being at least one order of magnitude higher, especially in the lower river course. These results support earlier studies that identified a coupling of erosional processes in the Western Cordillera contrasting with decoupled processes in the Western Escarpment and in the Coastal Cordillera. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
A tracer test was conducted in a laboratory chamber representing a two‐dimensional aquifer to investigate the longitudinal dispersivity (αL) and the ratio (αTL) of transverse to longitudinal dispersivity of sandy aquifer materials. Dispersive parameters were obtained by matching the observed chloride plumes at 9 hours and 16 hours after tracer injection with those simulated by a flow and transport model. The best match was found for αL = 0·2 ? 0·25 cm and αTL = 0·2. The ratio of αTL = 0·2 was within the range of laboratory values reported in the literature. Sensitivity analysis revealed that the tracer plume concentration and shape were more sensitive to variations in longitudinal dispersivity than to the ratio of transverse to longitudinal dispersivity. This result contrasted with findings of others, showing that the dispersivity ratio greatly affects contaminant plume shape. However, our experimental boundary conditions restricted expansion of the plume normal to the direction of flow and thus affected the parameter estimation. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

18.
Current global warming projections suggest a possible increase in wildfire and drought, augmenting the need to understand how drought following wildfire affects the recovery of stream channels in relation to sediment dynamics. We investigated post‐wildfire geomorphic responses caused by storms during a prolonged drought following the 2013 Springs Fire in southern California (USA), using multi‐temporal terrestrial laser scanning and detailed field measurements. After the fire, a dry‐season dry‐ravel sediment pulse contributed sand and small gravel to hillslope‐channel margins in Big Sycamore Creek and its tributaries. A small storm in WY 2014 generated sufficient flow to mobilize a portion of the sediment derived from the dry‐ravel pulse and deposited the fine sediment in the channel, totaling ~0.60 m3/m of volume per unit length of channel. The sediment deposit buried step‐pool habitat structure and reduced roughness by over 90%. These changes altered sediment transport characteristics of the bed material present before and after the storm; the ratio of available to critical shear stress (τoc) increased by five times. Storms during WY 2015 contributed additional fine sediment from tributaries and lower hillslopes and hyperconcentrated flow transported and deposited additional sediment in the channel. Together these sources delivered sediment on the order of six times that in 2014, further increasing τo/τc. These storms during multi‐year drought following wildfire transformed channel dynamics. The increased sediment transport capacity persisted during the drought period characterized by the longer residence time of relatively fine‐grained post‐fire channel sedimentation. This contrasts with wetter years, when post‐fire sediment is transported from the fluvial system during the same season as the post‐fire sediment pulse. Results of this short‐term study highlight the complex and substantial effects of multi‐year drought on geomorphic responses following wildfire. These responses influence pool habitat that is critical to longer‐term post‐wildfire riparian ecosystem recovery. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

19.
An exact, closed‐form analytical solution is derived for one‐dimensional (1D), coupled, steady‐state advection‐dispersion equations with sequential first‐order degradation of three dissolved species in groundwater. Dimensionless and mathematical analyses are used to examine the sensitivity of longitudinal dispersivity in the parent and daughter analytical solutions. The results indicate that the relative error decreases to less than 15% for the 1D advection‐dominated and advection‐dispersion analytical solutions of the parent and daughter when the Damköhler number of the parent decreases to less than 1 (slow degradation rate) and the Peclet number increases to greater than 6 (advection‐dominated). To estimate first‐order daughter product rate constants in advection‐dominated zones, 1D, two‐dimensional (2D), and three‐dimensional (3D) steady‐state analytical solutions with zero longitudinal dispersivity are also derived for three first‐order sequentially degrading compounds. The closed form of these exact analytical solutions has the advantage of having (1) no numerical integration or evaluation of complex‐valued error function arguments, (2) computational efficiency compared to problems with long times to reach steady state, and (3) minimal effort for incorporation into spreadsheets. These multispecies analytical solutions indicate that BIOCHLOR produces accurate results for 1D steady‐state, applications with longitudinal dispersion. Although BIOCHLOR is inaccurate in multidimensional applications with longitudinal dispersion, these multidimensional multispecies analytical solutions indicate that BIOCHLOR produces accurate steady‐state results when the longitudinal dispersion is zero. As an application, the 1D advection‐dominated analytical solution is applied to estimate field‐scale rate constants of 0.81, 0.74, and 0.69/year for trichloroethene, cis‐1,2‐dichloroethene, and vinyl chloride, respectively, at the Harris Palm Bay, FL, CERCLA site.  相似文献   

20.
Cosmogenic nuclides in rock, soil, and sediment are routinely used to measure denudation rates of catchments and hillslopes. Although it has been shown that these measurements are prone to biases due to chemical erosion in regolith, most studies of cosmogenic nuclides have ignored this potential source of error. Here we quantify the extent to which overlooking effects of chemical erosion introduces bias in interpreting denudation rates from cosmogenic nuclides. We consider two end‐member effects: one due to weathering near the surface and the other due to weathering at depth. Near the surface, chemical erosion influences nuclide concentrations in host minerals by enriching (or depleting) them relative to other more (or less) soluble minerals. This increases (or decreases) their residence times relative to the regolith as a whole. At depth, where minerals are shielded from cosmic radiation, chemical erosion causes denudation without influencing cosmogenic nuclide buildup. If this effect is ignored, denudation rates inferred from cosmogenic nuclides will be too low. We derive a general expression, termed the ‘chemical erosion factor’, or CEF, which corrects for biases introduced by both deep and near‐surface chemical erosion in regolith. The CEF differs from the ‘quartz enrichment factor’ of previous work in that it can also be applied to relatively soluble minerals, such as olivine. Using data from diverse climatic settings, we calculate CEFs ranging from 1.03 to 1.87 for cosmogenic nuclides in quartz. This implies that ignoring chemical erosion can lead to errors of close to 100% in intensely weathered regolith. CEF is strongly correlated with mean annual precipitation across our sites, reflecting climatic influence on chemical weathering. Our results indicate that quantifying CEFs is crucial in cosmogenic nuclide studies of landscapes where chemical erosion accounts for a significant fraction of the overall denudation. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号