首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Multiple tuned mass dampers (MTMDs) consisting of many tuned mass dampers (TMDs) with a uniform distribution of natural frequencies are considered for attenuating undesirable vibration of a structure. The MTMD is manufactured by keeping the stiffness and damping constant and varying the mass. The structure is represented by its mode‐generalized system in the specific vibration mode being controlled using the mode reduced‐order method. The optimum parameters of the MTMD are investigated to delineate the influence of the important parameters on the effectiveness and robustness of the MTMD by conducting a numerical searching technique in two directions. The parameters include: the frequency spacing, average damping ratio, mass ratio and total number. The criterion selected for the optimization is the minimization of the maximum value of the dynamic magnification factor (DMF) of the structure with MTMD (i.e. Min.Max.DMF). In this paper, for the sake of comparison, the MTMD(II), which is made by keeping the mass constant and varying the stiffness and damping coefficient, and a single TMD are also taken into account. It is demonstrated that the optimum frequency spacing of the MTMD is the same as that of the MTMD(II) and the optimum average damping ratio of the MTMD is a little larger than that of the MTMD(II). It is also found that the optimum MTMD is more effective than the optimum MTMD(II) and the optimum single TMD with equal mass. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

2.
Multiple tuned mass dampers (MTMD) consisting of many tuned mass dampers (TMDs) with a uniform distribution of natural frequencies are taken into consideration for attenuating undesirable vibration of a structure under the ground acceleration. A study is conducted to search for the preferable MTMD which performs better and is easily manufactured from the five available models (i.e. MTMD‐1 – MTMD‐5), which comprise various combinations of the stiffness, mass, damping coefficient and damping ratio in the MTMD. The major objective of the present study then is to evaluate and compare the control performance of these five models. The structure is represented by its mode‐generalized system in the specific vibration mode being controlled by adopting the mode reduced‐order approach. The optimum parameters of the MTMD‐1 – MTMD‐5 are investigated to reveal the influence of the important parameters on their effectiveness and robustness using a numerical searching technique. The parameters include the frequency spacing, average damping ratio, tuning frequency ratio, mass ratio and total number. The criteria selected for the optimum searching are the minimization of the maximum value of the displacement dynamic magnification factor (DDMF) and that of the acceleration dynamic magnification factor (ADMF) of the structure with the MTMD‐1 – MTMD‐5 (i.e. Min.Max.DDMF and Min.Max.ADMF). It is demonstrated that the optimum MTMD‐1 and MTMD‐4 yield approximately the same control performance, and offer higher effectiveness and robustness than the optimum MTMD‐2, MTMD‐3, and MTMD‐5 in reducing the displacement and acceleration responses of structures. It is further demonstrated that for both the best effectiveness and robustness and the simplest manufacturing, it is preferable to select the optimum MTMD‐1. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

3.
The five MTMD models, with natural frequencies being uniformly distributed around their mean frequency, have been recently presented by the first author. They are shown to have the near‐zero optimum average damping ratio (more precisely, for a given mass ratio there is an upper limit on the total number, beyond which the near‐zero optimum average damping ratio occurs). In this paper, the eight new MTMD models (i.e. the UM‐MTMD1~UM‐MTMD3, US‐MTMD1~US‐MTMD3, UD‐MTMD1 and UD‐MTMD2), with the system parameters (mass, stiffness and damping coefficient) being, respectively, uniformly distributed around their average values, have been, for the first time here, proposed to seek for the MTMD models without the near‐zero optimum average damping ratio. The structure is represented by the mode‐generalized system corresponding to the specific vibration mode that needs to be controlled. Through minimization of the minimum values of the maximum dynamic magnification factors (DMF) of the structure with the eight MTMD models (i.e. through the implementation of Min.Min.Max.DMF), the optimum parameters and values of Min.Min.Max.DMF for these eight MTMD models are investigated to evaluate and compare their control performance. The optimum parameters include the optimum mass spacing, stiffness spacing, damping coefficient spacing, frequency spacing, average damping ratio and tuning frequency ratio. The six MTMD models without the near‐zero optimum average damping ratio (i.e. the UM‐MTMD1~UM‐MTMD3, US‐MTMD1, US‐MTMD2 and UD‐MTMD2) are found through extensive numerical analyses. Likewise, the optimum UM‐MTMD3 offers the higher effectiveness and robustness and requires the smaller damping with respect to the rest of the MTMD models in reducing the responses of structures subjected to earthquakes. Additionally, it is interesting to note, by comparing the optimum UM‐MTMD3 with the optimum MTMD‐1 recently investigated by the first author, that the effectiveness and robustness for the optimum UM‐MTMD3 is almost identical to that for the optimum MTMD‐1 (without inclusion of the optimum MTMD‐1 with the near‐zero optimum average damping ratio). Recognizing these performance benefits, it is preferable to employ the optimum UM‐MTMD3 or the optimum MTMD‐1 without the near‐zero optimum average damping ratio, when installing the MTMD for the suppression of undesirable oscillations of structures under earthquakes. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

4.
Active multiple tuned mass dampers (AMTMD) consisting of many active tuned mass dampers (ATMDs) with a uniform distribution of natural frequencies have been, for the first time, proposed for attenuating undesirable vibrations of a structure under the ground acceleration.The multiple tuned mass dampers (MTMD) in the AMTMD is manufactured by keeping the stiffness and damping constant and varying the mass. The control forces in the AMTMD are generated through keeping the identical displacement and velocity feedback gain and varying the acceleration feedback gain. The structure is represented by its mode‐generalized system in the specific vibration mode being controlled using the mode reduced‐order method. The optimum parameters of the AMTMD are investigated to delineate the influence of the important parameters on the effectiveness and robustness of the AMTMD by conducting a numerical searching technique. The parameters include the frequency spacing, average damping ratio, tuning frequency ratio, total number and normalized acceleration feedback gain coefficient. The criterion, which can be stated as the minimization of the minimum values of the maximum dynamic magnification factors (i.e. Min.Min.Max.DMF), is chosen for the optimum searching. Additionally, for the sake of comparison, the results of the optimum MTMD (the passive counterpart of AMTMD) and ATMD are also taken into account in the present paper. It is demonstrated that the proposed AMTMD can be expected to significantly reduce the oscillations of structures under the ground acceleration. It is also shown that the AMTMD can remarkably improve the performance of the MTMD and has higher effectiveness than ATMD. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

5.
Porcelain electrical equipment (PEE), such as current transformers, is critical to power supply systems, but its seismic performance during past earthquakes has not been satisfactory. This paper studies the seismic performance of two typical types of PEE and proposes a damping method for PEE based on multiple tuned mass dampers (MTMD). An MTMD damping device involving three mass units, named a triple tuned mass damper (TTMD), is designed and manufactured. Through shake table tests and finite element analysis, the dynamic characteristics of the PEE are studied and the effectiveness of the MTMD damping method is verified. The adverse influence of MTMD redundant mass to damping efficiency is studied and relevant equations are derived. MTMD robustness is verified through adjusting TTMD control frequencies. The damping effectiveness of TTMD, when the peak ground acceleration far exceeds the design value, is studied. Both shake table tests and finite element analysis indicate that MTMD is effective and robust in attenuating PEE seismic responses. TTMD remains effective when the PGA far exceeds the design value and when control deviations are considered.  相似文献   

6.
Multiple Tuned Mass Dampers (MTMD's) consisting of many tuned mass dampers (TMD's) with distributed natural frequencies are considered for suppressing effectively the harmonically forced single mode response of structures. The fundamental characteristics of MTMD's are investigated analytically with the parameters of the covering frequency range of MTMD's, the damping ratio of each TMD and the total number of TMD's. The effectiveness and the robustness of MTMD's are also discussed in comparison with those of the usual single TMD. It is found that there exists an optimum MTMD for the given total number of TMD's with the optimum frequency range and the optimum damping ratio and that the optimum MTMD is more effective than the optimum single TMD. As for the robustness, it is also clarified that a MTMD can be much more robust than a single TMD while keeping the same level of effectiveness as the optimum single TMD.  相似文献   

7.
Closed-form solutions are derived for the modal characteristics and seismic response of a base-isolated structure equipped with additional inerters. By simplifying the structure-isolator-inerter system in terms of the two-degree-of-freedom (2DOF) model, the modal frequencies, mode shapes, damping ratios, and participation factors of the system are derived. Consequently, analytical seismic response solutions are formulated by the modal superposition method. Utilizing these analytical solutions, an extensive parametric study has been carried out to investigate the effect of supplement inerters on both the modal characteristics and seismic response of the structure-isolator-inerter system. There is a critical inertance leading to the zero second modal participation factor (ie, the disappearance of the second modal response). The associated critical inertance ratio is derived in closed form as well. Moreover, it is observed that the reduction of deformation of isolators by increasing the inertance may be offset by the increase in relative displacements of the superstructure. To circumvent this adverse effect, an optimal range of inertance is identified whereby both the deformation of isolators and the relative displacement of the superstructure are mitigated concurrently.  相似文献   

8.
This paper presents an efficient procedure to determine the natural frequencies, modal damping ratios and mode shapes for torsionally coupled shear buildings using earthquake response records. It is shown that the responses recorded at the top and first floor levels are sufficient to identify the dominant modal properties of a multistoried torsionally coupled shear building with uniform mass and constant eccentricity even when the input excitation is not known. The procedure applies eigenrealization algorithm to generate the state‐space model of the structure using the cross‐correlations among the measured responses. The dynamic characteristics of the structure are determined from the state‐space realization matrices. Since the mode shapes are obtained only at the instrumented floor (top and first floors) levels, a new mode shape interpolation technique has been proposed to estimate the mode shape coefficients at the remaining floor levels. The application of the procedure has been demonstrated through a numerical experiment on an eight‐storied torsionally coupled shear building subjected to earthquake base excitation. The results show that the proposed parameter identification technique is capable of identifying dominant modal parameters and responses even with significant noise contamination of the response records. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
Discrete models such as the lumped parameter model and the finite element model are widely used in the solution of soil amplification of earthquakes. However, neither of the models will accurately estimate the natural frequencies of soil deposit, nor simulate a damping of frequency independence. This research develops a new discrete model for one-dimensional viscoelastic response analysis of layered soil deposit based on the mode equivalence method. The new discrete model is a one-dimensional equivalent multi-degree-of-freedom (MDOF) system characterized by a series of concentrated masses, springs and dashpots with a special configuration. The dynamic response of the equivalent MDOF system is analytically derived and the physical parameters are formulated in terms of modal properties. The equivalent MDOF system is verified through a comparison of amplification functions with the available theoretical solutions. The appropriate number of degrees of freedom (DOFs) in the equivalent MDOF system is estimated. A comparative study of the equivalent MDOF system with the existing discrete models is performed. It is shown that the proposed equivalent MDOF system can exactly present the natural frequencies and the hysteretic damping of soil deposits and provide more accurate results with fewer DOFs.  相似文献   

10.
This paper presents a practical method to compute uniform hazard floor acceleration spectra for linear oscillators attached to a linear structure. The method builds on a probabilistic seismic demand model that relates the acceleration response of the oscillator with that of the generic mode of vibration of the supporting structure. Interaction between oscillator and structure is ignored. Independency of the model on the specific characteristics of seismic hazard at the site is shown. By using the method floor spectra are determined through a closed‐form expression, given the mean annual frequency of interest, the damping ratio of the oscillators, the modal properties of the structure, and three uniform hazard spectra representing seismic hazard at the site. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
The equations of motion of a structure in undamped modal coordinates may have non-zero off-diagonal terms in the damping matrix. Although these terms are commonly neglected, studies have shown that they may have a significant influence on the response to dynamic loads. In this paper, two independent criteria are developed to determine when these damping terms will affect the structure's modal properties and response. It is found that even small off-diagonal damping values can be significant if the structure has closely spaced natural frequencies. To quantify and understand the influence of these damping terms, closed-form analytical expressions are derived for the modal properties and harmonic and stochastic response of structures with closely spaced natural frequencies. One conclusion is that off-diagonal damping terms will decrease a modal damping ratio for each pair of closely spaced modes. This is significant, since a response analysis performed by neglecting these off-diagonal terms will underestimate the true response.  相似文献   

12.
Analytical results are developed for vibration control of structures with one or more Tuned Mass Dampers (TMDs). The input is a harmonic load with a range of possible frequencies. The control objective is to reduce the maximum amplitude of the structural response. Perturbation theory is used with three sets of small parameters: the ratio of TMD and structural modal masses, the damping of the system, and the differences between the structural and loading frequencies. It is shown analytically that for structures with widely spaced natural frequencies, the response can be approximated accurately by the response of the well-known single-mode structure/TMD system. For structures with p closely spaced natural frequencies, more general analytical results are developed to describe the coupling between the motions of the p modes of the structure and the multiple TMDs. The results show that at least p TMDs with properly placed attachments to the structure are necessary to control the response. If fewer TMDs are used, the maximum frequency response has a lower bound which is independent of the properties of the TMDs. The TMD placement is shown to be always important, regardless of the spacing of the structure's natural frequencies. The results are illustrated for both lumped-mass and continuous structures.  相似文献   

13.
将模态叠加法应用于刚性基岩上、受竖直向上传播的稳态剪切地震波激振下剪切刚度沿深度按指数规律增长的单层非匀质场地土模型的地震反应分析,求得有效振型参与系数的解.在算例分析中将此类非匀质场地与剪切波速取为平均值的匀质场地的有效振型参与系数进行了比较,并验证了第一阶固有频率的工程估算式仍可用于此类非匀质场地,且其对估算高阶固有频率是个很重要的参数.  相似文献   

14.
A simple rule is derived to combine, within the framework of a complex mode superposition, the maximum modal responses of systems such as soil-structure and structure-equipment systems, for which closely spaced natural frequencies are likely, and for which, because of the large difference in the damping values of their various components, the assumption of an orthogonal damping matrix may lead to significant errors. The rule constitutes the generalization of Rosenblueth's rule for systems with closely spaced natural frequencies and classical modes, and is expressed in terms of their complex mode shapes and natural frequencies. Its derivation is based on the theory of a complex modal analysis for systems with non-classical modes of vibration and on Rosenblueth's original derivation. As in this original derivation, earthquake ground motions are modelled as a stationary white noise process, but the formulae obtained under this assumption are modified later on to account for the transient nature of actual earthquakes. A numerical example is presented to illustrate the application of the rule, and a comparative study with numerical integration solutions is performed to assess its accuracy. In this comparative study, it predicts the numerical integration solutions with an average error of 0.3 per cent.  相似文献   

15.
Based on the Hilbert–Huang spectral analysis, a method is proposed to identify multi‐degree‐of‐freedom (MDOF) linear systems using measured free vibration time histories. For MDOF systems, the normal modes have been assumed to exist. In this method, the measured response data, which are polluted by noises, are first decomposed into modal responses using the empirical mode decomposition (EMD) approach with intermittency criteria. Then, the Hilbert transform is applied to each modal response to obtain the instantaneous amplitude and phase angle time histories. A linear least‐square fit procedure is proposed to identify the natural frequency and damping ratio from the instantaneous amplitude and phase angle for each modal response. Based on a single measurement of the free vibration time history at one appropriate location, natural frequencies and damping ratios can be identified. When the responses at all degrees of freedom are measured, the mode shapes and the physical mass, damping and stiffness matrices of the structure can be determined. The applications of the proposed method are illustrated using three linear systems with different dynamic characteristics. Numerical simulation results demonstrate that the proposed system identification method yields quite accurate results, and it offers a new and effective tool for the system identification of linear structures in which normal modes exist. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

16.
Optimum parameters of Multiple Tuned Mass Dampers (MTMD) for an undamped system to harmonic base excitation are investigated using a numerical searching technique. The criteria selected for the optimality is the minimization of steady-state displacement response of the main system. The explicit formulae for the optimum parameters of MTMD (i.e. damping ratio, bandwidth and tuning frequency) are then derived using curve-fitting scheme that can readily be used for engineering applications. The error in the proposed explicit expressions is investigated and found to be quite negligible. The optimum parameters of the MTMD system are obtained for different mass ratios and number of dampers. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

17.
A simple modal damping identification model developed by the present authors for classically damped linear building frames is extended here to the non-classically damped case. The modal damping values are obtained with the aid of the frequency domain modulus of the roof-to-basement transfer function and the resonant frequencies of the structure (peaks of the transfer function) as well as the modal participation factors and mode shapes of the undamped structure. The assumption is made that the modulus of the transfer function of the non-classically damped structure matches the one of the classically damped structure in a discrete manner, i.e., at the resonant frequencies of that function modulus. This proposed approximate identification method is applied to a number of plane building frames with and without pronounced non-classical damping under different with respect to their frequency content earthquakes and its limitations and range of applicability are assessed with respect to the accuracy of both the identified damping ratios and that of the seismic structural response obtained by classical mode superposition and use of those identified modal damping ratios.  相似文献   

18.
An approximate solution of the classical eigenvalue problem governing the vibrations of a structure on an elastic soil is derived through the application of a perturbation analysis. For stiff soils, the full solution is obtained as the sum of the solution for a rigid-soil and small perturbing terms related to the inverse of the soil shear modulus. The procedure leads to approximate analytical expressions for the system frequencies, modal damping ratios and participation factors for all system modes that generalize those presented by other authors for the fundamental mode. The resulting approximate expressions for the system modal properties are validated by comparison with the corresponding quantities obtained by numerical solution of the eigenvalue problem for a nine-story building. The accuracy of the proposed approach and of the classical normal mode approach is assessed through comparison with the exact frequency response of the test structure.  相似文献   

19.
建立有限元模型是核电厂建筑结构模态分析的重要前提。本文以某高温气冷堆核电厂建筑结构为原型,在分析方法相同的前提下,建立2种不同模型(Solid模型和Shell模型),并对这2种模型进行模态分析。重点分析、对比2种模型的自振频率和振型图,计算分析表明:Solid模型与Shell模型相比,计算得到的结构自振频率值较高,但两者的差异很小,前30阶自振频率相对误差小于3.4%;2种模型的计算结构振型基本一致。研究结果可为核电厂抗震性能分析和设计提供参考。  相似文献   

20.
The viability of a complete structural characterization of civil structures is explored and discussed. In particular, the identification of modal (i.e. natural frequencies, damping ratios and modal shapes) and physical properties (i.e. mass and stiffness) using only the structure’s free decay response is studied. To accomplish this, modal analysis from free vibration response only (MAFVRO) and mass modification (MM) methodologies are engaged along with Wavelet based techniques for optimal signal processing and modal reconstruction. The methodologies are evaluated using simulated and experimental data. The simulated data are extracted from a simple elastic model of a 5 story shear building and from a more realistic nonlinear model of a RC frame structure. The experimental data are gathered from shake table test of a 2-story scaled shear building. Guidelines for the reconstruction procedure from the data are proposed as the quality of the identified properties is shown to be governed by adequate selection of the frequency bands and optimal modal shape reconstruction. Moreover, in cases where the structure has undergone damage, the proposed identification scheme can also be applied for preliminary assessment of structural health.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号