首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Harvested sites rarely return to functional ecosystems after abandonment because drainage and peat extraction lower the water table and expose relatively decomposed peat, which is hydrologically unsuitable for Sphagnum moss re‐establishment. Some natural regeneration of Sphagnum has occurred in isolated pockets on traditionally harvested (block‐cut) sites, for reasons that are poorly understood, but are related to natural functions that regulate runoff and evaporation. This study evaluates the water balance of a naturally regenerated cutover bog and compares it with a nearby natural bog of similar size and origin, near Riviere du Loup, Quebec. Water balance results indicated that evapotranspiration was the major water loss from the harvested bog, comprising 92 and 84% of total outputs (2·9 mm day?1) during the 1997 and 1998 seasons, respectively. Despite denser tree cover at the harvested site, evapotranspiration from the natural bog was similar, although less spatially variable. At the harvested site, evaporative losses ranged from 1·9 mm day?1 on raised baulks and roads to 3·6 mm day?1 from moist surfaces with Sphagnum. Although about half of the ditches were inactive or operating at only a fraction of their original efficiency, runoff was still significant at 12 and 24% of precipitation during the 1997 and 1998 study seasons, respectively. This compares with negligible rates of runoff at the natural bog. Thus the cutover bog, although abandoned over 25 years ago, has not regained its hydrological function. This is both a cause and effect of its inability to support renewed Sphagnum regeneration. Without suitable management (e.g. blocking ditches), this site is not likely to improve for a very long time. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

2.
Oscillation of the peat surface is an important mechanism for hydrological self‐regulation in bogs. As the water table rises in the wet season, the peat body expands, raising the bog surface and increasing water storage. With seasonal drying, the water table declines, the peat loses volume, and the bog surface drops, thereby keeping Sphagnum mosses in close contact with the water table. The oscillation of surface elevation in a Pacific coastal temperate raised bog was monitored at multiple sites for 4–12 years in 8 different plant communities of both peat‐harvested and unharvested sites to determine how bog surface oscillation relates to site conditions. The multiyear averages of bog surface oscillation for the different sites ranged from 2 to 34 cm (mean: 10.8 cm). In harvested sites, surface oscillation was linked to a larger water level amplitude and a shallower water table. In unharvested sites, a shallow water table was also a strong predictor of surface oscillation, but water level amplitude was negatively correlated to surface oscillation. This discrepancy was attributed to rewetting and regeneration of harvested sites, as well as historic drainage in many of the unharvested sites that reduced the elasticity of the peat. Surface oscillation differed significantly between some of the plant communities, generally between drier and wetter sites. In disturbed bogs, regeneration of a more elastic surface peat can increase the magnitude of peat volume change and bring about the return of self‐regulating mechanisms. Bog surface oscillation may be an important metric for assessing the restoration success or storage capacity of raised bogs in similar climatic settings.  相似文献   

3.
The natural carbon storage function of peatland ecosystems can be severely affected by the abandonment of peat extraction, influencing peatland drainage, leading to large and persistent sources of atmospheric CO2. Moreover, these cutover peatlands have a low and variable water table position and high tension at the surface, creating harsh ecohydrological conditions for vegetation re‐establishment, particularly peat forming Sphagnum moss. Standard restoration techniques aim to restore the peatland to a carbon accumulating system through various water management techniques to improve hydrological conditions and by reintroducing Sphagnum at the surface. However, restoring the hydrology of peatlands can be expensive due to the cost of implementing the various restoration techniques. This study examines a peat extraction‐restoration technique where the acrotelm is preserved and replaced directly on the cutover peat surface. An experimental peatland adopting this acrotelm transplant technique had both a high water table and peat moisture conditions providing sufficient water at the surface for Sphagnum moss. Average water table conditions were higher at the experimental site (?8·4 ± 4·2 cm) compared to an adjacent natural site (?12·7 ± 6·0 cm) suggesting adequate moisture conditions at the restored surface. However, the experimental site experienced high variability in volumetric moisture content (VMC) in the capitula zone (upper 2 cm) where large diurnal changes in VMC (~30%) were observed, suggesting possible disturbance to the peat matrix structure during the extraction‐restoration process. However, soil–water retention analysis and physical peat properties (porosity and bulk density) suggest that no significant differences existed between the natural and experimental sites. Any structural changes within the peat matrix were therefore minimal. Moreover, low soil‐water tensions were maintained well above the laboratory measured critical Sphagnum threshold of 33% (?100 mb) VMC, further indicating favourable conditions for Sphagnum moss survival and growth. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
We report the results of numerical and analytical simulations to test the hypothesis that downward vertical flow of porewater from the crests of domed alpine and kettle bogs controls vertical porewater distributions of major solutes such as Ca and Mg. The domed Etang de la Gruère bog (EGr), Switzerland, characterized by a vertical downward gradient of 0·04 and stratified layers of peat, is chosen as a field site for the model calibration and evaluation. The middle 4‐m section of the 6·5 m thick bog peat is heavily humified and has a hydraulic conductivity of ~10?5·6 cm s?1. Above and below, peat is less humified with a hydraulic conductivity of ~10?3 cm s?1. Heuristic finite difference simulations, using Visual MODFLOW, of the bog hydraulics show that the higher conductivity peat at the bog base is critical to create the observed deep, local flow cells that substantively recharge porewater. Model results and Peclet number calculations show that before ~7000 14C yr BP diffusion of solutes from underlying mineral soils controlled the vertical distribution of porewater chemistry. From 7000 to ~1250 14C BP the porewater chemistry was probably controlled by both upward diffusion and downward advection, and after ~1250 14C yr BP porewater chemistry was probably controlled by downward advection. Concentrations of conservative major solutes in the porewaters of alpine, ombrotrophic bogs are the net effect of both downward vertical porewater movement and upward vertical diffusion, the magnitudes of which are delicately poised to the configuration of the bog water table over time and subsurface peat stratigraphy. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

5.
JONATHAN S. PRICE 《水文研究》1996,10(10):1263-1272
Peatlands do not readily return to functional wetland ecosystems after harvesting (cutting), because the harsh hydrological and microclimatic conditions are unsuitable for Sphagnum regeneration. In this study, drainage ditches blocked after harvesting restored the water balance to a condition similar to a nearby natural bog. Evaporation averaged 2.9 and 2.7 mm day−1 on the cutover and natural bog, respectively. Evaporation consumed most of the rainfall input (86 and 80%, respectively), whereas runoff was minor at both sites (6 and 4%, respectively). However, the water table position was markedly different at these sites. Median water table depth was 0.05 m below the surface in the natural bog, compared with 0.44 m in the cutover bog (ditches blocked). Changes to the peak soil matrix owing to drainage and cutting reduced the specific yield (Sy) of the peat to 0.04–0.06 from 0.35–0.55, causing exaggerated water table changes in the cutover site. Nevertheless, volumetric soil moisture in the cutover site (0.67 ± .08) had low variability, and was maintained above moisture contents found in Sphagnum hummocks in the natural bog (0.48 ± .10), although less than on Sphagnum lawn (0.84 ± .11). Poor Sphagnum regeneration on cutover surfaces can therefore be attributed to its inability to extract water from the underlying peat, which retains water at matric suction greater than the non-vascular Sphagnum can generate. The corrupted iron pan under main ditches has permitted partial recharge of the underlying aquifer, reducing local hydraulic gradients, thereby decreasing vertical seepage loss.  相似文献   

6.
In hydrological terms, raised bogs are often approximated by simple models as in the acrotelm–catotelm concept. However, raised bogs are often characterized by a pronounced surface topography, causing large changes in connectivity of contributing areas on the bog. In this study, daily regression of measured discharges versus catchment areas is used to quantify the impact of surface topography on catchment connectivity within a raised bog. The resulting coefficient of determination shows the strength of the relationship between the discharge and catchment area over time under different hydrological conditions. Monitoring of discharge, water table, transmissivity, and basic weather data on a raised bog (1.9 km2) in eastern central Estonia took place from May 2008 to June 2010. Contributing areas, calculated based on the outlet's discharge volume (V Q ) divided by the net precipitation volume ( ), of the outlet containing the central pool‐ridge system varied between 1×10?3 and 0.7 km2, suggesting significant differences in connectivity between hydrological events. Correlation between discharge and theoretical catchment size was high (R 2>0.75) when the water table was close to the surface (less than 5 cm below peat surface), and consequently, transmissivities were also high (up to 1,030m2d?1), which led to connectivity of local storage elements, such as pools and hollows. However, a water table below this threshold resulted in large parts of the catchment being disconnected. The importance of water table depths on catchment connectivity suggests the need to reconsider the hydrological concept of raised bogs; to incorporate these shallow flow components and better understand residence time and consequently transport of solutes, such as DOC, from patterned peatlands.  相似文献   

7.
We report the results of an investigation on the processes controlling heat transport in peat under a large bog in the Glacial Lake Agassiz Peatlands. For 2 years, starting in July 1998, we recorded temperature at 12 depth intervals from 0 to 400 cm within a vertical peat profile at the crest of the bog at sub‐daily intervals. We also recorded air temperature 1 m above the peat surface. We calculate a peat thermal conductivity of 0·5 W m?1 °C?1 and model vertical heat transport through the peat using the SUTRA model. The model was calibrated to the first year of data, and then evaluated against the second year of collected heat data. The model results suggest that advective pore‐water flow is not necessary to transport heat within the peat profile and most of the heat is transferred by thermal conduction alone in these waterlogged soils. In the spring season, a zero‐curtain effect controls the transport of heat through shallow depths of the peat. Changes in local climate and the resulting changes in thermal transport still may cause non‐linear feedbacks in methane emissions related to the generation of methane deeper within the peat profile as regional temperatures increase. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

8.
Ground water recharge is assumed to occur primarily at raised bog crests in northern peatlands, which are globally significant terrestrial carbon reservoirs. We synoptically surveyed vertical profiles of peat pore water δ18O and δ2H from a range of bog and fen landforms across the Glacial Lake Agassiz Peatlands, northern Minnesota. Contrary to our expectations, we find that local‐scale recharge penetrates to not only the basal peat at topographically high bog crests but also transitional Sphagnum lawns and low‐lying fen water tracks. Surface landscape characteristics appear to control the isotopic composition of the deeper pore waters (depths ≥0.5 m), which are partitioned into discrete ranges of δ18O on the basis of landform type (mean ± standard deviation for bog crests = ?11.9 ± 0.4‰, lawns = ?10.6 ± 0.1‰, fen water tracks = ?8.8 ± 1.0‰). Fen water tracks have a shallow free‐water surface that is seasonally enriched by isotope fractionating evaporation, fingerprinting recharge to underlying pore waters at depths ≥3 m. Isotope mass balance calculations indicate on average 12% of the waters we sampled from the basal peat of the fen water tracks was lost to surface evaporation, which occurred prior to advection and dispersion into the underlying formation. These new data provide direct support for the hypothesis that methane production in deeper peat strata is fuelled by the downward transport of labile carbon substrates from the surface of northern peat basins. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
Evaporation from mosses and lichens can form a major component of the water balance, especially in ecosystems where mosses and lichens often grow abundantly, such as tundra, deserts and bogs. To facilitate moss representation in hydrological models, we parameterized the unsaturated hydraulic properties of mosses and lichens such that the capillary water flow through moss and lichen material during evaporation could be assessed. We derived the Mualem‐van Genuchten parameters of the drying retention and the hydraulic conductivity functions of four xerophilous moss species and one lichen species. The shape parameters of the retention functions (2.17 < n < 2.35 and 0.08 < α < 0.13 cm?1) ranged between values that are typical for sandy loam and loamy sand. The shapes of the hydraulic conductivity functions of moss and lichen species diverged from those of mineral soils, because of strong negative pore‐connectivity parameters (?2.840 < l < ?2.175) and low hydraulic conductivities at slightly negative pressure heads (0.016 < K0 < 0.280 cm/d). These K0 values are surprisingly low, considering that mosses are very porous. However, during evaporation, large pores and voids were air filled and did not participate in capillary water flow. Small K0 values cause mosses and lichens to be conservative with water during wet conditions, thus tempering evaporation compared to mineral soils. On the other hand, under dry conditions, mosses and lichens are able to maintain a moisture supply from the soil, leading to a higher evaporation rate than mineral soils. Hence, the modulating effect of mosses on evaporation possibly differs between wet and dry climates. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
This study used a two‐dimensional steady‐state finite‐element groundwater flow model to simulate groundwater flow in two Newfoundland blanket peat complexes and to examine flow system sensitivity to changes in water table recharge and aquifer properties. The modelling results were examined within the context of peat‐forming processes in the two complexes. Modelled flow compared favourably with observed flow. The sensitivity analyses suggested that more highly decomposed bog peat along bog margins probably has/had a positive impact on net peat accumulation within bog interiors. Peat with lower hydraulic conductivity along bog margins effectively impedes lateral drainage, localizes water table drawdown to extreme bog margins, and elevates water tables along bog interiors. Peat formation and elevated water tables in adjacent poor fens/laggs currently rely on placic and ortstein horizons impeding vertical drainage and water flow inputs from adjacent bogs. Modest reductions in atmospheric recharge were found to govern bog‐flow‐system geometries in a way that would adversely affect paludification processes in adjacent fens/laggs. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

11.
Cryoturbated Upper Chalk is a dichotomous porous medium wherein the intra‐fragment porosity provides water storage and the inter‐fragment porosity provides potential pathways for relatively rapid flow near saturation. Chloride tracer movement through 43 cm long and 45 cm diameter undisturbed chalk columns was studied at water application rates of 0·3, 1·0, and 1·5 cm h?1. Microscale heterogeneity in effluent was recorded using a grid collection system consisting of 98 funnel‐shaped cells each 3·5 cm in diameter. The total porosity of the columns was 0·47 ± 0·02 m3 m?3, approximately 13% of pores were ≥ 15 µm diameter, and the saturated hydraulic conductivity was 12·66 ± 1·31 m day?1. Although the column remained unsaturated during the leaching even at all application rates, proportionate flow through macropores increased as the application rate decreased. The number of dry cells (with 0 ml of effluent) increased as application rate decreased. Half of the leachate was collected from 15, 19 and 22 cells at 0·3, 1·0, 1·5 cm h?1 application rates respectively. Similar breakthrough curves (BTCs) were obtained at all three application rates when plotted as a function of cumulative drainage, but they were distinctly different when plotted as a function of time. The BTCs indicate that the columns have similar drainage requirement irrespective of application rates, as the rise to the maxima (C/Co) is almost similar. However, the time required to achieve that leaching requirement varies with application rates, and residence time was less in the case of a higher application rate. A two‐region convection–dispersion model was used to describe the BTCs and fitted well (r2 = 0·97–0·99). There was a linear relationship between dispersion coefficient and pore water velocity (correlation coefficient r = 0·95). The results demonstrate the microscale heterogeneity of hydrodynamic properties in the Upper Chalk. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
Dissolved organic carbon export from a cutover and restored peatland   总被引:1,自引:0,他引:1  
High demand for horticultural peat has increased peatland drainage and peat extraction in Canada. The hydrology and carbon cycling of these cutover peatlands is greatly altered, necessitating active restoration efforts to permit the regeneration of Sphagnum mosses and the re‐establishment of natural peatland function. The effect of peatland extraction and restoration on the export of dissolved organic carbon (DOC) was examined for three successive seasons (May to October, 1999 to 2001) at two different sites (cutover and restored) in eastern Québec. A shift towards higher DOC concentrations was observed following peatland extraction (maximum: 182·6 mg L?1) and concentrations remained high post‐restoration (maximum: 191·0 mg L?1). The cutover site exported more DOC than the restored site in all three study seasons. The highest exports occurred during the wettest year (1999), with cutover and restored site export of 10·3 and 4·8 g m?2, respectively. In 2000, 8·5 g C m?2 was released from the cutover site, while the restored site released less than half that amount (3·4 g C m?2). In 2001, the restored site released about the same amount of DOC as in the previous year (3·5 g C m?2), while the cutover site load dropped to 6·2 g C m?2. Both sites were net exporters of DOC in all years. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
The importance of characterizing the ecohydrological interactions in natural, damaged/drained, and restored bogs is underscored by the importance of peatlands to global climate change and the growing need for peatland restoration. An understudied aspect of peatland ecohydrology is how shallow lateral flow impacts local hydrological conditions and water balance, which are critical for peatland restoration success. A novel method is presented using microcosms installed in the field to understand the dynamics of shallow lateral flow. Analysis of the difference in water table fluctuation inside and outside the microcosm experimental areas allowed the water balance to be constrained and the calculation of lateral flow and evapotranspiration. As an initial demonstration of this method, a series of four microcosm experiments were set up in locations with differing ecological quality and land management histories, on a raised bog complex in the midlands of Ireland. The timing and magnitude of the lateral flow differed considerably between locations with differing ecological conditions, indicating that shallow lateral flow is an important determining factor in the ecohydrological trajectory of a recovering bog system. For locations where Sphagnum spp. moss layer was present, a slow continuous net lateral input of water from the upstream catchment area supported the water table during drought periods, which was not observed in locations lacking Sphagnum. Consistent with other studies, evapotranspiration was greater in locations with a Spaghnum moss layer than in locations with a surface of peat soil.  相似文献   

14.
15.
The mid‐ to high‐boreal forest in Canada occupies the discontinuous permafrost zone, and is often underlain by glaciolacustrine sediments mantled by a highly porous organic mat. The result is a poorly drained landscape dominated by wetlands. Frost‐table dynamics and surface storage conditions help to control runoff contributions from various landscape elements, hydrological linkages between these elements, and basin streamflow during spring snowmelt. Runoff components and pathways in a forested peatland basin were assessed during two spring snowmelts with contrasting input and basin conditions. Runoff from relatively intense melt (up to 16 mm day?1) on slopes with limited soil thawing combined with large pre‐melt storage in surface depressions to produce high flows composed primarily of meltwater (78% of the 0·29 m3 s?1 peak discharge) routed over wetland surfaces and through permeable upper peat layers. Melt intensity was less in the subsequent year (maximum of 10 mm day?1) and active layer development was relatively greater (0·2 m deeper at the end of spring melt), resulting in less slope runoff. Coupling of reduced slope contributions with lower storage levels in basin wetlands led to relatively subdued streamflows dominated by older water (73% of the 0·09 m3 s?1 peak discharge) routed through less‐permeable deeper peat layers and mineral soil. Interannual differences in runoff conditions provide important insight for the development of distributed hydrological models for boreal forest basins and into potential influences on biogeochemical cycling in this landscape under a warming climate. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

16.
The proposed harvesting of previously undeveloped forests in north coastal British Columbia requires an understanding of hydrological responses. Hydrometric and isotopic techniques were used to examine the hydrological linkages between meteoric inputs to the surface‐groundwater system and runoff response patterns of a forest‐peatland complex. Quickflow accounted for 72–91% of peak storm discharge. The runoff ratio was lowest for open peatland areas with thick organic horizons (0·02–0·05) due to low topographic gradients and many surface depressions capable of retaining surface water. Runoff ratio increased comparatively for ephemeral surface seep flows (0·06–0·40) and was greatest in steeply sloping forest communities with more permeable soils (0·33–0·69). The dominant mechanism for runoff generation was saturated shallow subsurface flow. Groundwater fluxes from the organic horizon of seeps (1·70–1·72 m3 day?1 m?1) were an important component of quickflow. The homogeneous δ2H? δ18O composition of groundwater indicated attenuation of the seasonal rainfall signal by mixing during recharge. The positive correlation (r2 = 0·64 and 0·38, α = 0·05) between slope index and δ18O values in groundwater suggests that the spatial pattern in the δ18O composition along the forest‐peatland complex is influenced by topography and provides evidence that topographic indices may be used to predict groundwater residence time. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
Flow diversion terraces (FDT) are commonly used beneficial management practice (BMP) for soil conservation on sloped terrain susceptible to water erosion. A simple GIS‐based soil erosion model was designed to assess the effectiveness of the FDT system under different climatic, topographic, and soil conditions at a sub‐basin level. The model was used to estimate the soil conservation support practice factor (P‐factor), which inherently considered two major outcomes with its implementation, namely (1) reduced slope length, and (2) sediment deposition in terraced channels. A benchmark site, the agriculture‐dominated watershed in northwestern New Brunswick (NB), was selected to test the performance of the model and estimated P‐factors. The estimated P‐factors ranged from 0·38–1·0 for soil conservation planning objectives and ranged from 0·001 to 0·45 in sediment yield calculations for water‐quality assessment. The model estimated that the average annual sediment yield was 773 kg ha?1 yr ?1 compared with a measured value of 641 kg ha?1 yr?1. The P‐factors estimated in this study were comparable with predicted values obtained with the revised universal soil loss equation (RUSLE2). The P‐factors from this study have the potential to be directly used as input in hydrological models, such as the soil and water assessment tool (SWAT), or in soil conservation planning where only conventional digital elevation models (DEMs) are available. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
Geochemical characterization and numerical modelling of surface water and ground water, combined with hydrological observations, provide quantitative estimates of meteoric diagenesis in Pleistocene carbonates of the northern Bahamas. Meteoric waters equilibrate with aragonite, but water‐ rather than mineral‐controlled reactions dominate. Dissolutional lowering of the undifferentiated bedrock surface is an order of magnitude slower than that within soil‐filled topographic hollows, generating small‐scale relief at a rate of 65–140 mm ka?1 and a distinctive pocketed topography. Oxidation of organic matter within the subsoil and vadose zones generates an average P of 4·0 × 10?3 atm, which drives dissolution during vadose percolation and/or at the water table. However, these dissolution processes together account for <60% of the average rock‐derived calcium in groundwaters pumped from the freshwater lens. The additional calcium may derive from oxidation of organic carbon within the lens, accounting for the high P of the lens waters. Mixing between meteoric waters of differing chemistry is diagenetically insignificant, but evapotranspiration from the shallow water table is an important drive for subsurface cementation. Porosity generation in the shallow vadose zone averages 1·6–3·2% ka?1. Phreatic meteoric diagenesis is focused near the water table, where dissolution generates porosity at 1·4–2·8% ka?1. Maximum dissolution rates, however, are similar to those of evaporation‐driven precipitation, which occludes porosity of 4·0 ± 0·6% ka?1. This drives porosity inversion, from primary interparticle to secondary mouldic, vug and channel porosity. In the deeper freshwater lens, oxidation of residual organic carbon and reoxidation of reduced sulphur species from deeper anaerobic oxidation of organic carbon may generate porosity up to 0·06% ka?1. Meteoric diagenesis relies critically on hydrological routing and vadose thickness (controlled by sea level), as well as the geochemical processes active. A thin vadose zone permits direct evaporation from the water table and drives precipitation of meteoric phreatic cements even where mineral stabilization is complete. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
The present study makes use of a detailed water balance to investigate the hydrological status of a peatland with a basal clay‐rich layer overlying an aquifer exploited for drinking water. The aim is to determine the influence of climate and groundwater extraction on the water balance and water levels in the peatland. During the two‐year period of monitoring, the hydrological functioning of the wetland showed a hydric deficit, associated with a permanent unsaturated layer and a deep water table. At the same time, a stream was observed serving as a recharge inflow instead of draining the peatland, as usually described in natural systems. Such conditions are not favourable for peat accumulation. Field investigations show that the clay layer has a high hydraulic conductivity (from 1·10?7 to 3·10?9 m.s?1) and does not form a hydraulic barrier. Moreover, the vertical hydraulic gradients are downward between the peat and the sand aquifer, leading to high flows of groundwater through the clay layer (20–48% of the precipitation). The observed hydric deficit of the peatland results from a combination of dry climatic conditions during the study period and groundwater extraction. The climatic effect is mainly expressed through drying out of the peatland, while the anthropogenic effect leads to an enhancement of the climatic effect on a global scale, and a modification of fluxes at a local scale. The drying out of the peatland can lead to its mineralisation, which thus gives rise to environmental impacts. The protection of such wetlands in the context of climate change should take account of anthropogenic pressures by considering the wetland‐aquifer interaction. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
Dissolved organic carbon (DOC) originating in peatlands can be mineralized to carbon dioxide (CO2) and methane (CH4), two potent greenhouse gases. Knowledge of the dynamics of DOC export via run‐off is needed for a more robust quantification of C cycling in peatland ecosystems, a prerequisite for realistic predictions of future climate change. We studied dispersion pathways of DOC in a mountain‐top peat bog in the Czech Republic (Central Europe), using a dual isotope approach. Although δ13CDOC values made it possible to link exported DOC with its within‐bog source, δ18OH2O values of precipitation and run‐off helped to understand run‐off generation. Our 2‐year DOC–H2O isotope monitoring was complemented by a laboratory peat incubation study generating an experimental time series of δ13CDOC values. DOC concentrations in run‐off during high‐flow periods were 20–30 mg L?1. The top 2 cm of the peat profile, composed of decaying green moss, contained isotopically lighter C than deeper peat, and this isotopically light C was present in run‐off in high‐flow periods. In contrast, baseflow contained only 2–10 mg DOC L?1, and its more variable C isotope composition intermittently fingerprinted deeper peat. DOC in run‐off occasionally contained isotopically extremely light C whose source in solid peat substrate was not identified. Pre‐event water made up on average 60% of the water run‐off flux, whereas direct precipitation contributed 40%. Run‐off response to precipitation was relatively fast. A highly leached horizon was identified in shallow catotelm. This peat layer was likely affected by a lateral influx of precipitation. Within 36 days of laboratory incubation, isotopically heavy DOC that had been initially released from the peat was replaced by isotopically lighter DOC, whose δ13C values converged to the solid substrate and natural run‐off. We suggest that δ13C systematics can be useful in identification of vertically stratified within‐bog DOC sources for peatland run‐off.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号