首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
空间钢筋混凝土框架结构的非弹性地震反应   总被引:3,自引:0,他引:3  
对两个缩比为十五分之一的三层、双跨、两开间的钢筋混凝土框架模型进行了振动台试验,一个模型模拟质量中心与刚度中心不一致的偏心结构,另一个模型模拟承受双向地面运动的结构。研究了结构的空间非弹性地震反应。计算结果表明,理论分析与实测结果有较好的吻合性。  相似文献   

2.
Previous studies have suggested that rocking vibration accompanied by uplift motion might reduce the seismic damage to buildings subjected to severe earthquake motions. This paper reports on the use of shaking table tests and numerical analyses to evaluate and compare the seismic response of base‐plate‐yielding rocking systems with columns allowed to uplift with that of fixed‐base systems. The study is performed using half‐scale three‐storey, 1 × 2 bay braced steel frames with a total height of 5.3 m. Base plates that yield due to column tension were installed at the base of each column. Two types of base plates with different thicknesses are investigated. The earthquake ground motion used for the tests and analyses is the record of the 1940 El Centro NS component with the time scale shortened by a factor of 1/√2. The maximum input acceleration is scaled to examine the structural response at various earthquake intensities. The column base shears in the rocking frames with column uplift are reduced by up to 52% as compared to the fixed‐base frames. Conversely, the maximum roof displacements of the fixed and rocking frames are about the same. It is also noted that the effect of the vertical impact on the column associated with touchdown of the base plate is small because the difference in tensile and compressive forces is primarily due to the self‐limiting tensile force in the column caused by yielding of the base plate. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
Post‐earthquake reconnaissance has reported the vulnerability of older reinforced concrete (RC) columns lacking details for ductile response. Research was undertaken to investigate the full‐range structural hysteretic behavior of older RC columns. A two‐dimensional specimen frame, composed of nonductile and ductile columns to allow for load redistribution, was subjected to a unidirectional base motion on a shaking table until global collapse was observed. The test demonstrates two types of column failure, including flexure‐shear and pure flexural failure. Test data are compared with various simplified assessment models commonly used by practicing engineers and researchers to identify older buildings that are at high risk of structural collapse during severe earthquake events. Comparison suggests that ASCE/SEI 41‐06 produces very conservative estimates on load–deformation relations of flexure‐shear columns, while the recently proposed ASCE/SEI 41‐06 update imposes significant modifications on the predictive curve, so that improved accuracy has been achieved. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
GPS observations in the Western Bohemia/Vogtland earthquake swarm region revealed indications of horizontal displacements of low amplitude, and no clear long-term trend in 1993–2007. On the other hand, in 1998–2001 there was relatively significant active movement along NNE-SSW oriented line that we called the “Cheb-Kraslice GPS Boundary” (ChKB), identical with an important limitation of earthquake activity. The most impressive were dextral (right-lateral) movements in the 1998–1999 period followed by reverse sinistral (left-lateral) movements in 1999–2000 that correlate with prevailing motion defined by fault plane solutions of the Autumn 2000 earthquake swarm. Before the February 2004 micro-swarm, two points located on opposite sides of the Mariánské Lázně fault showed extension in the order of about 7 mm in the same NNE-SSW direction of ChKB. The new NOKO permanent GPS station in Novy Kostel showed the peak-to-peak vertical changes up to 10 mm before and during the February 2007 micro-swarm. Annual precise levelling campaigns in the local network around Novy Kostel revealed regular vertical displacements during the 1994, 1997 and 2000 earthquake swarms. The points around the Novy Kostel seismological station showed uplift during the active periods, including the micro-swarm February 2004. However, no such indication was observed on levelling points in the period of the February 2007 swarm. Long-term vertical displacements depend on the same direction NNE-SSW (ChKB) as the GPS displacements. Both geodetic techniques have revealed oscillating displacements, GPS horizontal, and levelling vertical, rather than any long-term trends in the study period 1993–2007. The displacements exhibited significant spatial and temporal relation to tectonic activity (earthquake swarms) including their coincidence with the seismologically determined sense of motion along the fault plane during earthquakes.  相似文献   

5.
本文对高宽比为2.5的普通钢框架隔震结构模型,采用多种不同的地震动进行了水平向和竖向双向地震输入的振动台试验研究,并利用时程分析法完成了模型结构地震反应的数值分析。试验结果表明,高宽比隔震结构在水平向和竖向双向输入情况下隔震层基本上不会进入拉伸应力状态,即使在9度大震E l Centro和Hach inohe波输入时,隔震层支座仍以受压为主。因此小高宽比隔震结构在场地好的情况下,结构不会出现倾覆,仅需考虑软弱土场地的受拉情况。试验发现竖向地震输入对小高宽比隔震结构水平反应的影响相当小;对小高宽比隔震结构进行水平向地震反应分析时,可以忽略竖向地震对结构的影响。  相似文献   

6.
基于量纲分析理论,提出地震作用下环行吊车缩尺模型动力响应的相似准则,确定核环吊原型和实验模型之间动力响应的相似关系。根据抗震规范要求和相似准则,采用El Centro 1979地震波作为实验台地震输入,对振动台震动输入进行调幅处理,水平地震输入幅值为0.3g,竖向地震输入幅值为0.2g,地震输入的时间缩尺为4。核环吊抗震实验结果表明,与实验台地震输入峰值相对比,吊车大梁跨中水平加速度峰值增加了56.0%,跨中竖向的加速度峰值增加了119.0%;环轨水平加速度峰值增加了66.7%,环轨竖向的加速度峰值增加了43.5%。研究表明,当水平地震波的输入方向与吊车大梁轴线相垂直时,吊车大梁跨中水平加速度峰值最大;当水平地震波的输入方向与吊车大梁轴线相平行时,环轨的水平加速度峰值最大;环轨的垂直加速度峰值受水平地震波的输入方向影响不显著。在地震荷载作用下,核环吊没有发生跳轨现象。  相似文献   

7.
After the 1995 Kobe earthquake, the expressway structures in Japan were retrofitted and they will not now be seriously damaged under a certain level of strong earthquake motion. However, the stability of a moving vehicle has not been investigated yet. It has been reported that drivers feel seismically induced vibrations, especially in the transverse direction of vehicles. Owing to this phenomenon, drivers have some difficulty in controlling the vehicles during strong shaking. For further safety promotion of the expressway networks, it is important to understand the drivers' reactions to seismic motion. The present authors have performed a series of seismic response analyses of a moving vehicle to investigate its response characteristics based on numerical simulation. However, the responses of the driver were not considered in the simulation process. In order to investigate the drivers' reactions during an earthquake, a series of virtual tests were conducted using a driving simulator. This driving simulator has six servomotor‐powered electric actuators that control its motions. Several types of tests were carried out for different examinees to investigate drivers' responses while controlling the simulator under seismic motion. The results of this study showed that a larger response time lag to strong shaking and over turning of the steering wheel may shift the vehicle into the next lane. According to this finding, trafficaccidents could possibly occur under strong ground shaking in the case of heavy traffic. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

8.
In this study, a series of shaking table tests are carried out on scaled models of two seismically isolated highway bridges to investigate the effect of rocking motion and vertical acceleration on seismic performance of resilient sliding isolators. In addition, performance of RSI is compared with system having solely natural rubber bearings. Test results show that variation of normal force on sliders due to rocking effect and vertical acceleration makes no significant difference in response of RSI systems. In addition, analytical response of prototype isolated bridge and the model used in experiments is obtained analytically by using non‐linear model for isolation systems. It is observed that for seismically isolated bridges, dynamic response of full‐scale complex structures can be predicted with acceptable accuracy by experiments using a simple model of the structure. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

9.
Two correctly-scaled model cantilever retaining walls of different stiffnesses were tested under dynamic loading conditions in a centrifuge. A medium-dense fine sand was retained with a range of backfill slopes. For the centrifuge model, an earthquake-generating mechanism was designed to produce seismic shaking equivalent to that generated at ground surface in the epicentral area of an earthquake of approximate magnitude 5–5. The response of the model retaining walls to the input dynamic motion was measured by strain gauges, pressure transducers and accelerometers. From the measurements plots were constructed of moment, shear, pressure and displacement over the height of the walls as a function of time. The results are compared with calculations based on the quasi-static Mononobe-Okabe theory. Although the calculated resultant force is in reasonable agreement with the experiments, the moments can be substantially different. Residual values of all parameters at the end of shaking are considerably greater than the initial static values. It is recommended that dynamic behaviour be incorporated in the earthquake design of retaining walls.  相似文献   

10.
A moderate size earthquake of magnitude 5 occurred at Whagae‐Myun, Hadong‐Gun, Kyongsangnam‐Do, Korea on 4 July 1936. It caused severe damage to the buildings and other structures in Sang‐Gye‐Sa, a famous and beautiful Buddhist temple. A five‐storey stone pagoda was standing in front of Keumdang, the main building. The top component of the pagoda was tipped over and fell down to the ground during the earthquake. In order to have a quantitative estimate of the intensity of the earthquake, a full‐scale model was constructed through a rigorous verification process. The completed model was mounted on a shaking table and subjected to two kinds of dynamic test: exploratory test and fragility test. The exploratory test was performed with low intensity shaking. In the fragility test, the failure modes of the model were investigated while increasing the shaking intensity. The construction details of the model are described and test procedures are reported. Important relations between failure modes and characteristics of ground motion were obtained from the tests. The intensity of the 1936 earthquake was estimated from the examination of test results. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

11.
Analysis of a simple reinforced concrete (RC) structure damaged by the Bhuj, India, earthquake was carried out to estimate the level of shaking in the epicentral region. For this, an attempt was made to estimate the level of input motion to cause inelastic behavior to the extent observed during the field visit. To consider the inelastic effects, both yielding of steel bars as well as crushing of the concrete cover has been investigated employing the hysteretic model known as the Fiber model. The only available record at Ahmedabad of the Bhuj earthquake and four additional earthquake records from Japan and California were used in the analysis. Considering simple scaling of input motion, the level of input motion to cause crushing and spall‐off of the concrete cover as observed in the field was estimated to be of the order of 6 times the original instrumental record obtained at 240 km away from the epicenter. The methodology proposed was promising in providing a useful quantitative indication of the level of shaking when instrumental records are not available. It was also noted that the design response spectrum specified in Indian seismic code IS1893: 1984 appears inadequate compared to the extent of shaking estimated. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
Scattering of plane harmonic waves by a three‐dimensional basin of arbitrary shape embedded within elastic half‐space is investigated by using an indirect boundary integral equation approach. The materials of the basin and the half‐space are assumed to be the most general anisotropic, homogeneous, linearly elastic solids without any material symmetry (i.e. triclinic). The unknown scattered waves are expressed in terms of three‐dimensional triclinic time harmonic full‐space Green's functions. The results have been tested by comparing the surface response of semi spherical isotropic and transversely isotropic basins for which the numerical solutions are available. Surface displacements are presented for a semicircular basin subjected to a vertical incident plane harmonic pseudo‐P‐, SV‐, or SH‐wave. These results are compared with the motion obtained for the corresponding equivalent isotropic models. The results show that presence of the basin may cause significant amplification of ground motion when compared to the free‐field displacements. The peak amplitude of the predominant component of surface motion is smaller for the anisotropic basin than for the corresponding isotropic one. Anisotropic response may be asymmetric even for symmetric geometry and incidence. Anisotropic surface displacement generally includes all three components of motion which may not be the case for the isotropic results. Furthermore, anisotropic response strongly depends upon the nature of the incident wave, degree of material anisotropy and the azimuthal orientation of the observation station. These results clearly demonstrate the importance of anisotropy in amplification of surface ground motion. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

13.
<正>This paper focuses on the investigation of a hybrid seismic isolation system with passive variable friction dampers for protection of structures against near fault earthquakes.The seismic isolation can be implemented by replacing the conventional columns fixed to the foundations by seismic isolating ones.These columns allow horizontal displacement between the superstructure and the foundations and decouple the building from the damaging earthquake motion.As a result, the forces in the structural elements decrease and damage that may be caused to the building by the earthquake significantly decreases.However,this positive effect is achieved on account of displacements occurring in the isolating columns.These displacements become very large when the structure is subjected to a strong earthquake.In this case,impact may occur between the parts of the isolating column yielding their damage or collapse.In order to limit the displacements in the isolating columns,it is proposed to add variable friction dampers.A method for selecting the dampers' properties is proposed.It is carried out using an artificial ground motion record and optimal active control algorithm.Numerical simulation of a seven-story structure shows that the proposed method allows efficient reduction in structural response and limits the displacements at the seismic isolating columns.  相似文献   

14.
After an earthquake, non‐negligible residual displacements may affect the serviceability of a base isolated structure, if the isolation system does not possess a good restoring capability. The permanent offset does not affect the performance unless the design is problematic for utilities, also considering possible concerns related to the maintenance of the devices. Starting from experimental and analytical results of previous studies, the restoring capability of Double Concave Friction Pendulum bearings is investigated in this paper. A simplified design suggestion for the estimation of maximum expected residual displacements for currently used friction pendulum systems is then validated. The study is based on controlled‐displacement and seismic input experiments, both performed under unidirectional motion. Several shaking table tests have been carried out on a three‐dimensional isolated specimen structure. The same sequence of seismic inputs was applied considering three different conditions of sliding surfaces corresponding to low, medium and high friction. The accumulation of residual displacements is also investigated by means of nonlinear dynamic analysis. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

15.
The purpose of this research is to use data from experiments to formulate a mathematical model that will predict the non-linear response of a single-storey steel frame to an earthquake input. The process used in this formulation is system identification. In experiments performed on a shaking table, the frame was subjected to two earthquake motions at several intensities. In each case the frame underwent severe inelastic deformation. A computer program which incorporates the concepts of system identification makes use of the recorded data to establish four parameters in a non-linear mathematical model. When different amounts of data are used in the program, parameter sets are established which give the best model response for that amount of test data. The resulting sets of parameters reflect the way in which the properties of the structure change during the excitation. However, when the full durations of the different excitations are used, the sets of parameters are almost identical. For each of these sets of parameters, the correlation of the computed accelerations with the measured is excellent, and the shape of the computed displacement response compares very well with the measured response, although the permanent offset of the displacements is not computed exactly. Suggestions are given on how to overcome this deficiency in the mathematical model.  相似文献   

16.
In this paper, the distinct element method is used in order to predict the earthquake response of a multi‐drum marble model of a classical column. The results are compared with experimental data for an ‘identical’ specimen under the same excitation. Both the numerical analysis and the experiments were conducted in three dimensions. The results show that the distinct element method can capture quite well the main features of the response, in spite of the sensitivity of the response to even small perturbations of the characteristics of the structure or the excitation. Attention, however, should be given to the appropriate values of the joint properties to be used. In any case, it seems that the method can be used with confidence in the restoration process of ancient monuments, in order to estimate the response to expected earthquake motions. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

17.
This paper presents the findings of shaking‐table experiments conducted to examine the seismic performance of a full‐scale, one‐story, wood‐framed structure with masonry veneer. The structure was designed and constructed in accordance with current U.S. code provisions. The veneer was attached to the wood backing with two kinds of metal anchors, corrugated ties fastened with 8d nails and rigid ties fastened with #8 screws. The tests have shown that the use of nails to fasten veneer anchors to the wood studs is highly unreliable due to the high variation of the nail extraction capacity, which can be influenced by the moisture content of the wood. Other than this, both the wood frame and the masonry veneer performed well under severe ground motions far exceeding a design level earthquake for Seismic Design Category D. Good performance was observed for the rigid veneer ties, which were attached to the wood studs with screws. The results have shown that the veneer walls parallel to the direction of shaking helped to restrain the motion of the wood structure and therefore should not be simply treated as added mass. The detailing of wood roof diaphragms requires special attention in consideration of the out‐of‐plane inertia force of the veneer that can be transmitted through the top plate of the wood‐stud wall to the rim joist. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
This paper considers the dynamical behaviour of a structural model with foundation uplift. The equations of motion of the system considered are derived for large displacements thus allowing for the eventual overturning of the system. The transition conditions between successive phases of motion, derived in terms of the specific Lagrangian co‐ordinates used in the formulation of the equations of motion, present innovative aspects which resolve some previously inexplicable behaviour in the structural response reported in the literature. The dynamical behaviour of the model is considered under impulsive and long‐duration ground motions. The minimum horizontal acceleration impulses for the uplift and the overturning of the system are evaluated in analytical form. The sensitivity of the model to uplifting and to overturning under impulsive excitations is established as a function of few significant structural parameters. Numerical applications have been performed changing either the structural parameters or the loading parameter, in order to analyse several dynamical behaviours and also to validate the analytical results. For earthquake ground motions the results, reported in the form of response spectra, show that linearized models generally underestimate, sometimes significantly, the structural response. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

19.
砂土自由场地震响应的离心机试验研究   总被引:3,自引:1,他引:2  
离心机模型试验是研究岩土地震工程问题的有效手段。本文使用层状剪切箱,通过干落法制备了均匀的砂土模型,进行了离心机振动试验;观测了振动过程中孔隙水压力的发展,土体的加速度响应、侧向变形以及竖向沉降。结果表明,土体的运动和变形与孔隙水压力的发展密切相关,但离心机中的试验现象和现场观测的现象存在显著区别。研究结果增强了对振动过程中土-水之间相互作用机理的理解,同时为自由场地震响应分析方法的验证提供了基础数据。  相似文献   

20.
The seismic response of free‐standing classical columns is analysed numerically through implementation of the distinct element method. Typical sections of two ancient temples are modelled and studied parametrically, in order to identify the main factors affecting the stability and to improve our understanding of the earthquake behaviour of such structures. The models were first subjected to harmonic base motions. The analysis showed that, for frequencies usually encountered in earthquake motions, intact multi‐drum free‐standing columns can withstand large amplitude harmonic excitations without collapse. The dynamic resistance decreases rapidly as the period of the harmonic excitation increases. Imperfections, such as initial tilt of the column or loss of contact area due to edge damage, also reduce the stability of the system significantly. The effects of such imperfections could be additive and the cumulative effect of many imperfections may render deteriorating abandoned monuments vulnerable to earthquakes. The response of more complete sections of the temple, such as two columns coupled with an architrave, did not deviate systematically from that of the single multi‐drum column or indeed of the equivalent single block. Therefore, a much simpler single block analysis can be used to size‐up the seismic threat to the monument. The model of the column of the Temple of Apollo at Bassae was also tested under recorded earthquake motions by scaling‐up the acceleration amplitude progressively until collapse of the column. It was found that the columns are particularly vulnerable to long‐period impulsive earthquake motions. A comparison of the instability thresholds associated with harmonic excitations and earthquake motions throws more light onto the dynamic response: it appears that around three cycles of monochromatic excitation at the predominant period of the expected earthquake motions lead to a gross prediction of the stability of a classical column during an earthquake. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号