首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
Focal mechanisms determined from moment tensor inversion and first motion polarities of the Himalayan Nepal Tibet Seismic Experiment (HIMNT) coupled with previously published solutions show the Himalayan continental collision zone near eastern Nepal is deforming by a variety of styles of deformation. These styles include strike-slip, thrust and normal faulting in the upper and lower crust, but mostly strike-slip faulting near or below the crust–mantle boundary (Moho). One normal faulting earthquake from this experiment accommodates east–west extension beneath the Main Himalayan Thrust of the Lesser Himalaya while three upper crustal normal events on the southern Tibetan Plateau are consistent with east–west extension of the Tibetan crust. Strike-slip earthquakes near the Himalayan Moho at depths >60 km also absorb this continental collision. Shallow plunging P -axes and shallow plunging EW trending T -axes, proxies for the predominant strain orientations, show active shearing at focal depths ∼60–90 km beneath the High Himalaya and southern Tibetan Plateau. Beneath the southern Tibetan Plateau the plunge of the P -axes shift from vertical in the upper crust to mostly horizontal near the crust–mantle boundary, indicating that body forces may play larger role at shallower depths than at deeper depths where plate boundary forces may dominate.  相似文献   

2.
The deep seismicity of the Tyrrhenian Sea   总被引:4,自引:0,他引:4  
The study reappraises the deep seismicity of the Tyrrhenian Sea. Careful examination of the quality of reported hypocentres shows that the earthquakes define a zone dipping NW, about 200 km along strike, 50 km thick, and reaching a depth of about 500 km. The zone is slightly concave to the NW at a depth of 300 km, but, contrary to many previous reports, is not tightly concave, nor are there significant spatial gaps in the seismicity, which is effectively continuous with depth. Seismicity is, however, concentrated in the depth interval 250–300 km, where the dip of the seismic zone changes from 70° (above 250 km) to a more gentle dip of 45° at greater depths. Seven fault-plane solutions are available for the largest earthquakes in this depth interval, all of them consistent with a P -axis down the dip of the seismic zone, and all of them requiring movement on faults out of the plane of the subducting slab.
Two deep earthquakes near Naples lie well outside the main zone of activity; for one of which a fault-plane solution is available that has a P -axis not aligned with the dip of the seismic zone. The tightly concave slab-geometry favoured by other reports is supported mainly by the location of these events near Naples, which we think may represent deformation in a separate, probably shallower dipping, piece of subducted lithosphere.
The lack of shallow seismicity, and particularly of thrust faulting earthquakes, at the surface projection of the Benioff zone suggests that active subduction has ceased. Estimates of the convergence rate responsible for subduction in the last 10 Myr far exceed the present convergence rate of Africa and Eurasia, suggesting that the subduction was related instead to the stretching and thinning of the crust in the Tyrrhenian Sea.  相似文献   

3.
In this paper we present revised locations and original focal mechanisms computed for intermediate and deep earthquakes that occurred within the Southern Tyrrhenian subduction zone between 1988 and 1994, in order to improve our knowledge of the state of stress for this compressional margin. In particular, we define the stress distribution within a large portion of the descending slab, between 40 and about 450 km depth. The seismicity distribution reveals a continuous 40–50 km thick slab that abruptly increases its dip from subhorizontal in the Ionian Sea to a constant 70° dip in the Tyrrhenian. We computed focal mechanisms for events with magnitudes ranging from 2.7 and 5.7, obtaining the distribution of P - and T -axes for many events for which centroid moment tensor (CMT) solutions are not available, thus enabling the sampling of a larger depth range compared to previous studies. We define three portions of the slab characterized by different distributions of P - and T -axes. A general down-dip compression is found between 165 and 370 km depth, whereas in the upper part of the slab (40–165 km depth) the fault-plane solutions are strongly heterogeneous. Below 370 km the P -axes of the few deep events located further to the north have a shallower dip and are not aligned with the 70° dipping slab, possibly suggesting that they belong to a separated piece of subducted lithosphere. There is a good correspondence between the depth range in which the P -axes plunge closer to the slab dip (∼ 70°) and the interval characterized by the highest seismic energy release (190–370 km).  相似文献   

4.
We describe results of an active-source seismology experiment across the Chilean subduction zone at 38.2°S. The seismic sections clearly show the subducted Nazca plate with varying reflectivity. Below the coast the plate interface occurs at 25 km depth as the sharp lower boundary of a 2–5 km thick, highly reflective region, which we interpret as the subduction channel, that is, a zone of subducted material with a velocity gradient with respect to the upper and lower plate. Further downdip along the seismogenic coupling zone the reflectivity decreases in the area of the presumed 1960 Valdivia hypocentre. The plate interface itself can be traced further down to depths of 50–60 km below the Central Valley. We observe strong reflectivity at the plate interface as well as in the continental mantle wedge. The sections also show a segmented forearc crust in the overriding South American plate. Major features in the accretionary wedge, such as the Lanalhue fault zone, can be identified. At the eastern end of the profile a bright west-dipping reflector lies perpendicular to the plate interface and may be linked to the volcanic arc.  相似文献   

5.
Hatton Bank (northwest U.K.) continental margin structure   总被引:1,自引:0,他引:1  
Summary. The continent-ocean transition near Hatton Bank was studied using a dense grid of single-ship and two-ship multichannel seismic (mcs) profiles. Extensive oceanward dipping reflectors in a sequence of igneous rocks are developed in the upper crust across the entire margin. At the landward (shallowest) end the dipping reflectors overlie continental crust, while at the seaward end they are formed above oceanic crust. Beneath the central and lower part of the margin is a mid-crustal layer approximately 5 km thick that could be either stretched and thinned continental crust or maybe newly formed igneous crust generated at the same time as the dipping reflector sequence. Beneath this mid-crustal layer and above a well defined seismic Moho which rises from 27 km (continental end) to 15 km (oceanic end) across the margin, the present lower crust comprises a 10–15 km thick lens of material with a seismic velocity of 7.3 to 7.4 km/s. We interpret the present lower crustal lens as underplated igneous rocks left after extraction of the extruded basaltic lavas, A considerable quantity of new material has been added to the crust under the rifted margin. The present Moho is a new boundary formed during creation of the margin and cannot, therefore, be used to determine the amount of thinning.  相似文献   

6.
We image the Hikurangi subduction zone using receiver functions derived from teleseismic earthquakes. Migrated receiver functions show a northwest dipping low shear wave feature down to 60 km depth, which we associate with the crust of the subducted Pacific Plate. Receiver functions (RF) at several stations also show a pair of negative and positive polarity phases with associated conversion depths of ∼20–26 km, where the subducted Pacific Plate is at a depth of ∼40–50 km beneath the overlying Australian Plate. RF inversion solutions model these phases with a thin low S -wave velocity zone less than 4 km thick, and an S -wave velocity contrast of more than ∼0.5 km s−1 with the overlying crust. We interpret this phase pair as representing fluids near the base of the lower crust of the Australian Plate, directly overlying the forearc mantle wedge.  相似文献   

7.
Seismic phase conversions provide important constraints on the layered nature of subduction zone structures. Recordings from digital stations in North Island, New Zealand, have been examined for converted ScS ‐to‐ p ( ScSp ) arrivals from deep (>150 km) Tonga–Kermadec earthquakes to image layering in the underlying Hikurangi subduction zone. Consistent P ‐wave energy prior to ScS has been identified from stations in eastern and southern North Island, where the subducted plate interface is at a depth of between 15 and 30 km. Two ScS precursors are observed. Ray tracing indicates that the initial precursor ( ScSp 1) corresponds to conversion from the base of an 11–14 km thick subducting Pacific crust. The second precursor is interpreted as a conversion from the top of the subducting plate. The amplitude ratio, ScSp 1: ScS , increases from 0.10 to 0.19 from northern to southern North Island. This is within the range expected from a simple first‐order velocity discontinuity at an oceanic Moho. A 1–2 km thick layer of low‐velocity sediment at the top of the subducting plate is required to explain the remaining ScSp waveform. Our results imply that the abnormally thick Hikurangi–Chatham Plateau has been subducting beneath New Zealand for at least 2.9 Myr, thus explaining the high uplift rates observed across eastern North Island.  相似文献   

8.
Summary. The present day seismicity of the Zagros seems to occur on high angle reverse faults distributed across the whole width of the belt. It does not indicate activity on a single inclined thrust surface and there do not seem to have been any well located events at intermediate depths. Modelling of the long period teleseismic body waves of seven large earthquakes presented here shows their focal depths to be in the range 8–15 km. This is thought to indicate faulting in the uppermost basement beneath the sedimentary cover, though the absence of published seismic refraction results renders the sediment thickness uncertain. Faulting of this type and depth may occur on inherited normal faults which have subsequently been reactivated as thrusts. Such reactivation allows considerable shortening to take place in the early stages of continental collision without the subduction or excessive thickening of continental crust.  相似文献   

9.
We use data from the Chile Argentina Geophysical Experiment (CHARGE) broad-band seismic deployment to refine past observations of the geometry and deformation within the subducting slab in the South American subduction zone between 30°S and 36°S. This region contains a zone of flat slab subduction where the subducting Nazca Plate flattens at a depth of ∼100 km and extends ∼300 km eastward before continuing its descent into the mantle. We use a grid-search multiple-event earthquake relocation technique to relocate 1098 events within the subducting slab and generate contours of the Wadati-Benioff zone. These contours reflect slab geometries from previous studies of intermediate-depth seismicity in this region with some small but important deviations. Our hypocentres indicate that the shallowest portion of the flat slab is associated with the inferred location of the subducting Juan Fernández Ridge at 31°S and that the slab deepens both to the south and the north of this region. We have also determined first motion focal mechanisms for ∼180 of the slab earthquakes. The subhorizontal T -axis solutions for these events are almost entirely consistent with a slab pull interpretation, especially when compared to our newly inferred slab geometry. Deviations of T -axes from the direction of slab dip may be explained with a gap within the subducting slab below 150 km in the vicinity of the transition from flat to normal subducting geometry around 33°S.  相似文献   

10.
Expanding spread profile at the northern Jan Mayen Ridge   总被引:1,自引:0,他引:1  
An expanding spread seismic profile at the central northern Jan Mayen Ridge, ESP-5, has yielded a crustal seismic velocity distribution which is similar to observations from the thinned continental crust at the Norwegian continental margin. The profile reveals a post-early Eocene sedimentary sequence, about 1. 5 km thick, overlying 1 km of volcanic extrusives and interbedded sediments. Below, there are about 3 km of pre-opening sediments above the seismic basement. The results indicate that the main ridge block is underlain by a thinned crust, possibly only 13.5 km thick. The results are compatible with a continental nature for the main ridge complex.  相似文献   

11.
12.
Summary. Multichannel seismic reflection sections recorded across Vancouver Island have revealed two extensive zones of deep seismic reflections that dip gently to the northeast, and a number of moderate northeasterly dipping reflections that can be traced to the surface where major faults are exposed. Based on an integrated interpretation of these data with information from gravity, heat flow, seismicity, seismic refraction, magnetotelluric and geological studies it is concluded that the lower zone of gently dipping reflections is due to underplated oceanic sediments and igneous rocks associated with the current subduction of the Juan de Fuca plate, and that the upper zone represents a similar sequence of accreted rocks associated with an earlier episode of subduction. The high density/high velocity material between the two reflection zones is either an underplated slab of oceanic lithosphere or an imbricated package of mafic rocks. Reprocessing of data from two of the seismic lines has produced a remarkable image of the terrane bounding Leech River fault, with its dip undulating from >60° near the surface to 20° at 3 km depth and ∼38° at 6 km depth.  相似文献   

13.
A seismic-array study of the continental crust and upper mantle in the Ivrea-Yerbano and Strona-Ceneri zones (northwestern Italy) is presented. A short-period network is used to define crustal P - and S -wave velocity models from earthquakes. The analysis of the seismic-refraction profile LOND of the CROP-ECORS project provided independent information and control on the array-data interpretation.
Apparent-velocity measurements from both local and regional earthquakes, and time-term analysis are used to estimate the velocity in the lower crust and in the upper mantle. The geometry of the upper-lower crust and Moho boundaries is determined from the station delay times.
We have obtained a three-layer crustal seismic model. The P -wave velocity in the upper crust, lower crust and upper mantle is 6.1±0.2 km s−1, 6.5±0.3 km s−1 and 7.8±0.3 km s−1 respectively. Pronounced low-velocity zones in the upper and lower crust are not observed. A clear change in the velocity structure between the upper and lower crust is documented, constraining the petrological interpretation of the Ivrea-type reflective lower continental crust derived from small-scale petrophysical data. Moreover, we found a V P/ V S ratio of 1.69±0.04 for the upper crust and 1.82±0.08 for the lower crust and upper mantle. This is consistent with the structural and petrophysical differences between a compositionally uniform and seismically transparent upper crust and a layered and reflective lower crust. The thickness of the lower crust ranges from about 8 km in front of the Ivrea body (ARVO, Arvonio station) in the northern part of the array to a maximum of about 15 km in the southern part of the array. The lower crust reaches a minimum depth of 5 km below the PROV (Provola) station.  相似文献   

14.
Summary. A long seismic refraction profile was carried out between southern Israel and Cyprus. The seismic energy was generated by 33 sea shots each of 0.8 t explosives and was recorded by land stations in Israel and Cyprus and by ocean bottom seismographs deployed along the profile.
The results showed that the continental crust of southern Israel thins towards the Mediterranean underneath a northward thickening sedimentary cover. Cyprus is underlain by a 35 km thick continental crust thinning south-wards and extending to Mt Eratosthenes. Between Mt Eratosthenes and the Israel continental shelf the crystalline crust is composed of high velocity (6.5 km s-1)material and is about 8 km thick. It is covered by 12–14 km of sediments and may represent a fossil oceanic crust.  相似文献   

15.
Summary. New fault plane solutions, Landsat photographs, and seismic refraction records show that rapid extension is now taking place in the northern and eastern parts of the Aegean sea region. The southern part of the Aegean has also been deformed by normal faulting but is now relatively inactive. In northwestern Greece and Albania there is a band of thrusting near the western coasts adjacent to a band of normal faulting further east. The pre-Miocene geology of the islands in the Aegean closely resembles that of Greece and Turkey, yet seismic refraction shows that the crust is now only about 30 km thick beneath the southern part of the sea, compared with nearly 50 km beneath Greece and western Turkey. These observations suggest that the Aegean has been stretched by a factor of two since the Miocene. This stretching can account for the high heat flow. The sinking slab produced by subduction along the Hellenic Arc may maintain the motions, though the geometry and widespread nature of the normal faulting is not easily explained. The motions in northwestern Greece and Albania cannot be driven in the same way because no slab exists in the area. They may be maintained by blobs of cold mantle detaching from the lower half of the lithosphere, produced by a thermal instability when the lithosphere is thickened by thrusting. Hence generation and destruction of the lower part of the lithosphere may occur beneath deforming continental crust without the production of any oceanic crust.  相似文献   

16.
Summary. Czechoslovak deep seismic reflection profiles across the West Carpathians, the first in the Alpine-Himalayan belt, and surface geological data, suggest that the passive margin of the Eurasian plate was obliquely overriden by the upper Carpatho-Pannonian plate during the end of the Krosno sea subduction some 17-14 Ma ago. The following period was dominated by slight oblique continental collision (transpression and transtension) of the West Carpathian-East Alpine continental material escaping from the East Alpine collision zone and Eurasian Brunovistulic passive margin. Crustal shortening in the North was accommodated by significant northerly dipping backthrusting and crustal thickening. Backthrusting is clearly observable on deep seismic lines 2T and 3T. Different subsidence features are present on the deep seismic line 3T. There are active pull-apart graben in the Vienna basin, mid-Miocene (16–10 Ma) low-angle normal faulting in the Danube basin, and there is a normal simple shear zone offsetting the Moho boundary beneath the Danube basin.  相似文献   

17.
The nature of the transition between the Zagros intra-continental collision and the Makran oceanic subduction is a matter of debate: either a major fault cutting the whole lithosphere or a more progressive transition associated with a shallow gently dipping fault restricted to the crust. Microearthquake seismicity located around the transition between the transition zone is restricted to the west of the Jaz-Murian depression and the Jiroft fault. No shallow micro-earthquakes seem to be related to the NNW–SSE trending Zendan–Minab–Palami active fault system. Most of the shallow seismicity is related either to the Zagros mountain belt, located in the west, or to the NS trending Sabzevaran–Jiroft fault system, located in the north. The depth of microearthquakes increases northeastwards to an unusually deep value (for the Zagros) of 40 km. Two dominant types of focal mechanisms are observed in this region: low-angle thrust faulting, mostly restricted to the lower crust, and strike-slip at shallow depths, both consistent with NS shortening. The 3-D inversion of P traveltimes suggests a high-velocity body dipping northeastwards to a depth of 25 km. This high-velocity body, probably related to the lower crust, is associated with the deepest earthquakes showing reverse faulting. We propose that the transition between the Zagros collision and the Makran subduction is not a sharp lithospheric-scale transform fault associated with the Zendan–Minab–Palami fault system. Instead it is a progressive transition located in the lower crust. The oblique collision results in partial partitioning between strike-slip and shortening components within the shallow brittle crust because of the weakness of the pre-existing Zendan–Minab–Palami faults.  相似文献   

18.
Seismic reflection profiles from the Murray Ridge in the Gulf of Oman, northwest Indian Ocean, show a significant component of extension across the predominantly strike-slip Indian–Arabian plate boundary. The Murray Ridge lies along the northern section of the plate boundary, where its trend becomes more easterly and thus allows a component of extension. The Dalrymple Trough is a 25 km wide, steep-sided half-graben, bounded by large faults with components of both strike-slip and normal motion. The throw at the seabed of the main fault on the southeastern side of the half-graben reaches 1800 m. The northwest side of the trough is delineated by a series of smaller antithetic normal faults. Wide-angle seismic, gravity and magnetic models show that the Murray Ridge and Dalrymple Trough are underlain by a crystalline crust up to 17 km thick, which may be continental in origin. Any crustal thinning due to extension is limited, and no new crust has been formed.
We favour a plate model in which the Indian–Arabian plate boundary was initially located further west than the Owen Fracture Zone, possibly along the Oman continental margin, and suggest that during the Oligocene–Early Miocene Indian Ocean plate reorganization, the plate boundary moved to the site of the present Owen Fracture Zone and that motion further west ceased. At this time, deformation began along the Murray Ridge, with both the uplift of basement highs, and subsidence in the troughs tilting the lowest sedimentary unit. Qalhat Seamount was formed at this time. Subsequent sediments were deposited unconformably on the tilted lower unit and then faulted to produce the present basement topography. The normal faulting was accompanied by hanging-wall subsidence, footwall uplift, and erosion. Flat-lying recent sediments show that the major vertical movements have ceased, although continuing earthquakes show that some faulting is still active along the plate boundary.  相似文献   

19.
The inverse tomography method has been used to study the P - and S -waves velocity structure of the crust and upper mantle underneath Iran. The method, based on the principle of source–receiver reciprocity, allows for tomographic studies of regions with sparse distribution of seismic stations if the region has sufficient seismicity. The arrival times of body waves from earthquakes in the study area as reported in the ISC catalogue (1964–1996) at all available epicentral distances are used for calculation of residual arrival times. Prior to inversion we have relocated hypocentres based on a 1-D spherical earth's model taking into account variable crustal thickness and surface topography. During the inversion seismic sources are further relocated simultaneously with the calculation of velocity perturbations. With a series of synthetic tests we demonstrate the power of the algorithm and the data to reconstruct introduced anomalies using the ray paths of the real data set and taking into account the measurement errors and outliers. The velocity anomalies show that the crust and upper mantle beneath the Iranian Plateau comprises a low velocity domain between the Arabian Plate and the Caspian Block. This is in agreement with global tomographic models, and also tectonic models, in which active Iranian plateau is trapped between the stable Turan plate in the north and the Arabian shield in the south. Our results show clear evidence of the mainly aseismic subduction of the oceanic crust of the Oman Sea underneath the Iranian Plateau. However, along the Zagros suture zone, the subduction pattern is more complex than at Makran where the collision of the two plates is highly seismic.  相似文献   

20.
Crustal and upper-mantle seismic discontinuities beneath eastern Turkey are imaged using teleseismic S -to- P converted phases. Three crustal phases are observed: the Moho with depth ranging between 30 and 55 km, indicating variable tectonic regimes within this continental collision zone; an upper-crustal discontinuity at approximately 10 km depth; and various crustal low-velocity zones, possibly associated with recent Quaternary volcanism. Imaging of the upper mantle is complicated by the 3-D geometry of the region, in particular due to the Bitlis–Zagros suture zone. However, several upper-mantle S -to- P converted phase are identified as being the signature of the lithosphere–asthenosphere boundary (LAB). The inferred LAB for the Eastern Anatolian Accretionary Complex indicates that eastern Turkey has an anomalously thin (between ∼60 and 80 km) lithosphere which is consistent with an oceanic slab detachment model. The observed LAB phases for the Arabian shield and Iranian plateau indicate that lithospheric thickness for these stable regions is on the order of 100 to 125 km thick, which is typical of continental margins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号