首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This investigation is concerned with accidental torsion in buildings resulting from rotational excitation (about a vertical axis) of the building foundations as a result of spatially non-uniform ground motions. Because of this accidental torsion, the displacements and deformations in the structural elements of the building are likely to increase. This increase in response is evaluated using actual base rotational excitations derived from ground motions recorded at the base of 30 buildings during recent California earthquakes. Accidental torsion has the effect of increasing the building displacements, in the mean, by less than 5 per cent for systems that are torsionally stiff or have lateral vibration periods longer than half a second. On the other hand, short period (less than half a second) and torsionally flexible systems may experience significant increases in response due to accidental torsion. Since the dependence between this increase in response and the system parameters is complex, two simplified methods are developed for conveniently estimating this effect of accidental torsion. They are the ‘accidental eccentricity’ and the ‘response spectrum’ method. The computed accidental eccentricities are much smaller than the typical code values, 0.05bb or 0.1b, except for buildings with very long plan dimensions (b ≥ 50 m). Alternatively, by using the response spectrum method the increase in response can be estimated by computing the peak response to each base motion independently and combining the peak values using the SRSS rule.  相似文献   

2.
3.
Overturning of a structure causes variations in the normal loads of the isolators supporting that structure. For frictional isolators, such variation leads to changes in the frictional forces developed and, hence, in the strength distribution in plan. For frictional pendulum system (FPS) isolators, it also causes changes in the pendular action, i.e. in the stiffness distribution of the isolation interface. Therefore, although the structure is nominally symmetric it develops lateral–torsional coupling when it is subjected to two horizontal components of ground motion. This coupling is denoted herein as accidental torsion due to overturning, and its effect in the earthquake response of nominally symmetric structures is evaluated. Several parameters are identified to control this coupling, but the most important are the slenderness of the structure and the aspect ratio of the building plan. Results are presented in terms of the torsional amplification of the deformations of the isolation base and the interstorey deformations of the superstructure. The FPS system is modelled accurately by including true large deformations and the potential uplift and impact of the isolators. Impulsive as well as subduction‐type ground motions are considered in the analysis, but results show small differences between them. An upper bound for the mean‐plus‐one standard deviation values of the torsional amplifications for the base due to this accidental torsion is 5%. This implies that for design purposes of the isolation system such increase in deformations could probably be neglected. However, the same amplification for the interstorey deformations may be as large as 50%, depending on the torsional stiffness and slenderness of the superstructure, and should be considered in design. In general, such amplification of deformations decreases for torsionally stiffer structures and smaller height‐to‐base aspect ratios. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

4.
This article investigates the characteristics of the accidental eccentricity in symmetric buildings due to torsional response arising from wave passage effects in the near‐fault region. The soil–foundation–structure system is modeled as a symmetric cylinder placed on a rigid circular foundation supported on an elastic halfspace and subjected to obliquely incident plane SH waves simulating the action of near‐fault pulse‐like ground motions. The translational response is computed assuming that the superstructure behaves as a shear beam under the action of translational and rocking base excitations, whereas the torsional response is calculated using the mathematical formulation proposed in a previous study. A broad range of properties of the soil–foundation–structure system and ground motion input are considered in the analysis, thus facilitating a detailed parametric investigation of the structural response. It is demonstrated that the normalized accidental eccentricity is most sensitive to the pulse period (TP) of the near‐fault ground motions and to the uncoupled torsional‐to‐translational fundamental frequency ratio (Ω) of the structure. Furthermore, the normalized accidental eccentricities due to simplified pulse‐like and broadband ground motions in the near‐fault region are computed and compared against each other. The results show that the normalized accidental eccentricity due to the broadband ground motion is well approximated by the simplified pulse for longer period buildings, while it is underestimated for shorter period buildings. For symmetric buildings with values of Ω commonly used in design practice, the normalized accidental eccentricity due to wave passage effects is less than the typical code‐prescribed value of 5%, except for buildings with very large foundation radius. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

5.
The inelastic earthquake response of eccentric, multistorey, frame‐type, reinforced concrete buildings is investigated using three‐ and five‐storey models, subjected to a set of 10, two‐component, semi‐artificial motions, generated to match the design spectrum. Buildings designed according to the EC8 as well as the UBC‐97 code were included in the investigation. It is found that contrary to what the simplified one‐storey, typical, shear‐beam models predict, the so‐called ‘flexible’ side frames exhibit higher ductility demands than the ‘stiff’ side frames. The substantial differences in such demands between the two sides suggest a need for reassessment of the pertinent code provisions. This investigation constitutes one of the first attempts to study the problem of inelastic torsion by means of realistic, multistorey inelastic building models. Additional studies with similar or even more refined idealizations will certainly be required to arrive at definite results and recommendations for possible code revisions. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

6.
Recent studies have reported very large accelerations after stiffness changes in nonlinear systems, particularly self‐centering systems. Some have attributed these accelerations to numerical modelling choices and have assumed that they could be eliminated if the modelling were refined. Others have concluded that self‐centering systems generally have much larger peak accelerations than more traditional systems. This paper demonstrates that accelerations at changes in stiffness are caused by physical phenomena but may be amplified by modelling decisions. This is done by examining the response of a two‐degree‐of‐freedom system after a change in stiffness and by developing a closed‐form mathematical model to characterize this response. The equation shows that acceleration spikes should be expected near small masses and near nonlinear springs that are initially nearly rigid, particularly when those springs change from low stiffness to high stiffness while moving at a high velocity. These acceleration spikes depend on system properties that are often not known precisely, so without physical testing, analytical estimates of the accelerations that occur in nonlinear systems after stiffness changes should be treated with skepticism. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
The interaction of a tunnel-soil-building system due to trains is investigated by a substructure technnique. The soil medium is assumed to be a viscoelastic halfspace. The method of wave function expansion is used to construct the displacement fields in terms of potentials. The total soil-structure interaction problem is decomposed into a foundation radiation problem and a tunnel radiation problem. The impedance matrices for the corresponding substructure problems are obtained using a collocation technique. The steady state response of buildings for a given tunnel-foundation geometry is determined using the impedance matrix. Hence, the response of the building to train loading at different speeds is evaluated and compared with allowable vibration limits.  相似文献   

8.
The uncertainty in hydrological model covariates, if ignored, introduces systematic bias in the parameters estimated. We introduce here a method to determine the true value of parameters given uncertainty in model inputs. This method, known as simulation extrapolation (SIMEX) operates on the basis of an empirical relationship between parameters and the level of input noise (or uncertainty). The method starts by generating a series of alternate model inputs by artificially adding white noise in increasing multiples of the known error variance. The resulting parameter sets allow us to formulate an empirical relationship between their values and the level of noise present. SIMEX is based on theory that the trend in alternate parameters can be extrapolated back to the notional error free zone.

We illustrate the strength of SIMEX in improving skills of predictive models that use uncertain sea surface temperature anomaly (SSTA) data over the NINO3 region as predictor to the southern oscillation index (SOI), an alternate measure of the strength of the El Nino southern oscillation. Our hypothesis is that the higher magnitude of noise in the pre 1960 data period introduces bias to model parameters where SSTA is the input variable. The relatively error invariant southern oscillation index (SOI) is regressed over SSTA and calibrated using a subset of the series from 1900 to 1960. We validate the resulting models using the less erroneous 1960–2003 data period. Overall the application of SIMEX is found to reduce the residual predictive errors during the validation period.  相似文献   


9.
Consecutive earthquakes occurred on October 23rd, 2011 in Ercis and on November 9th, 2011 in Edremit that are townships located 90 km and 18 km far from Van city in Turkey, respectively. A total of 28,000 buildings were damaged or collapsed in the city center and the surrounding villages after the Ercis earthquake. This number reached 35,000 after the Edremit earthquake. In the area where the earthquakes occurred, almost all the reinforced concrete buildings were affected.This study presents field observations of damages on reinforced concrete buildings due to the consecutive earthquakes that occurred in Van, Turkey. Damages appearing in the buildings may occur due to several reasons such as site effect, poor construction quality, poor concrete strength, poor detailing in beam-column joints, detailing of stronger beam than column, soft stories, weak stories, inadequate reinforcement, short lap splices, incorrect end hook angle, and short columns. Aftershocks also caused progressive damages on the buildings within 17 days after the earthquakes. According to the results of this study, most of the damaged buildings were not designed and constructed according to the Turkish earthquake code, the so-called Specification for Buildings to be built in Seismic Zones.  相似文献   

10.
L形高层隔震结构扭转影响参数分析   总被引:2,自引:0,他引:2  
通过分析不规则L形高层结构在不同输入方向地震波下的振动特性,对不隔震设计以及不断优化隔震层偏心率的隔震设计下研究了楼层最不利位移比变化规律。建立高层隔震结构运动方程,并推导了偏心率的求解过程,基于结构偏心率与位移比的上述理论计算,用ETABS软件对5个算例进行了分析。结果表明:偏心率的变化对于不规则L形高层结构的扭转影响同一般规则结构相似,具有相同的规律。隔震设计能够有效改善不规则L形结构的严重扭转问题,同时随着隔震层刚心与上部结构质心的相对距离越来越小,即随着偏心率的减小,隔震设计下的结构楼层位移比也随之变小。因此,在不规则结构的隔震设计中,在满足隔震层设计要求下,应尽量减小偏心率,以保证减振效果和结构安全。  相似文献   

11.
The effect of stiffness degradation in reinforced concrete structural members on the inelastic response of multistorey buildings to earthquakes is investigated. In particular, the following question is examined. How do the ductility requirements for multistorey systems with degrading stiffness behaviour compare with those for structures with ordinary bilinear hysteretic property? Inelastic dynamic responses of two idealized multistorey buildings, one having a long and the other a relatively short fundamental period, to an ensemble of twenty simulated earthquakes representative of moderately intense ground motions in California at moderate epicentral distances on firm ground, are analysed for ordinary bilinear hysteretic behaviour and for bilinear hysteretic behaviour with stiffness degradation property. The conclusions deduced from the results of this investigation include the following (1) It is, in general, not possible to predict the maximum response of a degrading stiffness system from results for the corresponding ordinary bilinear system (2) The differences in ductility requirements due to stiffness degradation are generally smaller than those associated with probabilistic variability from one ground motion to another (3) Stiffness degradation has little influence on the ductility requirements for flexible buildings, but it leads to increased ductility requirements for stiff buildings.  相似文献   

12.
To deal with earthquake-induced torsion in buildings due to some uncertain factors, difficult to account for directly in design, modern codes have introduced the so-called accidental design eccentricity (ADE). This provision has been based primarily on elastic investigations with special classes of multi-story buildings or with simplified, one-story inelastic models. In the present paper, the effectiveness of this provision is investigated using inelastic models, both of the typical one-story, 3-DOF type, and the more sophisticated MDOF, frame idealizations of the plastic hinge type. One, three and five story, realistic, frame buildings with different natural eccentricities were designed for different ADEs, including those specified by the EC8 and IBC codes. The evaluation is made using mean peak ductility factors of the edge frames as measures of their inelastic response, obtained from dynamic analyses for ten pairs of semi-artificial earthquake motions. The simplified models indicate that the accidental design eccentricity is very effective in reducing ductility demands, especially for very stiff systems. However, this is not confirmed by the more accurate and detailed plastic hinge building models, which show that designs accounting for accidental eccentricity do not exhibit any substantial reduction or better distribution of ductility demands, compared to designs in which accidental eccentricity has been entirely ignored. These findings suggest that the ADE provisions in codes, especially the more complicated ones as in the IBC, should be re-examined, by weighting their importance against the additional computational work they impose on designers. In the cases examined herein this importance can be characterized as marginal. Obviously additional studies are required, to include more building types and earthquake motions, in order to arrive at firm conclusions and recommendations for code modifications.  相似文献   

13.
Although uncertainty about structures of environmental models (conceptual uncertainty) is often acknowledged to be the main source of uncertainty in model predictions, it is rarely considered in environmental modelling. Rather, formal uncertainty analyses have traditionally focused on model parameters and input data as the principal source of uncertainty in model predictions. The traditional approach to model uncertainty analysis, which considers only a single conceptual model, may fail to adequately sample the relevant space of plausible conceptual models. As such, it is prone to modelling bias and underestimation of predictive uncertainty.  相似文献   

14.
利用有限单元法,基于力学原理和几何协调条件,导出了非对称箱型截面梁单元的弯扭耦合刚度矩阵,建立了斜拉桥在车辆荷载作用下的横向动力分析模型。由于考虑了箱梁的约束扭转,该模型能够分析复线或多线铁路桥在偏载作用下的横向振动问题。以桥梁轨道随机不平顺作为激振源,进行了机车过桥的实例分析。计算结果表明,桥梁的车激横向动力响应随车速及轨道不平顺样本的不同而变化,并随桥跨的增加而快速变得显著,车辆偏载对箱梁扭转振动有显著影响,所建立的力学模型是斜拉桥车桥耦合振动分析的实用模型。  相似文献   

15.
Nonparametric techniques for estimation of wave dispersion in buildings by seismic interferometry are applied to a simple model of a soil–structure interaction (SSI) system with coupled horizontal and rocking response. The system consists of a viscously damped shear beam, representing a building, on a rigid foundation embedded in a half‐space. The analysis shows that (i) wave propagation through the system is dispersive. The dispersion is characterized by lower phase velocity (softening) in the band containing the fundamental system mode of vibration, and little change in the higher frequency bands, relative to the building shear wave velocity. This mirrors its well‐known effect on the frequencies of vibration, i.e. reduction for the fundamental mode and no significant change for the higher modes of vibration, in agreement with the duality of the wave and vibrational nature of structural response. Nevertheless, the phase velocity identified from broader band impulse response functions is very close to the superstructure shear wave velocity, as found by an earlier study of the same model. The analysis reveals that (ii) the reason for this apparent paradox is that the latter estimates are biased towards the higher values, representative of the higher frequencies in the band, where the response is less affected by SSI. It is also discussed that (iii) bending flexibility and soil flexibility produce similar effects on the phase velocities and frequencies of vibration of a building. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
高层隔震建筑的隔震层在罕遇地震作用下会产生拉应力。本文通过对一栋20层的高层隔震结构,分别采用等拉压刚度模型和不等拉压刚度模型进行动力非线性时程分析,研究叠层橡胶隔震支座竖向刚度模型对高层基础隔震结构动力响应的影响。研究表明,超出线弹性工作范围后,竖向等拉压刚度模型将会低估隔震层的竖向位移量,低估上部结构的动力响应。  相似文献   

17.
A mechanism of horizontal floor response spectra amplification in the vicinity of higher modes' frequencies is investigated. It is demonstrated, by means of a simple two‐degrees‐of‐freedom model, that in the case of unsymmetrical superstructure, such amplification may occur because of the coupling between vertical excitation and horizontal response of the non‐isolated modes. This phenomenon is further illustrated by the results of analyses of a model of a nuclear plant. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
A comprehensive approach is developed to estimate relevant design quantities—lateral deformations and axial forces—in isolation systems composed of lead–rubber bearings. The approach, applicable to symmetric and asymmetric‐plan systems, includes the effects of bidirectional excitation, rocking, and torsion; and is the culmination of previous work on this topic. The approach is based on nonlinear response history analysis of an isolated block using an advanced bearing model that incorporates the interaction between axial force and lateral response of the bearing, known as axial‐load effects. The rocking response of the system and peak axial forces are shown to depend on the isolation period, the normalized strength—or yield strength normalized by peak ground velocity, the ratios of rocking frequency about each horizontal axis to vertical frequency, and the normalized stiffness eccentricity. In an attempt to develop results widely applicable to asymmetric‐plan systems, eccentricity is introduced by varying the stiffnesses and strengths of individual bearings in an idealized, rectangular plan. This idealized system approach is shown to have limited success; when applied to actual asymmetric‐plan systems the design equations to estimate response are accurate for lateral deformations but err by up to 25% for axial forces. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

19.
A new efficient method is developed for the analysis of pile-group effects on the seismic stiffness and strength design of buildings with pile foundations. An efficient continuum model consisting of a dynamic Winkler-type soil element and a pile is used to express the dynamic behavior of the structure-pile-soil system with only a small numerical error. The pile-group effect is taken into account through the influence coefficients among piles which are defined for interstory drifts and pile-head bending moments. It is shown that, while the pile-group effect reduces the interstory drift of buildings in general, it may increase the bending moment of piles at the head. This means that the treatment without the pile-group effect results in the conservative design for super-structures and requires a revised member design for piles.  相似文献   

20.
结合典型工程实例,采用在土体侧向边界节点处用弹簧并联阻尼器来进行模拟,在平面应变单元和桩体梁单元连接处用约束方程的方法进行节点耦合、满足连续条件,选择桩、土、荷载参数,用整体有限元方法进行桩-土-结构相互作用体系的地震反应分析。重点讨论了三种不同的上部结构刚度对桩基地震内力的影响,得到了在水平地震荷载作用下上部结构刚度的增大将增大桩基的内力及水平位移,且桩顶及桩身处于第一个软硬土层交界面处的截面的内力尤为突出等结论。关键词:上部结构刚度改变;桩-土-结构相互作用;弹性-阻尼边界;地震反应分析  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号