首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Frequent heavy rainfalls during the East Asian summer monsoon drastically increase water flow and chemical loadings to surface waters. A solid understanding of hydroclimatic controls on watershed biogeochemical processes is crucial for water quality control during the monsoon period. We investigated spatio‐temporal variations in the concentrations and spectroscopic properties of dissolved organic matter (DOM) and the concentrations of trace metals in Hwangryong River, Korea, during a summer period from the relatively dry month of June through the following months with heavy rainfall. DOM and its spectroscopic properties differed spatially along the river, and also depended on storm and flow characteristics around each sampling time. At a headwater stream draining a forested watershed, the concentrations (measured as dissolved organic carbon (DOC)), aromaticity (measured as specific UV absorbance at 254 nm), and fulvic acid‐ and protein‐like fluorescence of DOM were higher in stormflow than in baseflow waters. DOC concentrations and fluorescence intensities increased along the downstream rural and urban sites, in which DOC and fluorescence were not higher in stormflow waters, except for the ‘first flush’ at the urban site. The response of DOM in reservoir waters to monsoon rainfalls differed from that of stream and river waters, as illustrated by storm‐induced increases in DOM aromaticity and fulvic‐like fluorescence, and no significant changes in protein‐like fluorescence. The results suggest that surface water DOM and its spectroscopic properties differentially respond to changes in hydroclimatic conditions, depending on watershed characteristics and the influence of anthropogenic organic matter loadings. DOC concentrations and intensities of spectroscopic parameters were positively correlated with some of the measured trace metals (As, Co, and Fe). Further research will be needed to obtain a better understanding of climate effects on the interaction between DOM and trace metals. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

2.
Continuous monitoring of dissolved organic matter (DOM) character and concentration at hourly resolution is rare, despite the importance of analysing organic matter variability at high‐temporal resolution to evaluate river carbon budgeting, river water health by detecting episodic pollution and to determine short‐term variations in chemical and ecological function. The authors report a 2‐week experiment performed on DOM sampled from Bournbrook, Birmingham, UK, an urban river for which spectrophotometric (fluorescence, absorbance), physiochemical (dissolved organic carbon [DOC], electrical conductivity, pH) and isotopic (D/H) parameters have been measured at hourly frequency. Our results show that the river had sub‐daily variations in both organic matter concentration and characteristics. In particular, after relatively high‐magnitude precipitation events, organic carbon concentration increased, with an associated increase in intensity of both humic‐like and tryptophan‐like fluorescence. D/H isotopic ratio demonstrates different hydrological responses to different rainfall events, and organic matter character reflects this difference. Events with precipitation < 2 mm typically yielded isotopically heavy water with relatively hydrophilic DOM and relatively low specific absorbance. Events with precipitation > 2 mm had isotopically lighter water with higher specific absorbance and a decrease in the proportion of microbially derived to humic‐like fluorescence. In our heavily urbanized catchment, we interpret these signals as one where riverine DOM is dominated by storm sewer‐derived ‘old’ organic matter at low‐rainfall amounts and a mixed signal at high‐precipitation amounts where ‘event’ surface runoff‐derived organic matter dominate during storm sewer and combined sewer overflow routed DOM. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
The fluorescent properties of dissolved organic matter (DOM) enable comparisons of humic‐like (H‐L) and fulvic‐like (F‐L) fluorescence intensities with dissolved organic carbon (DOC) in aquatic systems. The fluorescence‐DOC relationship differed in gradient, i.e. the fluorescence per gram of carbon, and in the strength of the correlation coefficient. We compare the fluorescence intensity of the F‐L and H‐L fractions and DOC of freshwater DOM in north Shropshire, England, featuring a river, wetland, spring, pond and sewage DOM sources. Correlations between fluorescence and DOC varied between sample sites. Wetland water samples for the F‐L peak gave the best correlation, r = 0·756; the lowest correlation was from final treated sewage effluent, r = 0·167. The relationship between fluorescence and DOC of commercially available International Humic Substances Society standards were also examined and they generally showed a lower fluorescence per gram of carbon for the F‐L peak than the natural samples, whereas peat wetland DOM gave a greater fluorescence per gram of carbon than river DOM. Here, we propose the strength of the fluorescence–DOC correlation to be a useful tool when discriminating sources of DOM in fresh water. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
Most terrestrial allochthonous organic matter enters river networks through headwater streams during high flow events. In headwaters, allochthonous inputs are substantial and variable, but become less important in streams and rivers with larger watersheds. As allochthonous dissolved organic matter (DOM) moves downstream, the proportion of less aromatic organic matter with autochthonous characteristics increases. How environmental factors converge to control this transformation of DOM at a continental scale is less certain. We hypothesized that the amount of time water has spent travelling through surface waters of inland systems (streams, rivers, lakes, and reservoirs) is correlated to DOM composition. To test this hypothesis, we used established river network scaling relationships to predict relative river network flow-weighted travel time (FWTT) of water for 60 stream and river sites across the contiguous United States (3090 discrete samples over 10 water years). We estimated lentic contribution to travel times with upstream in-network lake and reservoir volume. DOM composition was quantified using ultraviolet and visible absorption and fluorescence spectroscopy. A combination of FWTT and lake and reservoir volume was the best overall predictor of DOM composition among models that also incorporated discharge, specific discharge, watershed area, and upstream channel length. DOM spectral slope ratio (R2 = 0.77) and Freshness Index (R2 = 0.78) increased and specific ultraviolet absorbance at 254 nm (R2 = 0.68) and Humification Index (R2 = 0.44) decreased across sites as a function of FWTT and upstream lake volume. This indicates autochthonous-like DOM becomes continually more dominant in waters with greater FWTT. We assert that river FWTT can be used as a metric of the continuum of DOM composition from headwaters to rivers. The nature of the changes to DOM composition detected suggest this continuum is driven by a combination of photo-oxidation, biological processes, hydrologically varying terrestrial subsidies, and aged groundwater inputs.  相似文献   

5.
6.
郑达燕  刘睿  张柳柳  郑财贵  张静 《湖泊科学》2023,35(4):1343-1358
三峡库区拥有目前世界上规模最大的水利枢纽工程,自投入使用以来,为长江流域提供了丰富的水源及电力,促进了经济的发展,但同时也对该区域的生态环境造成了严重的冲击。澎溪河流域作为三峡库区长江流域干流的典型回水区和消落带,是众多学者研究三峡库区生态环境变化的重点区域。为探究不同时空尺度下土地利用对河流溶解性有机质(DOM)的影响,以澎溪河流域为研究对象,基于紫外-可见光谱分析和三维荧光光谱矩阵-平行因子分析,结合河段缓冲区、河岸带缓冲区及子流域3种空间尺度的二级土地利用类型,解析了旱雨季水体DOM的组成及来源特征,并采用相关分析和冗余分析方法探讨了3种空间尺度下土地利用方式对旱雨季水体DOM的多时空尺度影响。结果表明:(1)旱季水体DOM荧光组分以陆源类腐殖质所占比例更大,雨季水体DOM荧光组分以富里酸贡献为主。(2)流域内陆源输入和内源产生对水体DOM丰度均有贡献,雨季较旱季水体DOM的陆源性更强,自生源特征较弱。(3)土地利用在雨季和子流域尺度下对水体DOM的影响更显著,其中,雨季子流域尺度下,土地利用指数对水体DOM参数的解释率为90.35%。(4)不同土地利用方式对水体DOM产生的影响...  相似文献   

7.
8.
The influence of dissolved organic matter (DOM) on mineral extraction from salt lake brines depend on DOM quality. This study contributes to our knowledge of DOM’s metal binding behavior in hypersaline environments by characterization of DOM from lakes in the Qaidam Basin, i.e., Qarhan Lake (LQDOM), Da Qaidam (DQDOM) and West Ginair Salt Lake (WGDOM). The DOM was fractionated based on solid phase extraction (SPE) and ultrafiltration (UF), and the spectral and metal binding behavior of these fractions were studied by absorption spectroscopy, Pb(II) titration techniques and fluorescence parallel factor (PARAFAC) analysis. The results showed that bulk DOM generally contained more dissolved organic carbon (DOC), lower specific UV absorbance (SUVA254), higher fluorescence and biological indices, comparable humification index, and lower condition stability constants compared to the other nature waters. Compared with UF, SPE-derived DOM exhibited higher DOC recovery and aromaticity and lower carbohydrate yield. It appeared that the SPE procedure used affects the spectral composition of bulk DOM to a larger extent than UF. Source and molecular weight (MW)-dependent differences in abundance and quality of brine DOM was indicated by higher SUVA254 in high MW DOM, for LQDOM and DQDOM, and humic-like fluorophores were mainly in high MW-DOM in each lake. Moreover, the high MW humic-like component exhibited higher metal binding potential than the bulk and low MW counterparts for LQDOM and DQDOM, while the inverse was observed for WGDOM. This study revealed the effects of isolation techniques on interpretation of DOM characteristics, and meanwhile highlighted the importance of origin- and MW-dependent DOM in manipulating the behavior, fate, and bioavailability of heavy metals in salt lake brine.  相似文献   

9.
Dissolved organic matter (DOM) concentration and composition in riverine and stream systems are known to vary with hydrological and productivity cycles over the annual and interannual time scales. Rivers are commonly perceived as homogeneous with respect to DOM concentration and composition, particularly under steady flow conditions over short time periods. However, few studies have evaluated the impact of short term variability (<1 day) on DOM dynamics. This study examined whether diurnal processes measurably altered DOM concentration and composition in the hypereutrophic San Joaquin River (California) during a relatively quiescent period. We evaluated the efficacy of using optical in situ measurements to reveal changes in DOM which may not be evident from bulk dissolved organic carbon (DOC) measurement alone. The in situ optical measurements described in this study clearly showed for the first time diurnal variations in DOM measurements, which have previously been related to both composition and concentration, even though diurnal changes were not well reflected in bulk DOC concentrations. An apparent asynchronous trend of DOM absorbance and chlorophyll‐a in comparison to chromophoric dissolved organic matter (CDOM) fluorescence and spectral slope S290–350 suggests that no one specific CDOM spectrophotometric measurement explains absolutely DOM diurnal variation in this system; the measurement of multiple optical parameters is therefore recommended. The observed diurnal changes in DOM composition, measured by in situ optical instrumentation likely reflect both photochemical and biologically‐mediated processes. The results of this study highlight that short‐term variability in DOM composition may complicate trends for studies aiming to distinguish different DOM sources in riverine systems and emphasizes the importance of sampling specific study sites to be compared at the same time of day. The utilization of in situ optical technology allows short‐term variability in DOM dynamics to be monitored and serves to increase our understanding of its processing and fundamental role in the aquatic environment. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
The bioavailability of predegraded dissolved organic matter (DOM) from a humic-rich, boreal river to estuarine bacteria from the Baltic Sea was studied in 39-day bioassays. The river waters had been exposed to various degrees of bacterial degradation by storing them between 0 and 465 days in dark prior to the bioassay. The resulting predegraded DOM was inoculated with estuarine bacteria and the subsequent changes in DOM quantity and quality measured. During the incubations, dissolved organic carbon (DOC) and oxygen concentrations decreased, indicating heterotrophic activity. Coloured DOM was degraded less than DOC, indicating a selective utilization of DOM, and humic-like fluorescence components increased during the incubations. The amount of DOC degraded was not affected by the length of DOM predegradation. The percentage of bioavailable DOC (%BDOC) was higher in experiment units with added inorganic nitrogen and phosphorus than without addition (on average 13.5 % and 9.0, respectively), but had no effect on the degradation of fresh, non-predegraded, DOC (%BDOC 12.0 %). Bacterial growth efficiency (BGE) was highest (65 ± 2 %) in the units with fresh DOM, and lowest in units with predegraded DOM and no added inorganic nutrients (11 ± 4 %). The addition of inorganic nutrients increased the BGE of predegraded DOM units by an average of 28 ± 4 %. There was no significant effect on BGE by length of predegradation after the initial drop (<3 months). This study suggests that both the length of predegradation and the inorganic nutrient status in the receiving estuary has consequences to carbon cycling and will determine the amount of terrestrial-derived DOC being ultimately assimilated into marine food webs.  相似文献   

11.
江苏省西部湖泊溶解性有机物光谱学特征和来源解析   总被引:9,自引:2,他引:9  
利用光谱学手段研究江苏省西部湖泊表层水体中溶解性有机物(DOM)组成与结构,并对其来源进行分析.单位浓度可溶性有机碳在254和280 nm波长下的吸光度值(SUVA)测定结果表明,各湖泊芳香性程度及分子量大小依次为邵伯湖>天岗湖>白马湖>石臼湖>洪泽湖>固城湖>骆马湖>高邮湖>宝应湖.特定波长下吸光度的比值(E2/E3、E3/E4)显示邵伯湖和白马湖中的DOM结构复杂、分子量大、苯环多,以腐殖酸为主要成分;其它湖泊的DOM腐殖化程度较低,以富里酸为主.指数函数曲线斜率(S275~295nm)拟合结果也同样表明邵伯湖DOM分子量最大,而宝应湖最低.各湖泊荧光指数和生物指数分别处于1.13~1.30和0.47~0.67范围内,体现出DOM强烈的陆源性.四个主要荧光峰的相对荧光强度之间均存在良好的相关性,表明这些湖泊的类腐殖酸及类蛋白物质可能有着相同的来源.结合这些湖泊的特征及流域经济发展水平,可以初步推断经入湖河流携带的由农业及其下游产业产生的有机质是江苏西部湖泊中DOM的主要来源.  相似文献   

12.
Many upland catchments in the UK have undergone afforestation; their characteristic waterlogged soils require extensive pre‐plantation ground drainage to allow tree establishment. In peatland areas this can result in very highly coloured runoff and enhanced dissolved organic matter (DOM) export in rivers of naturally high concentrations. In 1966, the Coalburn Experimental Catchment, northern England, was established to investigate the impact of afforestation on an upland peat catchment. Here we report the variations in DOM spectrophotometric properties of streamflow in the catchment at canopy closure, especially with respect to potential carbon sources within the artificial drainage ditches. Drainage ditches are characterized by water that has higher absorption coefficients and which is more highly coloured than in the catchment tributaries. Ditched, afforested areas produce more highly‐coloured runoff waters that are more fluorescent and absorbent normalized to carbon concentration compared to ditches in open moorland. Ditches that had been experimentally re‐excavated have organic matter of different spectrophotometric character, with higher dissolved organic carbon concentration and less aromatic or lower molecular weight material. It is hypothesized that this is due to the exposure of bare peat faces within and adjacent to the ditches that are more susceptible to drying compared to vegetated areas. The large extent of this drainage network acts as both a rapid transport network increasing hydrological connectivity and a pool for the storage of DOM, which is of different spectrophotometric character under low flow conditions, depending on management conditions. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
14.
The characteristics of chromophoric dissolved organic matter (CDOM) were studied in Hudson Bay and Hudson Strait in the Canadian Arctic. Hudson Bay receives a disproportionately large influx of river runoff. With high dissolved organic matter (DOM) concentrations in Arctic rivers the influence of CDOM on coastal and ocean systems can be significant, yet the distribution, characteristics and potential consequences of CDOM in these waters remain unknown. We collected 470 discrete water samples in offshore, coastal, estuarine and river waters in the region during September and October 2005. Mixing of CDOM appeared conservative with salinity, although regional differences exist due to variable DOM composition in the rivers discharging to the Bay and the presence of sea-ice melt, which has low CDOM concentrations and low salinity. There were higher concentrations of CDOM in Hudson Bay, especially in coastal waters with salinities <28<28, due to river runoff. Using CDOM composition of water masses as a tracer for the freshwater components revealed that river runoff is largely constrained to nearshore waters in Hudson Bay, while sea-ice melt is distributed more evenly in the Bay. Strong inshore–offshore gradients in the bio-optical properties of the surface waters in the Hudson Bay cause large variation in penetration of ultraviolet radiation and the photic depth within the bay, potentially controlling the vertical distribution of biomass and occurrence of deep chlorophyll maxima which are prevalent only in the more transparent offshore waters of the bay. The CDOM distribution and associated photoprocesses may influence the thermodynamics and stratification of the coastal waters, through trapping of radiant heating within the top few meters of the water column. Photoproduction of biologically labile substrates from CDOM could potentially stimulate the growth of biomass in Hudson Bay coastal waters. Further studies are needed to investigate the importance of terrestrial DOM in the Hudson Bay region, and the impact of hydroelectric development and climate change on these processes.  相似文献   

15.
Fluorescence and UV‐VIS techniques were employed for the investigation of natural organic matter (NOM) of a tropical lake. The relationships of absorbance/dissolved organic carbon (A/DOC), fluorescence intensity/dissolved organic carbon (FI/DOC), fluorescence ratio (FR), and peak wavelength with the highest intensity (PW) were used to distinguish the pedogenic or aquagenic origin of NOM. The values of FR, PW and A285/DOC of high waters (HW) or flooded period samples and of low waters (LW) period samples of the dry season, except for September 2002, confirm the predominance of pedogenic material. The spectra of water were similar to the standard fulvic acid (FA), and the spectra of FA from the lake were similar to the nearby soils, indicative of pedogenic predominance. The results confirm that the dissolved NOM of Patos Lagoon – MS (Brazil), in all sampling periods, predominantly consisted of humic substances (FA) of pedogenic origin.  相似文献   

16.
Annual export of 11 major and trace solutes for the Yukon River is found to be accurately determined based on summing 42 tributary contributions. These findings provide the first published estimates of tributary specific distribution of solutes within the Yukon River basin. First, we show that annual discharge of the Yukon River can be computed by summing calculated annual discharges from 42 tributaries. Annual discharge for the tributaries is calculated from the basin area and average annual precipitation over that area using a previously published regional regression equation. Based on tributary inputs, we estimate an average annual discharge for the Yukon River of 210 km3 year–1. This value is within 1% of the average measured annual discharge at the U.S. Geological Survey gaging station near the river terminus at Pilot Station, AK, for water years 2001 through 2005. Next, annual loads for 11 solutes are determined by combining annual discharge with point measurements of solute concentrations in tributary river water. Based on the sum of solutes in tributary water, we find that the Yukon River discharges approximately 33 million metric tons of dissolved solids each year at Pilot Station. Discharged solutes are dominated by cations calcium and magnesium (5.65 × 109 and 1.42 × 109 g year–1) and anions bicarbonate and sulphate (17.3 × 109 and 5.40 × 109 g year–1). These loads compare well with loads calculated independently at the three continuous gaging stations along the Yukon River. These findings show how annual solute yields vary throughout a major subarctic river basin and that accurate estimates of total river export can be determined from calculated tributary contributions. Copyright © 2011. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

17.
Organic matter can be considered one of the most important indicators of the extent of soil desertification processes. Among the causes of desertification, salinization induced by different factors is raising the greatest concern in the Mediterranean area. In the present research, hydrophilic (HI) and hydrophobic (HO) fractions of dissolved organic matter (DOM) extracted from soils at different degrees of salinization have been investigated by means of spectroscopic techniques such as tridimensional fluorescence spectroscopy in the mode of emission excitation matrix (EEM) and Fourier transform infrared spectroscopy (FT‐IR). The FT‐IR spectra were distinctive in differentiating HI from HO fractions and each DOM fraction as a function of soil salinity. The EEM spectra of HO fractions exhibited a shift toward longer emission wavelengths and higher fluorescence intensity (FI) values as compared to that of the HI fractions. These results could be ascribed to the different molecular complexities of HI and HO fractions. Further, a marked quenching effect was observed in the FI of both the DOM fractions with increasing soil salinity, which allowed to obtain immediate information on the soil salinity degree by comparing the fluorescence intensity.  相似文献   

18.
19.
The molecular characteristics of dissolved organic matter (DOM) reflect both its source material and its biogeochemical history. In glacial systems, DOM characteristics might be expected to change over the course of a melt season as changes in the glacier drainage system cause the mobilization of DOM from different OM pools. To test this hypothesis we used Principal Components Analysis (PCA) of synchronous fluorescence spectra to detect and describe changes in the DOM in meltwater from a glacier system in the Coast Mountains of northern British Columbia, Canada. For most of the melt season, the dominant component of subglacially routed meltwater DOM is characterized by a tyrosine‐like fluorophore. This DOM component is most likely derived from supraglacial snowmelt. During periods of high discharge, a second component of DOM is present which is humic in character and similar to DOM sampled from a nearby non‐glacial stream. This DOM component is inferred to be derived from a moss‐covered soil environment that has been glacially overrun. It is probably entrained into glacial melt waters when the supraglacial meltwater flux exceeds the capacity of the principal subglacial drainage channels and water floods areas of the glacier bed that are normally isolated from the subglacial drainage system. Another source of DOM also appears to be mobilized during periods of high air temperatures. It is characterized by both humic and proteinaceous fluorophores and may be derived from the drainage of supraglacial cryoconite holes. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
Strontium (Sr) concentrations and isotopic ratios have been measured in a series of water and rock samples from most of the major tributaries of the Lake Qinghai basin on the north‐eastern Tibetan Plateau. Dissolved Sr and 87Sr/86Sr show ranges of 488–12 240 nmol/l and 0·710497–0·716977, respectively. These data, together with measurements of major cations and anions in rivers and their tributaries and various lithologies of the catchment, were used to determine the contributions of Sr and its isotopic expense to rivers and lakes. Our results demonstrate that the chemical components and 87Sr/86Sr ratios of the alkaline waters are derived from mixing of carbonate and silicate sources, with the former contributing 72 ± 18% dissolved Sr to rivers. The difference in tributary compositions stems from the lithology of different river systems and low weathering intensity under a semi‐arid condition. Variation in 87Sr/86Sr ratios places constraint on the Sr‐isotopic compositions of the main tributaries surrounding Lake Qinghai. The water chemistry of the Buha River, the largest river within the catchment underlain by the late Paleozoic marine limestone and sandstones, dominates Sr isotopic composition of the lake water, being buffered by the waters from the other rivers and probably by groundwater. However, the characteristic chemical composition of the lake itself differs remarkably from the rivers, which can be attributed to precipitation of authigenic carbonates (low‐magnesium calcite, aragonite, and dolomite), though this does not impact the Sr isotope signature, which may remain a faithful indicator in paleo‐records. Regarding the potential role of groundwater input within the Lake Qinghai systems in the water budget and water chemistry, we have also determined the Sr concentration and 87Sr/S6Sr ratio of groundwater from diverse environments. This has allowed us to further constrain the Sr isotope systematic of this source. A steady‐state calculation gives an estimate for the groundwater flux of 0·19 ± 0·03 × 108 m3/yr, accounting for about 8% of contemporary lake Sr budget. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号