首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wildfires raise concerns over the risk of accelerated erosion as a result of increased overland flow and decreased protection of the soil by litter and ground vegetation cover. We investigated these issues following the 1994 fires that burnt large areas of native Eucalyptus forest surrounding Sydney, Australia. A review of previous studies identifies the fire and rainfall conditions that are likely to lead to increased runoff and accelerated erosion. We then compare runoff and erosion between burnt and unburnt sites for 10 months after the 1994 fires. At the scale of hillslope plots, the 1994 fire increased runoff by enhancing soil hydrophobicity, and greatly increased sediment transport, mainly through the reduced ground cover, which lowered substantially the threshold for initial sediment movement. However, both runoff and sediment transport were very localized, resulting in little runoff or sediment yield after the fire at the hillslope catchment scale. We identify that after moderately intense fires, rainfall events of greater than one year recurrence interval are required to generate substantial runoff and sediment yield. Such events did not occur during the monitoring period. Past work shows that mild burns have little effect on erosion, and it is only after the most extreme fires that erosion is produced from small, frequent storms. © 1998 John Wiley & Sons, Ltd.  相似文献   

2.
This paper investigates suspended sediment transport and dynamics of two nested agricultural lowland Mediterranean catchments with a difference of two orders of magnitude in the surface area (i.e., 1 and 264 km2). The effects of the drainage catchment area over the specific suspended sediment yield are assessed by using the nested approach over various timeframes. A detailed analysis of the rainfall–runoff–sediment transport relationships during the 2‐year study period shows that the hydrological and sedimentological responses were extremely variable for both catchments. Very low or no correlations were observed between the rainfall intensity and the selected hydrological variables and sediment loads. However, remarkable or high correlations were obtained between the rainfall intensity and the maximum and average suspended sediment concentrations, indicating that rainfall per unit time has little control on the hydrological response, but that, simultaneously, its high‐erosive power triggers sediment production, increasing the sedimentary response of the catchments. This study also illustrates how sediment is mainly transported during floods, producing predominantly clockwise hysteretic loops. Moreover, the small headwater catchment exerts a reduced (or even negligible) effect over the hydro‐sedimentary response of the larger downstream catchment, caused by the reduced sediment availability in a landscape with an inherent disconnection of the sediment pathways.  相似文献   

3.
The suspended sediment response of a small catchment subjected to farmland abandonment and subsequent plant recolonization was studied in relation to its hydrological functioning. The analysis of data over a seven‐year period demonstrated that suspended sediment yield was greatly influenced by the occurrence of intense, low‐frequency events. Greater amounts of suspended sediment were exported during spring, when the catchment was hydrologically more active. Rainfall intensity and baseflow at the start of a flood event had a strong influence on the sediment response, suggesting that several hydrological processes were active within the catchment. SSC (suspended sediment concentration)‐Q hysteretic loop analysis at the event scale aided understanding of the sedimentological and hydrological behaviour of the catchment. During the study period the SSC‐Q loops showed a high degree of seasonality and two main patterns strongly related to catchment wetness were distinguished. When the catchment was dry (mainly during summer and the beginning of autumn) the predominant process was infiltration excess runoff over sparsely vegetated areas close to the main channel. Under these conditions, floods exhibited a counter‐clockwise hysteretic loop and were characterized by a small streamflow response, short duration and high SSC. Under wet conditions (mainly during winter and spring), saturation excess runoff was increasingly dominant over vegetated areas. Under these conditions, floods exhibited a clockwise hysteretic loop, and were characterized by a larger streamflow response, longer duration and higher suspended sediment yield. The lower SSC during the falling stage of the hydrograph is likely to be due to dilution effects related to the contribution of clean water resulting from enlargement of the saturated areas, together with an increase in the baseflow discharge. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
This paper analyses the spatial and temporal variability of the hydrological response in a small Mediterranean catchment (Cal Rodó). The first part of the analysis focuses on the rainfall–runoff relationship at seasonal and monthly scale, using an 8‐year data set. Then, using storm‐flow volume and coefficient, the temporal variability of the rainfall–runoff relationship and its relationship with several hydrological variables are analysed at the event scale from hydrographs observed over a 3‐year period. Finally, the spatial non‐linearity of the hydrological response is examined by comparing the Cal Rodó hydrological response with the Can Vila sub‐catchment response at the event scale. Results show that, on a seasonal and monthly scale, there is no simple relationship between rainfall and runoff depths, and that evapotranspiration is a factor that introduced some non‐linearity in the rainfall–runoff relationship. The analysis of monthly values also reveals the existence of a threshold in the relationship between rainfall and runoff depths, denoting a more contrasted hydrological response than the one usually observed in humid catchments. At the event scale, the storm‐flow coefficient has a clear seasonal pattern with an alternance between a wet period, when the catchment is hydrologically responsive, and a dry summer period, when the catchment is much less reactive to any rainfall. The relationship between the storm‐flow coefficient and rainfall depth, rainfall maximum intensity and base‐flow shows that observed correlations are the same as those observed for humid conditions, even if correlation coefficients are notably lower. Comparison with the Can Vila sub‐catchment highlights the spatial heterogeneity of the rainfall‐runoff relationship at the small catchment scale. Although interpretation in terms of runoff processes remains delicate, heterogeneities between the two catchments seem to be related to changes in the ratio between infiltration excess and saturation processes in runoff formation. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
Based on observations of runoff plots and field investigations of gully cross-sections, impacts of various soil and water conservation measures on runoff and sediment yield are analyzed for different rainfall conditions. The results show that antecedent rainfall and rainfall intensity are the main factors affecting the runoff and soil erosion processes. Rainfall events with antecedent rainfall can produce high runoff and sediment yield. Large differences in the characteristics of two rainfall events will result in greater variations of total runoff and sediment yield from the same runoff plot. Under the same soil control measure and rainfall condition, soil and water conservation measures can reduce the impacts of antecedent rainfall and rainfall intensity on runoff and soil erosion. Among various measures, level terrace seems to be the greatest for soil conservation purposes. Combining with engineering measures,Vegetation measures is also effective in controlling runoff and soil erosion. In the initial stage of vegetation enclosure measures, engineering measure is necessary to improve the environment for ecological recovery. Gully head protection can control gully erosion effectively, but the effectiveness of gully head protection would be reduced when rainfall intensity increases. Therefore, the design of a gully head protection structure must be based on local hydrological conditions.  相似文献   

6.
Establishing a universal watershed‐scale erosion and sediment yield prediction model represents a frontier field in erosion and soil/water conservation. The research presented here was conducted on the Chabagou watershed, which is located in the first sub‐region of the hill‐gully area of the Loess Plateau, China. A back‐propagation artificial neural model for watershed‐scale erosion and sediment yield was established, with the accuracy of the model, then compared with that of multiple linear regression. The sensitivity degree of various factors to erosion and sediment yield was quantitatively analysed using the default factor test. On the basis of the sensitive factors and the fractal information dimension, the piecewise prediction model for erosion and sediment yield of individual rainfall events was established and further verified. The results revealed the back‐propagation artificial neural network model to perform better than the multiple linear regression model in terms of predicting the erosion modulus, with the former able to effectively characterize dynamic changes in sediment yield under comprehensive factor conditions. The sensitivity of runoff erosion power and runoff depth to the erosion and sediment yield associated with individual rainfall events was found to be related to the complexity of surface topography. The characteristics of such a hydrological response are thus closely related to topography. When the fractal information dimension is greater than the topographic threshold, the accuracy of prediction using runoff erosion power is higher than that of using runoff depth. In contrast, when the fractal information dimension is smaller than the topographic threshold, the accuracy of prediction using runoff depth is higher than that of using runoff erosion power. The developed piecewise prediction model for watershed‐scale erosion and sediment yield of individual rainfall events, which introduces runoff erosion power and runoff depth using the fractal information dimension as a boundary, can be considered feasible and reliable and has a high prediction accuracy. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
Abstract

The hydrological response of a small agroforestry catchment in northwest Spain (Corbeira catchment, 16 km2) is analysed, with particular focus on rainfall events. Fifty-four rainfall–runoff events, from December 2004 to September 2007, were used to analyse the principal hydrological patterns and show which factors best explain the hydrological response. The nonlinearity between rainfall and runoff showed that the variability in the hydrological response of the catchment was linked to the seasonal dynamics of the rainfall and, to a lesser extent, to evapotranspiration. The runoff coefficient, estimated as the ratio between direct runoff and rainfall volume, on an event basis, was analysed as a function of rainfall characteristics (amount and intensity) and the initial catchment state conditions prior to an event, such as pre-event baseflow and antecedent rainfall index. The results revealed that the hydrological response depends both on the soil humidity conditions at the start of the event and on rainfall amount, whereas rainfall intensity presented only a significant correlation with discharge increment. The antecedent conditions seem to be a key point in runoff production, and they explain much of the response. The hydrographs are characterized by a steep rising limb, a relatively narrow peak discharge and slow recession limb. These data and the observations suggest that the subsurface flow is the dominant runoff process.

Editor Z.W. Kundzewicz; Associate editor T. Wagener

Citation Rodríguez-Blanco, M.L., Taboada-Castro, M.M. and Taboada-Castro, M.T., 2012. Rainfall–runoff response and event-based runoff coefficients in a humid area (northwest Spain). Hydrological Sciences Journal, 57 (3), 445–459.  相似文献   

8.
The development of surface hydrological connectivity is a key determinant of flood magnitude in drylands. Thresholds in runoff response may be reached when isolated runoff-generating areas connect with each other to form continuous links to river channels, enabling these areas to contribute to flood hydrographs. Such threshold behaviour explains observed nonlinearities and scale dependencies of dryland rainfall–runoff relationships and complicates attempts at flood prediction. However, field methods for measuring the propensity of a surface to transmit water downslope are lacking, and conventional techniques of infiltration measurement are often inappropriate for use on non-agricultural drylands. Here, we argue for a reconceptualization of the dryland surface runoff process, suggesting that the downslope transfer of water should be considered alongside surface infiltration; that is, there is a need for the “aggregated” measurement of infiltration and overland flow hydraulics. Surface application of a set volume of water at a standardized rate generates runoff that travels downslope; the distance it travels downslope is determined by infiltration along the flow, integration of flow paths, and flow resistance. We demonstrate the potential of such a combined measurement system coupled with structure-from-motion photogrammetry to identify surface controls on runoff generation and transfer on dryland hillslopes, with vegetation, slope, surface stone cover, and surface roughness all having a significant effect. The measurement system has been used on slopes up to 37° compared with the flat surface typically required for infiltration methods. On average, the field workflow takes ~10–15 min, considerably quicker than rainfall simulation. A wider variety of surfaces can be sampled with relative ease, as the method is not restricted to stone and vegetation-free land. We argue that this aggregated measurement represents surface connectivity and dryland runoff response better than standard hydrological approaches and can be applied on a much greater variety of dryland surfaces.  相似文献   

9.
Haiyun Shi  Guangqian Wang 《水文研究》2015,29(14):3236-3246
Due to climate change and its aggravation by human activities (e.g. hydraulic structures) over the past several decades, the hydrological conditions in the middle Yellow River have markedly changed, leading to a sharp decrease in runoff and sediment discharge. This paper focused on the impacts of climate change and hydraulic structures on runoff and sediment discharge, and the study area was located in the 3246 km2 Huangfuchuan (HFC) River basin. Changes in annual runoff and sediment discharge were initially analysed by using the Mann–Kendall trend test and Pettitt change point test methods. Subsequently, periods of natural and disturbed states were defined. The results showed that both the annual runoff and sediment discharge presented statistically significant decreasing trends. However, compared with the less remarkable decline in annual rainfall, it was inferred that hydraulic structures might be another important cause for the sharp decrease in runoff and sediment discharge in this region. Consequently, sediment‐trapping dams (STDs, a type of large‐sized check dam used to prevent sediment from entering the Yellow River main stem) were considered in this study. Through evaluating the impacts of the variation in rainfall patterns (i.e. amount and intensity) and the STD construction, a positive correlation between rainfall intensity and current STD construction was found. This paper revealed that future soil and water conservation measures should focus on areas with higher average annual rainfall and more rainstorm hours. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
Suburban areas undergo rapid land‐use changes due to urban growth. Consequently, the mitigation of hydrological impacts is a major issue in the field of flood and water pollution management. Nevertheless, suburban catchments have seldom been studied. This paper presents a method for analyzing the hydrological behaviour of suburban catchments; the particular method is tested on the Chézine catchment, located in a suburban area of Nantes (western France). Chézine provides a typical example of a suburban catchment, yet features the unique behaviour of a response time ranging from 1 to 6 h. It is proposed herein to classify rainfall‐runoff events in homogeneous groups according to their flow coefficient. A group of events is characterized by its mean flow coefficient and by its transfer function, which are considered as the signatures of the hydrological behaviour of these similar events. The transfer function is identified from the available series of rainfall and outflow data. The identified transfer functions serve to estimate the localization of contributing zones over the basin by estimating the basin transfer function from flowpaths. The consistency of these assumptions is then verified by comparing the estimated transfer function with the identified one. The application of this method to the Chézine catchment demonstrates that it is possible to distinguish various types of hydrological behaviour regimes associated with significantly different transfer functions. The joint analysis of the flow coefficient and transfer function of each group confirms that the Chézine catchment reacts like an urban basin with just the urban zones contributing to runoff under dry conditions. Otherwise, the wetter the initial state, the greater the tendency of this basin to react like a natural basin, as reflected by the different transfer function shapes. These results confirm the validity of the proposed method to analyse the various behaviour regimes of suburban catchments. In addition, this method helps define the specifications of hydrological models suited to suburban catchments. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
This paper investigates the effect of introducing spatially varying rainfall fields to a hydrological model simulating runoff and erosion. Pairs of model simulations were run using either spatially uniform (i.e. spatially averaged) or spatially varying rainfall fields on a 500‐m grid. The hydrological model used was a simplified version of Thales which enabled runoff generation processes to be isolated from hillslope averaging processes. Both saturation excess and infiltration excess generation mechanisms were considered, as simplifications of actual hillslope processes. A 5‐year average recurrence interval synthetic rainfall event typical of temperate climates (Melbourne, Australia) was used. The erosion model was based on the WEPP interrill equation, modified to allow nonlinear terms relating the erosion rate to rainfall or runoff‐squared. The model results were extracted at different scales to investigate whether the effects of spatially varying rainfall were scale dependent. A series of statistical metrics were developed to assess the variability due to introducing the spatially varying rainfall field. At the catchment (approximately 150 km2) scale, it was found that particularly for saturation excess runoff, model predictions of runoff were insensitive to the spatial resolution of the rainfall data. Generally, erosion processes at smaller sub‐catchment scales, particularly when the sediment generation equation had non linearity, were more sensitive to spatial rainfall variability. Introducing runon infiltration reduced the total runoff and sediment yield at all scales, and this process was also most sensitive to the rainfall resolution. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
Numerical simulation experiments of water erosion at the local scale (20 × 5 m) using a process‐based model [Plot Soil Erosion Model_2D (PSEM_2D)] were carried out to test the effects of various environmental factors (soil type, meteorological forcing and slope gradient) on the runoff and erosion response and to determine the dominant processes that control the sediment yield at various slope lengths. The selected environmental factors corresponded to conditions for which the model had been fully tested beforehand. The use of a Green and Ampt model for infiltration explained the dominant role played by rainfall intensity in the runoff response. Sediment yield at the outlet of the simulated area was correlated positively with rainfall intensity and slope gradient, but was less sensitive to soil type. The relationship between sediment yield (soil loss per unit area) and slope length was greatly influenced by all environmental factors, but there was a general tendency towards higher sediment yield when the slope was longer. Contribution of rainfall erosion to gross erosion was dominant for all surfaces with slope lengths ranging from 4 to 20 m. The highest sediment yields corresponded to cases where flow erosion was activated. An increase in slope gradient resulted in flow detachment starting upstream. Sediment exported at the outlet of the simulated area came predominantly from the zone located near the outlet. The microrelief helped in the development of a rill network that controlled both the ratio between rainfall and flow erosion and the relationship between sediment yield and slope length. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
The Kiryu Experimental Catchment (KEW) is a small (5.99 ha) forest catchment located in Shiga Prefecture, central Japan (34°58′ N, 136°00′ E; www.bluemoon.kais.kyoto-u.ac.jp/kiryu/contents.html ). Around this area, forest devastation occurred from ca. 1250 to ca. 150 years ago because of overuse of forest and timbers. Then, hillside forestation was carried out for more than 100 years to prevent soil erosion and support the timber industry, and consequently, most of this area is now covered with plantation forests mainly by Chamaecyparis obtusa Sieb. et Zucc. (Japanese cypress) planted around 1960's. This plantation forest is not actively managed. The KEW is one of the leading experimental forests with long-term monitoring data in Japan. Research in the KEW began in 1967 to elucidate the hydrological and biogeochemical processes in the forested catchment in relation to climate, geology, soil, and vegetation growth. Since then, the long-term hydrological data of precipitation, runoff and sediment transport are continuously monitoring. In this study, we provide the data and preliminarily discuss the rainfall–runoff patterns and sediment transport through 50 years in the KEW. The annual precipitation and the maximum daily rainfall have been greater than the average over the last decade. In response to the rainfall patterns, the ratio of annual direct runoff to precipitation was also larger in the last decade. The sediment transport in this decade was consequently larger than the preceding decades. Our data presented here suggest that a close relationship exists between the climate condition, rainfall–runoff response, sediment dynamics, as well as a slowly progressing change of forest condition.  相似文献   

14.
In this study we analyzed runoff and sediment yield from land under various traditional and current land uses in Mediterranean mountain areas, using long‐term data from an experimental station in the Aísa Valley, Central Spanish Pyrenees. Monitoring at this station has provided 20 years of data that can help explain the hydrological and geomorphological changes that have been observed at larger spatial scales, and also the changes that have occurred to some of the most characteristic landscapes of the Mediterranean middle mountains. In spite of the problems associated with the use of small experimental plots, the results obtained are consistent with other studies in the Mediterranean region, and confirm the strong influence of land use changes on runoff generation and sediment yield. The results indicate that: (i) cereal cultivation on steep slopes (both alternating cereal cultivation and fallow on sloping fields and shifting agriculture on the steepest slopes) represents a major problem for soil conservation. This explains the occurrence throughout the Mediterranean mountains of many degraded hillslopes, which show evidence of sheet wash erosion, rilling, gullying and shallow landsliding; (ii) farmland abandonment has led to a marked reduction in runoff and sediment yield as a consequence of rapid plant recolonization, particularly by dense shrubs; (iii) the natural transformation of abandoned fields into grazing meadows has reduced runoff and sediment yield. Land use trends in the Mediterranean mountains are mainly characterized by generalized farmland abandonment and a decrease in livestock pressure. From a hydrological and geomorphological point of view the main consequences have been a reduction in overland flow from the hillslopes, and a reduction in sediment sources, with differences up to one order of magnitude in sediment yield from dense shrub cover and grazing meadow areas compared with areas under shifting agriculture. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
The relationship between the synoptic weather types (WTs), runoff and sediments in a Mediterranean mountain landscape was analysed. The study was performed between 2005 and 2012 using one of the most complete and extensive daily databases of rainfall, runoff and sediment recorded in the Spanish Pyrenees, coupled with WTs defined from the National Meteorological Center/National Center for Atmospheric Research (NMC/NCAR) 40‐Year Reanalysis Project ? ? Correction added on 18 December 2013, after online publication: EMULATE project was replaced with NMC/NCAR 40‐Year Reanalysis Project.
. The results show that the three wettest WTs accounted for 30% of rainy days and 46% of rainfall, but comprised only 13% of total daily records. To obtain a much more robust association between WTs and rainfall an analysis was carried out using a longer rainfall record (1989–2011). The analyses confirmed that the results obtained from the Araguás catchment are representative of a longer time span. The cyclonic, north‐westerly and westerly WTs play an important role in runoff generation, coinciding with the wettest WTs. Extreme floods are commonly associated also with south‐westerly and westerly airflows, whereas less flooding was generated under cyclonic circulations. Sediment transport was concentrated in 2.9% of total time mainly related to westerly WTs. Seasonal differences exist in WT frequency. In winter and spring north‐west and West are the most prominent WTs related to rainfall, water and sediment yield, although in spring cyclonic frequency was higher. During autumn north‐west and south‐west were the most frequent, but sediment yield was produced nearby under south‐west flow. In summer the WTs that produce sediment are north and west. A magnitude–frequency analysis shows the different behaviour of WTs according to their efficiency in producing runoff and sediment. A study with different monitored areas around the Iberian Peninsula and the Mediterranean basin would be very valuable in providing information for hydrological and sediment behaviour under the current conditions of global climate change. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
《水文科学杂志》2013,58(3):629-639
Abstract

The lower Araguás catchment, central Pyrenees, is characterized by extensive badlands (25% of the total catchment), whereas the upper catchment is covered by dense plantation forest. The catchment (45 ha) has been monitored since October 2005 with the aim of studying its hydrological response. The 44 floods recorded over this period were analysed to identify the factors that control the rainfall—runoff relationship. The first relevant feature of the catchment was its responsiveness. The catchment reacted to all rainfall events, but the irregular nature of the hydrological response was the most characteristic feature of the response. No single variable could explain the response of the Araguás catchment. It was found that stormflow coefficients mainly depend on the combination of rainfall volume and antecedent baseflow. A significant correlation was observed between maximum rainfall intensity and peak flow values. The shapes of the different hydrographs are very similar, regardless of the peak flow magnitude; they show a short time lag, relatively narrow peak flow, and steep recession limb. This indicates a large contribution by overland flow, resulting mainly from the generation of infiltration excess runoff in badland areas.  相似文献   

17.
Investigations of the hydrological processes operating in a small experimental catchment representative of the dehesa ecosystem were carried out. The dehesa constitutes a system of agro-silvo-pastoral landuse, which is characterized by a Mediterranean, semi-arid climate. The study includes an analysis of the relationships between rainfall, soil water content and discharge, as well as the establishment of the annual water budget. The results demonstrate a complex hydrological response. The relationships between the factors involved and the operating processes are difficult to explain because of the decisive role played by the valley bottoms. These areas typically possess a sediment fill, and contrast with the shallow soils developed on the hillslopes. Genesis and quantity of runoff (Hortonian or saturation) measured at the outlet depend on the antecedent moisture conditions of the valley bottoms because of their water-retention capacity. Annual runoff coefficients are similar to those reported from other semi-arid areas. The analysis of the annual water budget shows that rainfall is positively related with both actual evapotranspiration and discharge.  相似文献   

18.
Much attention has been given to the surface controls on the generation and transmission of runoff in semi‐arid areas. However, the surface controls form only one part of the system; hence, it is important to consider the effect that the characteristics of the storm event have on the generation of runoff and the transmission of flow across the slope. The impact of storm characteristics has been investigated using the Connectivity of Runoff Model (CRUM). This is a distributed, dynamic hydrology model that considers the hydrological processes relevant to semi‐arid environments at the temporal scale of a single storm event. The key storm characteristics that have been investigated are the storm duration, rainfall intensity, rainfall variability and temporal structure. This has been achieved through the use of a series of defined storm hydrographs and stochastic rainfall. Results show that the temporal fragmentation of high‐intensity rainfall is important for determining the travel distances of overland flow and, hence, the amount of runoff that leaves the slope as discharge. If the high‐intensity rainfall is fragmented, then the runoff infiltrates a short distance downslope. Longer periods of high‐intensity rainfall allow the runoff to travel further and, hence, become discharge. Therefore, storms with similar amounts of high‐intensity rainfall can produce very different amounts of discharge depending on the storm characteristics. The response of the hydrological system to changes in the rainfall characteristics can be explained using a four‐stage model of the runoff generation process. These stages are: (1) all water infiltrating, (2) the surface depression store filling or emptying without runoff occurring, (3) the generation and transmission of runoff and (4) the transmission of runoff without new runoff being generated. The storm event will move the system between the four stages and the nature of the rainfall required to move between the stages is determined by the surface characteristics. This research shows the importance of the variable‐intensity rainfall when modelling semi‐arid runoff generation. The amount of discharge may be greater or less than the amount that would have been produced if constant rainfall intensity is used in the model. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

19.
Evaluating the benefits of sediment and runoff reduction in different vegetation types is essential for studying the mechanisms of soil and water conservation on the Loess Plateau.The experiment was conducted in shrub-grass plots with nine levels of mixed vegetation coverage from 0%to 70%,three slopes(10,15,and 20)and two rainfall intensities(1.0 and 2.5 mm/min).The results showed that the vegetation coverage and slope gradient significantly affect runoff and sediment yield.Shrub-grass vegetation coverage had a significant effect on the runoff start-time,runoff flow velocity,runoff rate,and soil erosion rate on hillslopes.Mixed vegetation coverage could effectively delay the runoff starttime and decrease the runoff flow velocity.However,the effects of the slope gradient on runoff and sediment yield are opposite to those of vegetation coverage.Shrub-grass vegetation coverage could effectively increase runoff and sediment yield reduction benefits,while their benefits were affected by the rainfall intensity.At the 1.0 mm/min rainfall intensity,the reduction in the sediment production rate was greater than that under the 2.5 mm/min intensity.However,when the shrub-grass vegetation coverage exceeded 42%,the runoff reduction benefit was more obvious at higher rainfall intensities.The cumulative sediment yield increased with increasing cumulative runoff,and the rate of increase in the cumulative runoff was greater than that of the cumulative sediment yield with increasing of shrub-grass vegetation coverage.Moreover,there was a power function relationship between cumulative sediment yield and cumulative runoff yield(P<0.05).Our paper is expected to provide a good reference on the ecological environment and vegetation construction on the Loess Plateau.  相似文献   

20.
An adequately tested soil and water assessment tool (SWAT) model was applied to the runoff and sediment yield of a small agricultural watershed in eastern India using generated rainfall. The capability of the model for generating rainfall was evaluated for a period of 18 years (1981–1998). The watershed and subwatershed boundaries, drainage networks, slope, soil series and texture maps were generated using a geographical information system (GIS). A supervised classification method was used for land‐use/cover classification from satellite imageries. Model simulated monthly rainfall for the period of 18 years was compared with observations. Simulated monthly rainfall, runoff and sediment yield values for the monsoon season of 8 years (1991–1998) were also compared with their observed values. In general monthly average rainfall predicted by the model was in close agreement with the observed monthly average values. Also, simulated monthly average values of surface runoff and sediment yield using generated rainfall compared well with observed values during the monsoon season of the years 1991–1998. Results of this study revealed that the SWAT model can generate monthly average rainfall satisfactorily and thereby can produce monthly average values of surface runoff and sediment yield close to the observed values. Therefore, it can be concluded that the SWAT model could be used for developing a multiple year management plan for the critical erosion prone areas of a small watershed. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号