首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An audio-magnetotelluric investigation in Terceira Island (Azores)   总被引:2,自引:0,他引:2  
Ten audio-magnetotelluric soundings have been carried out along a profile crossing the Serra do Cume caldera in the eastern part of the Terceira Island (Azores). The main objectives of this investigation were to detect geoelectrical features related with tectonic structures and to characterize regional hydrological and hydrothermal aspects mainly those related to geothermal fluid dynamics.Three-dimensional numerical investigation showed that the data acquired at periods shorter than 1 s are not significantly affected by ocean effect. The data was analysed using the Smith's decomposition method in order to investigate possible distortions caused by superficial structures and to estimate a global regional strike. The results suggest that in general the soundings were not distorted. A regional N55°W strike was chosen for the two-dimensional data inversion.The low-resistivity zones (10–30 ohm-m) displayed in the central part of the 2-D geoelectrical model have been interpreted as caused by hydrothermal circulation. The low-resistivity anomalies at the ends of the profile might be attributed to alteration zones with interaction of seawater intrusion. High-resistivity (> 300 ohm-m) values have been related with less permeable zones in the SW of Cinco Picos and Guilherme Moniz caldera walls.  相似文献   

2.
Hydrothermal alteration zones have been investigated by X-ray diffraction, mineralogical–petrographical techniques, and geochemical analysis. Examination of cores and cuttings from two drill sites, obtained from a depth of about 814–1020 m, show that the hydrothermal minerals occuring in the rock include: K-feldspar, albite, chlorite, alunite, kaolinite, smectite, illite, and opaque minerals.In the studied area, silicified, smectite, illite, alunite, and opal zones have been recognized. These alteration mineral assemblages indicate that there are geothermal fluids, which have temperatures of 150–220°C in the reservoir.The distribution of the hydrothermal minerals shows changes in the chemical composition of the hydrothermal fluid, which are probably due not only to interaction with host rock, but also to dilution of the Na–K–Cl-rich hydrothermal fluid of the deep reservoir by cold sea water at shallow levels. Geochemical analyses of the solid and liquid phases indicate that the hydrothermal fluids of the Tuzla geothermal system are in equilibrium with alteration products.The tectonic structure of the studied area is caused by NW–SE and NE–SW directional forces. The volcanic rocks where hydrothermal zones are observed in the studied area are of Lower–Middle Miocene age comprise latite, andesite, dacite, rhyolite-type lavas, tuff, and ignimbrites.  相似文献   

3.
Abstract The Solund‐Stavfjord ophiolite complex (SSOC) in western Norway represents a remnant of the Late Ordovician oceanic lithosphere, which developed in an intermediate‐ to fast‐spreading Caledonian back‐arc basin. The internal architecture and magmatic features of its crustal component suggest that the SSOC has a complex, multistage sea floor spreading history in a supra‐subduction zone environment. The youngest crustal section associated with the propagating rift tectonics consists of a relatively complete ophiolite pseudostratigraphy, including basaltic volcanic rocks, a transition zone between the sheeted dyke complex and the extrusive sequence, sheeted dykes, and high‐level isotropic gabbros. Large‐scale variations in major and trace element distributions indicate significant remobilization far beyond that which would result from magmatic processes, as a result of the hydrothermal alteration of crustal rocks. Whereas K2O is strongly enriched in volcanic rocks of the extrusive sequence, Cu and Zn show the largest enrichment in the dyke complex near the dyke–volcanic transition zone or within this transition zone. The δ18O values of the whole‐rock samples show a general depletion structurally downwards in the ophiolite, with the largest and smallest variations observed in volcanic rocks and the transition zone, respectively. δ18O values of epidote–quartz mineral pairs indicate 260–290°C for volcanic rocks, 420°C for the transition zone, 280–345°C for the sheeted dyke complex and 290–475°C for the gabbros. The 87Sr/86Sr isotope ratios show the widest range and highest values in the extrusive rocks (0.70316–0.70495), and generally the lowest values and the narrowest range in the sheeted dyke complex (0.70338–0.70377). The minimum water/rock ratios calculated show the largest variations in volcanic rocks and gabbros (approximately 0–14), and generally the lowest values and range in the sheeted dyke complex (approximately 1–3). The δD values of epidote (?1 to ?12‰), together with the δ18O calculated for Ordovician seawater, are similar to those of present‐day seawater. Volcanic rocks experienced both cold and warm water circulation, resulting in the observed K2O‐enrichment and the largest scatter in the δ18O values. As a result of metal leaching in the hot reaction zone above a magma chamber, Zn is strongly depleted in the gabbros but enriched in the sheeted dyke complex because of precipitation from upwelling of discharged hydrothermal fluids. The present study demonstrates that the near intact effect of ocean floor hydrothermal activity is preserved in the upper part of the SSOC crust, despite the influence of regional lower greenschist facies metamorphism.  相似文献   

4.
Mapping and sampling with DSRV “Alvin” has established that sulfide blocks 0.5 m across, dredged from the axial valley of the Endeavour Segment at 47°57′N, are samples of unusually large sulfide structures. The steep-sided structures, up to 30 m in length, 20 m in height, and 10–15 m across, are localized by venting along normal faults at the base of the western axial valley wall, and are distributed for about 200 m along strike paralleling the 020 trend of the ridge crest. High-temperature fluids (350 to more than 400°C) pass through the massive sulfide structures and enter seawater through small, concentric “nozzle-like” features projecting from the top or the sides of the larger vent structures. Diffuse, low-temperature flow is pervasive in the vicinity of the active sulfide structures, exiting from basalt and sulfide surfaces alike. Evidence of recent volcanic activity is sparse.The two largest samples taken with the dredge would not have been recoverable using the submersible. These samples represent massive, complex portions of the sulfide structures which were not closely associated with rapid high-temperature fluid flow at the time of sampling; they contain textural evidence of sealed hydrothermal fluid exit channels. Mineralogy is dominated by Fe sulfides nnd amorphous silica. Pyrite, marcasite, wurtzite, chalcopyrite, and iss are the most common sulfide phases. Pyrrhotite, galena, and sphalerite are present in trace amounts. Barite, amorphous silica, and chalcedony are the only non-sulfide phases; anhydrite is not observed in any of the dredge samples, although it is common in the chimney-like samples recovered by “Alvin”.Specific mineralogical-textural zones within the dredge samples are anaoogous to individual layers in East Pacific Rise at 21°N and southern Juan de Fuca Ridge samples, with two exceptions: a coarse-grained, highly porous Fe sulfide-rich interior containing sulfidized tubeworm casts, and a 2–5 cm thick zone near the outer margin of the samples dominated by late stage amorphous silica. The porous interior may have formed by dendritic crystal growth from a slowly circulating fluid within a large enclosed chamber. The amorphous silica deposited from a seawater/hydrothermal fluid mixture percolating slowly through the walls of the enclosed chamber; conductive cooling of the fluid as it traversed the walls allowed amorphous silica to precipitate. These silica-rich zones are the densest, most durable portions of the structures and may be responsible for the lasting stability of the large sulfide features.Observations in these samples are consistent with two distinct phases of development. Phase 1 is analogous to chimney growth and construction at 21°N and ends when flow channels become sealed to rapid flow of through-going fluid. The flow is evidently redirected within the structure. Phase 2 includes dissolution of anhydrite and precipitation of amorphous silica during conductive cooling of sluggishly circulating hydrothermal fluid or seawater/hydrothermal fluid mixtures. Evolution of vent structures through phase 2 allows lateral and vertical growth of unusually large structures.  相似文献   

5.
A structural field study was made of 578 sheet intrusions (mostly dykes) and 153 (mostly normal) faults dissecting the Anaga and Teno massifs, where a complex volcanic succession of Tertiary age (the ‘Old Basaltic Series’) representing the shield-building stage of Tenerife (Canary Islands) crops out. Many of the intrusions, mostly sub-vertical mafic dykes, are emplaced by multiple magma injections, with cumulative thicknesses mostly less than 2 m. Dyke tips are exposed and preserved for 12% of the dykes. Three differently oriented sets of dykes exist in the Anaga massif (NNW–SSE, NNE–SSW, E–W), whereas there is only one main set in Teno, trending NNW–SSE. Dyke swarms and other structural features having similar orientations also exist in other Canary Islands. A minimum value of the horizontal component of extension induced by dykes is computed using a step of 5° of azimuth, accounting also for the dip of dykes. The cumulative crustal dilation is at least 300 m (4%) in Anaga and 270 m (6%) in Teno; the maximum extension peaks at N75° in Anaga and N60° in Teno, indicating a general prevailing extension in direction ENE–WSW. Most of the measured faults are normal and strike NNW–SSE. Computation of palaeostresses from inversion of fault-slip data sets suggests the existence of a polyphase brittle deformation due to an extensional stress field with the minimum compressive principal axes trending NE–SW and WNW–ESE.  相似文献   

6.
The mixing of seawater/hydrothermal fluid within the large seafloor hydrothermal sulfide deposits plays a key role in the formation processes of the sulfide deposits. Some issues attract considerable attentions in the study of seafloor hydrothermal system in recent years, such as the relationships among different types of vent fluids, the characteristics of chemical compositions and mineral assemblages of the hydrothermal deposits and their governing factors. Combined with the measured data of hydrothermal fluid in the TAG field, the thermodynamic model of mixing processes of the heated seawater at different temperatures and the hydrothermal fluid is calculated to understand the precipitation mechanism of anhydrite and the genetic relationships between the black and white smoker fluids within the TAG mound. The results indicate that the heating of seawater and the mixing of hydrothermal fluid/seawater are largely responsible for anhydrite precipitation and the temperature of the heated seawater is not higher than 150°C and the temperature of the end-member hydrothermal fluid is not lower than 400°C. Based on the simulated results, the evolving patterns of fluids within the TAG deposit are discussed. The mixed fluid of the end-member hydrothermal fluid and the seawater heated by wall rock undergoes conductive cooling during upflowing within the deposit and forms “White Smoker” eventually. In addition, the end-member hydrothermal fluid without mixed with seawater, but undergoing conductive cooling, vents out of the deposit and forms “Black Smoker”. Supported by China Ocean Mineral Resources Research and Development Association Program (Grant No. DY115-02-1-01) and National Basic Research Program of China (Grant No. G2000078503)  相似文献   

7.
Ocean Drilling Program (ODP) Hole 504B near the Costa Rica Rift is the deepest hole drilled in the ocean crust, penetrating a volcanic section, a transition zone and a sheeted dike complex. The distribution of Li and its isotopes through this 1.8-km section of oceanic crust reflects the varying conditions of seawater alteration with depth. The upper volcanic rocks, altered at low temperatures, are enriched in Li (5.6-27.3 ppm) and have heavier isotopic compositions (δ7Li=6.6-20.8‰) relative to fresh mid-ocean ridge basalt (MORB) due to uptake of seawater Li into alteration clays. The Li content and isotopic compositions of the deeper volcanic rocks are similar to MORB, reflecting restricted seawater circulation in this section. The transition zone is a region of mixing of seawater with upwelling hydrothermal fluids and sulfide mineralization. Li enrichment in this zone is accompanied by relatively light isotopic compositions (−0.8-2.1‰) which signify influence of basalt-derived Li during mineralization and alteration. Li decreases with depth to 0.6 ppm in the sheeted dike complex as a result of increasing hydrothermal extraction in the high-temperature reaction zone. Rocks in the dike complex have variable isotopic values that range from −1.7 to 7.9‰, depending on the extent of hydrothermal recrystallization and off-axis low-temperature alteration. Hydrothermally altered rocks are isotopically light because 6Li is preferentially retained in greenschist and amphibolite facies minerals. The δ7Li values of the highly altered rocks of the dike complex are complementary to those of high-temperature mid-ocean ridge vent fluids and compatible to equilibrium control by the alteration mineral assemblage. The inventory of Li in basement rocks permits a reevaluation of the role of oceanic crust in the budget of Li in the ocean. On balance, the upper 1.8 km of oceanic crusts remains a sink for oceanic Li. The observations at 504B and an estimated flux from the underlying 0.5 km of gabbro suggest that the global hydrothermal flux is at most 8×109 mol/yr, compatible with geophysical thermal models. This work defines the distribution of Li and its isotopes in the upper ocean crust and provides a basis to interpret the contribution of subducted lithosphere to arc magmas and cycling of crustal material in the deep mantle.  相似文献   

8.
Bimodal volcanism, normal faulting, rapid sedimentation, and hydrothermal circulation characterize the rifting of the Izu-Bonin arc at 31°N. Analysis of the zigzag pattern, in plan view, of the normal faults that bound Sumisu Rift indicates that the extension direction (080° ± 10°) is orthogonal to the regional trend of the volcanic front. Normal faults divide the rift into an inner rift on the arc side, which is the locus for maximum subsidence and sedimentation, and an outer rift further west. Transfer zones that link opposing master faults and/or rift flank uplifts further subdivide the rift into three segments along strike. Volcanism is concentrated along the ENE-trending transfer zone which separates the northern and central rift segments. The differential motion across the zone is accommodated by interdigitating north-trending normal faults rather than by ENE-trending oblique-slip faults. Volcanism in the outer rift has built 50–700 m high edifices without summit craters whereas in the inner rift it has formed two multi-vent en echelon ridges (the largest is 600 m high and 16 km long). The volcanism is dominantly basaltic, with compositions reflecting mantle sources little influenced by arc components. An elongate rhyolite dome and low-temperature hydrothermal deposits occur at the en echelon step in the larger ridge, which is located at the intersection of the transfer zone with the inner rift. The chimneys, veins, and crusts are composed of silica, barite and iron oxide, and are of similar composition to the ferruginous chert that mantles the Kuroko deposits. A 1.2-km transect of seven alvin heat flow measurements at 30°48.5′N showed that the inner-rift-bounding faults may serve as water recharge zones, but that they are not necessarily areas of focussed hydrothermal outflow, which instead occurs through the thick basin sediments. The rift basin and arc margin sediments are probably dominated by permeable rhyolitic pumice and ash erupted from submarine arc calderas such as Sumisu and South Sumisu volcanoes.  相似文献   

9.
Evidence of fluid interaction with normal faults comes from their varied role as flow barriers or conduits in hydrocarbon basins and as hosting structures for hydrothermal mineralisation, and from fault-rock assemblages in exhumed footwalls of steep active normal faults and metamorphic core complexes. These last suggest involvement of predominantly aqueous fluids over a broad depth range, with implications for fault shear resistance and the mechanics of normal fault reactivation. A general downwards progression in fault rock assemblages (high-level breccia-gouge (often clay-rich) → cataclasites → phyllonites → mylonite → mylonitic gneiss with the onset of greenschist phyllonites occurring near the base of the seismogenic crust) is inferred for normal fault zones developed in quartzo-feldspathic continental crust. Fluid inclusion studies in hydrothermal veining from some footwall assemblages suggest a transition from hydrostatic to suprahydrostatic fluid pressures over the depth range 3–5 km, with some evidence for near-lithostatic to hydrostatic pressure cycling towards the base of the seismogenic zone in the phyllonitic assemblages. Development of fault-fracture meshes through mixed-mode brittle failure in rock-masses with strong competence layering is promoted by low effective stress in the absence of thoroughgoing cohesionless faults that are favourably oriented for reactivation. Meshes may develop around normal faults in the near-surface under hydrostatic fluid pressures to depths determined by rock tensile strength, and at greater depths in overpressured portions of normal fault zones and at stress heterogeneities, especially dilational jogs. Overpressures localised within developing normal fault zones also determine the extent to which they may reutilise existing discontinuities (for example, low-angle thrust faults). Brittle failure mode plots demonstrate that reactivation of existing low-angle faults under vertical σ1 trajectories is only likely if fluid overpressures are localised within the fault zone and the surrounding rock retains significant tensile strength. Migrating pore fluids interact both statically and dynamically with normal faults. Static effects include consideration of the relative permeability of the faults with respect to the country rock, and juxtaposition effects which determine whether a fault is transmissive to flow or acts as an impermeable barrier. Strong directional permeability is expected in the subhorizontal σ2 direction parallel to intersections between minor faults, extension fractures, and stylolites. Three dynamic mechanisms tied to the seismic stress cycle may contribute to fluid redistribution: (i) cycling of mean stress coupled to shear stress, sometimes leading to postfailure expulsion of fluid from vertical fractures; (ii) suction pump action at dilational fault jogs; and, (iii) fault-valve action when a normal fault transects a seal capping either uniformly overpressured crust or overpressures localised to the immediate vicinity of the fault zone at depth. The combination of σ2 directional permeability with fluid redistribution from mean stress cycling may lead to hydraulic communication along strike, contributing to the protracted earthquake sequences that characterise normal fault systems.  相似文献   

10.
An extensive rhyolitic dyke swarm has intruded subaqueous pyroclastic deposits, iron-formations, hyaloclastite breccias and lava flows of the 2730 Ma Hunter Mine Group (HMG) in the south-central part of the Archean Abitibi belt, Quebec. The dyke swarm has a minimum width of 500 m and can be traced perpendicular to the section for 2.4 km. Based on crosscutting relationships, chilled margins, quartz content and colour, five distinct dyke generations have been established. Each dyke generation has several magmatic pulses as indicated by parallel rows of columnar joints. Absence of brecciation between parallel rows suggests extremely brief intervals between magma pulses. The central parts of most dykes display inverted V-shaped patterns of columnar-joint convergence, inferred to indicate differential cooling during the late stages of dyke propagation. The dykes commonly display delicate spherulites suggesting rapid cooling, solidification temperatures between 400 and 600°C and penecontemporaneous devitrification. Quartz-feldspar aggregates in the groundmass have locally developed microgranophyric textures. Large spherulites near the chilled margins probably formed at temperatures below 400°C. Percolation of abundant water throughout the dyke complex is suggested by ubiquitous prominent chilled dyke margins. Development of a chilled margin 500 m along one dyke suggests that water percolated at least 500 m below the water/rock interface. Because the dykes intruded subaqueous pyroclastic deposits of similar composition, dyke emplacement below the sea floor is inferred. Interstratification of pillowed flows and brecciated pillowed flows containing rhyolite fragments at the top of the 4–5-km-thick sequence indicates that the central felsic complex probably never emerged during its evolutionary history, supporting the contention that the felsic dyke complex was emplaced beneath the Archean sea floor.  相似文献   

11.
The granulite facies assemblages of the anorthositic rocks of the Bergen Arcs (stable at 800–900°C and 10 kbar) have been transformed to eclogite facies assemblages (stable at 700–750°C and 16–19 kbar) in the vicinity of Caledonian shear zones. This section of the root zone of the Caledonian mountain chain reveals a deep polymetamorphic crust where Precambrian granulites (mean density 3.02 g/cm3) and Caledonian eclogites (mean density 3.19 g/cm3) alternate on a scale of meters over a minimum area of 3 × 12 km. Detailed mapping of three localities shows that eclogites account for up to 30–45% of the rock volume. The stabilitization of the eclogite mineralogy is controlled by fluids penetrating these deep crustal shear zones. The eclogitization is independent of preexisting compositional variation in this anorthosite-norite complex. The Bergen Arcs example suggests that the amount of eclogite versus granulites in the lowermost crust is a function of deformation and fluid access, rather than being controlled byT, P and rock composition alone. These relationships may explain the gradual increase in seismic velocity observed in some deep crustal sections and also the complex reflection pattern obtained from the lowermost crust in many areas.  相似文献   

12.
DSDP Hole 504B is the deepest basement hole in the oceanic crust, penetrating through a 571.5 m pillow section, a 209 m lithologic transition zone, and 295 m into a sheeted dike complex. An oxygen isotopic profile through the upper crust at Site 504 is similar to that in many ophiolite complexes, where the extrusive section is enriched in18O relative to unaltered basalts, and the dike section is variably depleted and enriched. Basalts in the pillow section at Site 504 haveδ18O values generally ranging from +6.1 to +8.5‰ SMOW(mean= +7.0‰), although minor zeolite-rich samples range up to 12.7‰. Rocks depleted in18O appear abruptly at 624 m sub-basement in the lithologic transition from 100% pillows to 100% dikes, coinciding with the appearance of greenschist facies minerals in the rocks. Whole-rock values range to as low as +3.6‰, but the mean values for the lithologic transition zone and dike section are +5.8 and +5.4‰, respectively.

Oxygen and carbon isotopic data for secondary vein minerals combined with the whole rock data provide evidence for the former presence of two distinct circulation systems separated by a relatively sharp boundary at the top of the lithologic transition zone. The pillow section reacted with seawater at low temperatures (near 0°C up to a maximum of around 150°C) and relatively high water/rock mass ratios (10–100); water/rock ratios were greater and conditions were more oxidizing during submarine weathering of the uppermost 320 m than deeper in the pillow section. The transition zone and dikes were altered at much higher temperatures (up to about 350°C) and generally low water/rock mass ratios ( 1), and hydrothermal fluids probably contained mantle-derived CO2. Mixing of axial hydrothermal fluids upwelling through the dike section with cooler seawater circulating in the overlying pillow section resulted in a steep temperature gradient ( 2.5°C/m) across a 70 m interval at the top of the lithologic transition zone. Progressive reaction during axial hydrothermal metamorphism and later off-axis alteration led to the formation of albite- and Ca-zeolite-rich alteration halos around fractures. This enhanced the effects of cooling and18O enrichment of fluids, resulting in local increases inδ18O of rocks which had been previously depleted in18O during prior axial metamorphism.  相似文献   


13.
Fluid inclusion leachates obtained from vug and vein quartz samples from an Archean (3.23 Ga) Fe-oxide hydrothermal deposit in the west-central part of the Barberton greenstone belt, South Africa, were analyzed by ion chromatography for chloride, bromide, and iodide. The deposit, known as the ironstone pods, formed by seafloor hydrothermal activity and fluid discharge. Quartz is dominated by type I liquid-vapor, aqueous inclusions with a bimodal salinity distribution (0–0.25 MCl and 0.9–1.8 MCl). Bulk analytical salinities range from 0.45 to 0.99 MCl represent averages of type I inclusions. Bulk fluid inclusion bromide and iodide concentrations are 1.44–3.32 mM and 0.01–0.12 mM, respectively. For comparison, modern seawater has halogen contents of 590 mM chloride, 0.9 mM bromide, and 0.5 μM total iodine. In the fluids from the ironstone pods, bromide and iodide are enriched relative to chloride, when compared with modern seawater.Approximate BrCl and ICl ratios of 3.2 Ga Barberton seawater are 2.5 × 10−3 and 40 × 10−6, respectively. Dispersion to higher values was caused principally by reaction with organic sediments whose trends are similar to those seen for modern vent fluids at unsedimented and sedimented ridges, relative to modern seawater. These halide ratios are greater than those of modern seawater, suggesting a change in the halide ratios of seawater over geological time. The analytical data are consistent with a model in which marine organic sedimentation has fractionated bromine and iodine out of seawater relative to chloride, thereby causing the halide ratios of seawater to decrease from high early and mid-Archean values towards their present day values.  相似文献   

14.
Different models for the generation of ophiolite complexes lead to differing predictions of the nature, extent and consistency of one way chilling (see text) of dykes in the sheeted unit of such complexes. Measurements of the degree of one way chilling were made on a number of transects of the Diabase (sheeted) unit of the Troodos complex. Statistical analysis of the results strongly favours an ocean-floor spreading model over the other models considered for the generation of the complex, with the spreading axis lying to the west of the complex in its present orientation. In addition, the analysis shows that the stratigraphically central portion of the sheeted unit must be composed entirely of dykes. This method can be used to determine the origin of other ophiolite complexes that have sheeted dyke units.  相似文献   

15.
Hydrothermal circulation of seawater has been suggested as a mass transport mechanism for the formation of sulphide ore deposits in the ophiolitic rocks of Cyprus. Since ophiolitic sequences are generally regarded as fragments of oceanic crust and upper mantle, hydrothermal circulation of a form inferred from geological observations on Cyprus may be analogous to that thought to occur in oceanic crust at spreading ridges. The hypothesis that ore deposits were formed in ascending plumes of hot, buoyant fluid is examined by considering thermal convection in a permeable medium. To match the inferred pattern of circulation, finite amplitude convection in a cylindrical geometry is studied using finite difference approximations. These results combined with available geological and geochemical data are applied to understand better the physical controls on mineralisation.A simple model for the formation of the hydrothermal ore deposits of Cyprus is discussed. The model is semi-quantitatively reasonable in terms of vertical fluid flow rate, thermal structure, permeability and basal heat flow, and predicts volumes of maximum mineralisation similar to those observed. Three factors are identified which were important in confining mineralisation to a small volume immediately beneath the sea water/rock boundary: (1) hot fluid was confined to a narrow core zone of a rising plume, (2) the upward fluid flux was greatest in this same core zone, and (3) significant temperature decrease occurred within a thin surface boundary layer.  相似文献   

16.
The Table Rock Complex (TRC; Pliocene–Pleistocene), first documented and described by Heiken [Heiken, G.H., 1971. Tuff rings; examples from the Fort Rock-Christmas Lake valley basin, south-central Oregon. J. Geophy. Res. 76, 5615-5626.], is a large and well-exposed mafic phreatomagmatic complex in the Fort Rock–Christmas Lake Valley Basin, south-central Oregon. It spans an area of approximately 40 km2, and consists of a large tuff cone in the south (TRC1), and a large tuff ring in the northeast (TRC2). At least seven additional, smaller explosion craters were formed along the flanks of the complex in the time between the two main eruptions. The first period of activity, TRC1, initiated with a Surtseyan-style eruption through a 60–70 m deep lake. The TRC1 deposits are dominated by multiple, 1-2 m thick, fining upward sequences of massive to diffusely-stratified lapilli tuff with intermittent zones of reverse grading, followed by a finely-laminated cap of fine-grained sediment. The massive deposits are interpreted as the result of eruption-fed, subaqueous turbidity current deposits; whereas, the finely laminated cap likely resulted from fallout of suspended fine-grained material through a water column. Other common features are erosive channel scour-and-fill deposits, massive tuff breccias, and abundant soft sediment deformation due to rapid sediment loading. Subaerial TRC1 deposits are exposed only proximal to the edifice, and consist of cross-stratified base-surge deposits. The eruption built a large tuff cone above the lake surface ending with an effusive stage, which produced a lava lake in the crater (365 m above the lake floor). A significant repose period occurred between the TRC1 and TRC2 eruptions, evidenced by up to 50 cm of diatomitic lake sediments at the contact between the two tuff sequences. The TRC2 eruption was the last and most energetic in the complex. General edifice morphology and a high percentage of accidental material suggest eruption through saturated TRC1 deposits and/or playa lake sediments. TRC2 deposits are dominated by three-dimensional dune features with wavelengths 200–500 m perpendicular to the flow, and 20–200 m parallel to the direction of flow depending on distance from source. Large U-shaped channels (10–32 m deep), run-up features over obstacles tens of meters high, and a large (13 m) chute-and-pool feature are also identified. The TRC2 deposits are interpreted as the products of multiple, erosive, highly-inflated pyroclastic surges resulting from collapse of an unusually high eruption column relative to previously documented mafic phreatomagmatic eruptions.  相似文献   

17.
Hydrothermal sulfide-sulfate deposits were sampled from eight active and inactive vent sites along the East Pacific Rise at 21°N during the RISE expedition of April, 1979. The mineralogy of the samples has been determined by X-ray diffractometry, scanning electron microscopy, and X-ray energy dispersive analysis. Mounds of Zn, Fe, and Cu sulfides, dominated by sphalerite, pyrite, and lesser chalcopyrite, are topped by inactive and active chimneys, spouting fluids ≤350°C. The outer zones of active chimneys bear abundant anhydrite precipitated from heated ambient seawater, in addition to hydrothermal pyrite and sphalerite. Mg-hydroxysulfate-hydrate, a phase identified in seawater heating experiments, but previously not observed in nature, is intimately intergrown with anhydrite. Hottest chimneys contain massive chalcopyrite±bornite in their interior zones and belch fluids blackened by a presumably non-equilibrium assemblage of pyrrhotite plus minor sphalerite and pyrite. The early, outer walls of chimneys form from sulfates and the sulfide minerals in black smoke, but metastable pyrrhotite in outer zones is rapidly recrystallized to pyrite or marcasite. Reduction in the permeability of the outer walls permits a high-temperature (>~250°C), low-pH environment within chimneys that enhances precipitation of Cu-Fe sulfides in the central zones. Cooler, worm-covered chimneys emit white fluids bearing particulates of amorphous silica, barite, and pyrite. Amorphous silica and barite are also widely associated with fossilized worm-tubes. Two inactive chimneys are filled with sphalerite, wurtzite, sulfur, pyrite, and marcasite. Anhydrite has been dissolved from these dead chimneys, and the sulfate assemblage is dominated by barite and alteration products such as jarosite and natrojarosite. Silicates other than amorphous silica are not abundant in these deposits, although talc forms in hot chimneys from seawater Mg and hydrothermal silica, and nontronite is found in sediments on the crest of the East Pacific Rise. Other accessory phases identified include copper-rich sulfides such as cubanite, chalcocite, covellite, and digenite; galena; Fe-oxyhydroxides, including goethite; and gypsum. Chimney debris accumulates to form basal mounds, and the mineralogical differences between mounds and chimneys are attributable to weathering of mounds. Mn-oxyhydroxides form crusts within a few meters of the vents, but are not coprecipitating with the sulfide/sulfate minerals.  相似文献   

18.
Chlorine- and sulphur-bearing compounds in fumarole discharges of the La Fossa crater at Vulcano Island (Italy) can be modelled by a mixing process between magmatic gases and vapour from a boiling hydrothermal system. This allows estimating the compounds in both endmembers. Magma degassing cannot explain the time variation of sulphur and HCl concentrations in the deep endmember, which are more probably linked to reactions of solid phases at depth, before mixing with the hydrothermal vapours. Based on the PT conditions and speciation of the boiling hydrothermal system below La Fossa, the HCl and Stot contents in the hydrothermal vapours were used to compute the redox conditions and pH of the aqueous solution. The results suggest that the haematite–magnetite buffer controls the hydrothermal fO2 values, while the pH has increased since the end of the 1970s. The main processes affecting pH values may be linked to Na–Ca exchanges between evolved seawater, feeding the boiling hydrothermal system, and local rocks. While Na is removed from water, calcium enters the solution, undergoes hydrolysis and produces HCl, lowering the pH of the water. The increasing water–rock ratio within the hydrothermal system lowers the Ca availability, so the aqueous solution becomes less acidic. Seawater flowing towards the boiling hydrothermal brine dissolves a large quantity of pyrite along its path. In the boiling hydrothermal system, dissolved sulphur precipitates as pyrite and anhydrite, and becomes partitioned in vapour phase as H2S and SO2. These results are in agreement with the paragenesis of hydrothermal alteration minerals recovered in drilled wells at Vulcano and are also in agreement with the isotopic composition of sulphur emitted by the crater fumaroles.  相似文献   

19.
 The hydrologic structure of Taal Volcano has favored development of an extensive hydrothermal system whose prominent feature is the acidic Main Crater Lake (pH<3) lying in the center of an active vent complex, which is surrounded by a slightly alkaline caldera lake (Lake Taal). This peculiar situation makes Taal prone to frequent, and sometimes catastrophic, hydrovolcanic eruptions. Fumaroles, hot springs, and lake waters were sampled in 1991, 1992, and 1995 in order to develop a geochemical model for the hydrothermal system. The low-temperature fumarole compositions indicate strong interaction of magmatic vapors with the hydrothermal system under relatively oxidizing conditions. The thermal waters consist of highly, moderately, and weakly mineralized solutions, but none of them corresponds to either water–rock equilibrium or rock dissolution. The concentrated discharges have high Na contents (>3500 mg/kg) and low SO4/Cl ratios (<0.3). The Br/Cl ratio of most samples suggests incorporation of seawater into the hydrothermal system. Water and dissolved sulfate isotopic compositions reveal that the Main Crater Lake and spring discharges are derived from a deep parent fluid (T≈300  °C), which is a mixture of seawater, volcanic water, and Lake Taal water. The volcanic end member is probably produced in the magmatic-hydrothermal environment during absorption of high-temperature gases into groundwater. Boiling and mixing of the parent water give rise to the range of chemical and isotopic characteristics observed in the thermal discharges. Incursion of seawater from the coastal region to the central part of the volcano is supported by the low water levels of the lakes and by the fact that Lake Taal was directly connected to the China sea until the sixteenth century. The depth to the seawater-meteoric water interface is calculated to be 80 and 160 m for the Main Crater Lake and Lake Taal, respectively. Additional data are required to infer the hydrologic structure of Taal. Geochemical surveillance of the Main Crater Lake using the SO4/Cl, Na/K, or Mg/Cl ratio cannot be applied straightforwardly due to the presence of seawater in the hydrothermal system. Received: 12 February 1997 / Accepted: 26 January 1998  相似文献   

20.
Microthermometric analyses of fluid inclusions on a suite of hydrothermally altered gabbros recovered just south of the eastern intersection of the Kane Fracture Zone and the Mid-Atlantic Ridge, record the highest homogenization temperatures yet reported for mid-ocean ridge hydrothermal systems. Fluid salinities in the high temperature inclusions are more than ten times that of seawater. Multiple generations of fluid inclusions entrapped along healed microfractures exhibit three distinct temperature-compositional groups. We interpret these populations as having been trapped during three separate fracturing events.The earliest episode of brittle failure in the gabbros is represented by coplanar, conjugate vapor-dominated and brine-dominated fluid inclusion arrays in primary apatite. Vapor-dominated inclusions exhibit apparent homogenization temperatures of 400°C and contain equivalent salinities of 1–2 wt.% NaCl. These inclusions are interspersed with liquid-dominated, sulfide-bearing inclusions containing salinities of 50 wt.% NaCl equivalent. These high salinity inclusions remain unhomogenized at temperatures greater than 700°C.Compositional and phase relationships of the fluid inclusions may be accounted for by two-phase separation of a fluid under 1000–1200 bars pressure. These pressures require that fluid entrapment occurred under a significant lithostatic component and indicate a minimum entrapmentdepth of 2 km below the axial valley floor. This depth corresponds to a minimum tectonic uplift of 3 km, in order to emplace the samples at the 3100 m recovery depth. The microfracture networks within magmatic apatites represent fluid flow paths for either highly modified, deeply penetrating seawater or a late stage magmatic aqueous fluid. The inclusions may have formed close to the brittle-ductile transition zone adjacent to an active magma chamber.Following collapse of the high temperature front, lower temperature fluids of definite seawater origin circulated through the open fracture networks, pervasively altering portions of the gabbros. This stage is represented by low-to-moderate (1–7 wt.% NaCl equivalent) salinity inclusions in plagioclase, apatite, epidote, and augite, which homogenize at temperatures of approximately 200–300°C and 400°C. Formation of hydrous mineral assemblages, under greenschist to lower amphibolite facies conditions, resulted in sealing of the vein system and may have resulted in modification of seawater salinities by as much as a factor of two. During or following these later stages of hydrothermal activity the gabbros were emplaced high on the axial walls by differential uplift attending formation of the flanking mountains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号