首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The scaled boundary finite‐element method is extended to simulate time‐harmonic responses of non‐homogeneous unbounded domains with the elasticity modulus and mass density varying as power functions of spatial coordinates. The unbounded domains and the elasticity matrices are transformed to the scaled boundary coordinates. The scaled boundary finite‐element equation in displacement amplitudes are derived directly from the governing equations of elastodynamics. To enforce the radiation condition at infinity, an asymptotic expansion of the dynamic‐stiffness matrix for high frequency is developed. The dynamic‐stiffness matrix at lower frequency is obtained by numerical integration of ordinary differential equations. Only the boundary is discretized yielding a reduction of the spatial dimension by one. No fundamental solution is required. Material anisotropy is modelled without additional efforts. Examples of two‐ and three‐dimensional non‐homogeneous isotropic and transversely isotropic unbounded domains are presented. The results demonstrate the accuracy and simplicity of the scaled boundary finite‐element method. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
The scaled boundary finite‐element method has been developed for the dynamic analysis of unbounded domains. In this method only the boundary is discretized resulting in a reduction of the spatial dimension by one. Like the finite‐element method no fundamental solution is required. This paper extends the scaled boundary finite‐element method to simulate the transient response of non‐homogeneous unbounded domains with the elasticity modulus and mass density varying as power functions of spatial coordinates. To reduce the number of degrees of freedom and the computational cost, the technique of reduced set of base functions is applied. The scaled boundary finite‐element equation for an unbounded domain is reformulated in generalized coordinates. The resulting acceleration unit‐impulse response matrix is obtained and assembled with the equation of motion of standard finite elements. Numerical examples of non‐homogeneous isotropic and transversely isotropic unbounded domains demonstrate the accuracy of the scaled boundary finite‐element method. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
比例边界有限元法最初应用于土-结构的相互作用分析,经过近几年的完善和发展,如今已经能够应用到其他很多领域。但是因为比例边界有限元理论是基于相似性要求的,使得其在处理几何形状复杂的结构时,会有很大的局限性,从而在某些领域的应用仍旧受到限制。同时由于其全时空耦合,导致大量计算量和工作量,也是其应用受限的一个原因。采用子结构法,打破这些局限性,并且分别针对有限域、无限域的问题,对比例边界有限元子结构法进行了研究,得出了有利于比例边界有限元法在工程实践中应用的结论,为其在实际工程应用中提供了可靠的依据和规律。  相似文献   

4.
To calculate the dynamic-stiffness matrix at the structure–medium interface of an unbounded medium for the range of frequencies of interest, the consistent infinitesimal finite-element cell method based on finite elements is developed. The derivation makes use of similarity and finite-element assemblage, yielding a non-linear first-order ordinary differential equation in frequency. The asymptotic expansion for high frequency yields the boundary condition satisfying the radiation condition. In an application only the structure–medium interface is discretized resulting in a reduction of the spatial dimension by one. The boundary condition on the free surface is satisfied automatically. The consistent infinitesimal finite-element cell method is exact in the radial direction and converges to the exact solution in the finite-element sense in the circumferential directions. Excellent accuracy results.  相似文献   

5.
Insight into radiation damping of an unbounded medium is developed by addressing the relative contributions of the elastic restoring force and the inertial force at infinity. When the inertial force dominates, radiation damping occurs. When the elastic restoring force dominates, no radiation damping arises. An unbounded medium with a cutoff frequency can also be identified.  相似文献   

6.
We present and evaluate the formulation of a reduced‐dimension (one‐dimensional) finite element for the nonlinear analysis of a vibrating disk in a two‐dimensional unbounded domain. As this problem is relevant in studies of the dynamic response of laterally loaded piles, numerous spring‐and‐dashpot representations of the disk undergoing displacement in an unbounded material domain have been developed to date: static and dynamic, linear and nonlinear. With the focus on material nonlinearity, the present simplified formulation circumvents the complications associated with nonlinear springs and dashpots. Indeed, the continuum‐based treatment described herein accounts for the interaction between the two modes of energy dissipation, due to wave propagation in the unbounded domain and loss associated with inelastic behavior. The formulation is a good compromise between the competing desires for realistic representation and efficient computation. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
It is important to estimate the influence of layered soil in soil–structure interaction analyses. Although a great number of investigations have been carried out on this subject, there are very few practical methods that do not require complex calculations. In this paper, a simple and practical method for estimating the horizontal dynamic stiffness of a rigid foundation on the surface of multi‐layered soil is proposed. In this method, waves propagating in the soil are traced using the conception of the cone model, and the impulse response function can be calculated directly and easily in the time domain with a good degree of accuracy. The characteristics of the impedance, that is the transformed value to the frequency domain of the obtained impulse response, are studied using two‐ to four‐layered soil models. The cause of the fluctuation of impedance is expressed clearly from its relation to reflected waves from the lower layer boundary in the model. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

8.
Transient wave propagation in three-dimensional unbounded domains is studied. An efficient numerical approach is proposed, which is based on using the displacement unit-impulse response matrix representing the interaction force–displacement relationship on the near field/far field interface. Spatially, an approximation is used to reduce the computational effort associated with the large size of three-dimensional problems. It is based on subdividing the fully coupled unbounded domain into multiple subdomains. The displacement unit-impulse response matrices of all subdomains are calculated separately. The error associated with this spatial decoupling can be reduced by placing the near field/far field interface further away from the domain of interest. Detailed parameter studies have been conducted using numerical examples, in order to provide guidelines for the proposed spatially local schemes, and to demonstrate the accuracy and high efficiency of the proposed method for three-dimensional soil–structure interaction problems.  相似文献   

9.
A half‐space finite element and a transmitting boundary are developed for a water‐saturated layered half‐space using a paraxial boundary condition. The exact dynamic stiffness of a half‐space in plane strain is derived and a second‐order paraxial approximation of the stiffness is obtained. A half‐space finite element and a transmitting boundary are then formulated. The development is verified by comparison of the dynamic stiffness of impermeable and permeable rigid strip foundations with other published results. The advantage of using the paraxial boundary condition in comparison with the rigid boundary condition is examined. It is shown that the paraxial boundary condition offers significant gain and the resulting half‐space finite element and transmitting boundary can represent the effects of a water‐saturated layered half‐space with good accuracy and efficiency. In addition, the numerical method described herein maintains the strengths and advantages of the finite element method and can be easily applied to demanding problems of soil–structure interaction in a water‐saturated layered half‐space. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
薛冰寒      方宏远      王复明      胡志强  陈建国 《世界地震工程》2019,35(4):011-17
比例边界有限元方法是一种半解析的数值计算方法,具有降维、网格灵活、严格模拟无限域和无需基本解等特点。比例边界有限元方法的基本理论是在整体坐标与局部坐标的比例边界转换基础之上建立的,相似中心的选取是否合理对分析计算具有重要的影响,导致在模拟拱坝这种不规则的空间壳体结构时,具有一定的局限性。采用子结构方法,将坝体分为若干满足相似性要求的区域可解决上述问题,以某拱坝为例给出了合理的坝体子结构分区形式,验证了子结构方法的精确性,为建立基于比例边界有限元方法的坝体-库水-地基系统的计算模型奠定了基础。  相似文献   

11.
Formulation of a matrix‐valued force–displacement relationship which can take radiation damping into account is of major importance when modelling unbounded domains. This can be done by means of fundamental solutions in space and time in connection with convolution integrals or by means of a frequency dependent boundary element representation, but for discrete frequencies Ω only. In this paper a method for interpolating discrete values of dynamic stiffness matrices by a continuous matrix valued rational function is proposed. The coupling between interface degrees of freedom is fully preserved. Another crucial point in soil–structure interaction analysis is how to implement an approximation in the spectral domain into a time‐domain analysis. Well‐known approaches for the scalar case are based on the partial‐fraction expansion of a scalar rational function. Here, a more general procedure, applicable to MDOF‐systems, for the transformation of spectral rational approximations into the time‐domain is introduced. Evaluation of the partial‐fraction expansion is avoided by using the so‐called mixed variables. Thus, unknowns in the time‐domain are displacements as well as forces. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

12.
A boundary element formulation having discontinuous curved quadratic elements is presented for 2D elastodynamics. The first fundamental solution for static case is subtracted from and added to the first fundamental solution for dynamic case. As both kernels have the same order of singularity, the integral involving the regular expression arising from the subtraction can be calculated. matrix is calculated by employing the well-known rigid-body motion technique. The formulation is performed in Fourier transform space. Based on the formulation presented in this study, a general purpose computer program is developed for elastic or visco-elastic 2D elastodynamic problems. The program performs the analysis in Fourier transform space and can also be used for static analysis by assigning a very small value close to zero for the frequency. The results of some elastodynamic and dynamic soil–structure interaction problems obtained using the present study are compared with those in the literature.  相似文献   

13.
Consideration of structure-foundation-soil dynamic interaction is a basic requirement in the evaluation of the seismic safety of nuclear power facilities. An efficient and accurate dynamic interaction numerical model in the time domain has become an important topic of current research. In this study, the scaled boundary finite element method (SBFEM) is improved for use as an effective numerical approach with good application prospects. This method has several advantages, including dimensionality reduction, accuracy of the radial analytical solution, and unlike other boundary element methods, it does not require a fundamental solution. This study focuses on establishing a high performance scaled boundary finite element interaction analysis model in the time domain based on the acceleration unit-impulse response matrix, in which several new solution techniques, such as a dimensionless method to solve the interaction force, are applied to improve the numerical stability of the actual soil parameters and reduce the amount of calculation. Finally, the feasibility of the time domain methods are illustrated by the response of the nuclear power structure and the accuracy of the algorithms are dynamically verified by comparison with the refinement of a large-scale viscoelastic soil model.  相似文献   

14.
A three‐dimensional transmitting boundary is formulated in the Cartesian co‐ordinate system. It is developed for the dynamic soil–structure interaction problems of arbitrary shape foundations in laterally heterogeneous strata overlying rigid bedrock. Dynamics of a rectangular rigid surface foundation on a homogeneous stratum is analysed by a hybrid approach in which the finite region including foundation is modelled by the conventional finite element method and the surrounding infinite region by the newly developed transmitting boundary. To demonstrate its strength, the present method is applied to a rectangular foundation in a horizontally heterogeneous ground consisting of two distinct regions divided by and welded along a vertical plane. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

15.
An efficient method for modelling the propagation of elastic waves in unbounded domains is developed. It is applicable to soil–structure interaction problems involving scalar and vector waves, unbounded domains of arbitrary geometry and anisotropic soil. The scaled boundary finite element method is employed to derive a novel equation for the displacement unit-impulse response matrix on the soil–structure interface. The proposed method is based on a piecewise linear approximation of the first derivative of the displacement unit-impulse response matrix and on the introduction of an extrapolation parameter in order to improve the numerical stability. In combination, these two ideas allow for the choice of significantly larger time steps compared to conventional methods, and thus lead to increased efficiency. As the displacement unit-impulse response approaches zero, the convolution integral representing the force–displacement relationship can be truncated. After the truncation the computational effort only increases linearly with time. Thus, a considerable reduction of computational effort is achieved in a time domain analysis. Numerical examples demonstrate the accuracy and high efficiency of the new method for two-dimensional soil–structure interaction problems.  相似文献   

16.
A coupling model of Finite Elements (FEs), Boundary Elements (BEs), Infinite Elements (IEs) and Infinite Boundary Elements (IBEs) is presented for analysis of soil–structure interaction (SSI). The radiation effects of the infinite layered soil are taken into account by FE–IE coupling, while the underlying bed rock half-space is discretized into BE–IBE coupling whereby the non-horizontal bed rock surface can be accounted for. Displacement compatabilities are satisfied for all types of aforementioned elements. The equivalent linear approach is employed for approximation of nonlinearity of the near field soil. This model has some advantages over the current SSI program in considering the bed rock half-space and non-vertical wave incidence from the far field. Examples of verification demonstrate the applicability and accuracy of the method when compared with the FLUSH program. Finally, the effects of the relative modulus ratio Er/Es of rock and soil and the incident angles of non-vertical waves on the responses of the structure and the soil are examined. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

17.
无限域地基有限元分析的简化粘弹性边界   总被引:4,自引:0,他引:4  
本文提出一种能用于无限域地基动、静力有限元分析的简单人工边界——粘弹边界,采用一层边界单元来实现。该边界弹簧部分采用弹性半空间Mindlin解计算,边界单元采用具有粘性阻尼的粘弹材料,通过确定合理的弹性模量、泊松比和粘性阻尼系数,不仅可以使边界单元能够模拟无限域远场的弹性恢复力,同时可以模拟粘性边界。通过算例分析,验证了该边界的有效性,它可用于土-结构动力相互作用分析。  相似文献   

18.
A combined boundary and finite element method is developed and applied to study the dynamic behaviour of a system of flexible surface footings of arbitrary shape bearing on an elastic half-space. The proposed method employs the frequency domain Green's function for the surface of the elastic half-space while a layered plate model is used for the flexible footing. Both the footing and the surface of the half-space are discretized by 8-noded quadratical isoparametric elements, and the meshes are identical. Thus, the compatibility of displacements and equilibrium of forces between the footing and the half-space are fully satisfied. This model provides a better approximation of the stress concentration at edges of relatively rigid footings. Numerical examples demonstrating the effects due to the excitation frequency, the relative rigidity and the distance between footings on the interaction between two square footings are presented. The external forces can be either harmonic or transient.  相似文献   

19.
A number of methods have been proposed that utilize the time‐domain transformations of frequency‐dependent dynamic impedance functions to perform a time‐history analysis. Though these methods have been available in literature for a number of years, the methods exhibit stability issues depending on how the model parameters are calibrated. In this study, a novel method is proposed with which the stability of a numerical integration scheme combined with time‐domain representation of a frequency‐dependent dynamic impedance function can be evaluated. The method is verified with three independent recursive parameter models. The proposed method is expected to be a useful tool in evaluating the potential stability issue of a time‐domain analysis before running a full‐fledged nonlinear time‐domain analysis of a soil–structure system in which the dynamic impedance of a soil–foundation system is represented with a recursive parameter model. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
The dynamic response of offshore wind turbines is affected by the properties of the foundation and the subsoil. The aim of this paper is to evaluate the dynamic soil–structure interaction of suction caissons for offshore wind turbines. The investigations include evaluation of the vertical and coupled sliding–rocking vibrations, influence of the foundation geometry and examination on the properties of the surrounding soil. The soil is simplified as a homogenous linear viscoelastic material and the dynamic stiffness of the suction caisson is expressed in terms of dimensionless frequency‐dependent coefficients corresponding to different degrees of freedom. The dynamic stiffness coefficients for the skirted foundation are evaluated using a three‐dimensional coupled boundary element/finite element model. Comparisons with known analytical and numerical solutions indicate that the static and dynamic behaviours of the foundation are predicted accurately using the applied model. The analysis has been carried out for different combinations of the skirt length, Poisson's ratio of the subsoil and the ratio of the soil stiffness to the skirt stiffness. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号