共查询到20条相似文献,搜索用时 15 毫秒
1.
Pollen and algae microfossils preserved in sediments from Pyramid Lake, Nevada, provide evidence for periods of persistent drought during the Holocene age. We analyzed one hundred nineteen 1-cm-thick samples for pollen and algae from a set of cores that span the past 7630 years. The early middle Holocene, 7600 to 6300 cal yr B.P., was found to be the driest period, although it included one short but intense wet phase. We suggest that Lake Tahoe was below its rim for most of this period, greatly reducing the volume and depth of Pyramid Lake. Middle Holocene aridity eased between 5000 and 3500 cal yr B.P. and climate became variable with distinct wet and dry phases. Lake Tahoe probably spilled intermittently during this time. No core was recovered that represented the period between 3500 and 2600 cal yr B.P. The past 2500 years appear to have had recurrent persistent droughts. The timing and magnitude of droughts identified in the pollen record compares favorably with previously published δ18O data from Pyramid Lake. The timing of these droughts also agrees with the ages of submerged rooted stumps in the Eastern Sierra Nevada and woodrat midden data from central Nevada. Prolonged drought episodes appear to correspond with the timing of ice drift minima (solar maxima) identified from North Atlantic marine sediments, suggesting that changes in solar irradiance may be a possible mechanism influencing century-scale drought in the western Great Basin. 相似文献
2.
New dating in the Carson Sink at the termini of the Humboldt and Carson rivers in the Great Basin of the western United States indicates that lakes reached elevations of 1204 and 1198 m between 915 and 652 and between 1519 and 1308 cal yr B.P., respectively. These dates confirm Morrison's original interpretation (Lake Lahontan: Geology of the Southern Carson Desert, Professional Paper 40, U.S. Geol. Survey, 1964) that these shorelines are late Holocene features, rather than late Pleistocene as interpreted by later researchers. Paleohydrologic modeling suggests that discharge into the Carson Sink must have been increased by a factor of about four, and maintained for decades, to account for the 1204-m lake stand. The hydrologic effects of diversions of the Walker River to the Carson Sink were probably not sufficient, by themselves, to account for the late Holocene lake-level rises. The decadal-long period of increased runoff represented by the 1204-m lake is also reflected in other lake records and in tree ring records from the western United States. 相似文献
3.
Macroscopic plant remains, pollen, insect and mollusc fossils recovered from a cut bank on the Red River in North Dakota, USA, provide evidence that an extensive wetland occupied the southern basin of Lake Agassiz from 10 230 to 9900 14C yr BP. Marsh‐dwelling plants and invertebrates had colonised the surface of a prograding delta during the low‐water Moorhead Phase of Lake Agassiz. A species of Salix (willow) was abundant along distributary channels, and stands of Populus tremuloides (aspen), Ulmus sp. (elm), Betula sp. (birch), and Picea sp. (spruce) grew on the better‐drained sand bars and beach ridges. Most of the species of plants, insects, and molluscs represented as fossils are within their existing geographic ranges. Based on a few species with more northerly distributions, mean summer temperature may have been about 1–2°C lower than the present day. No change in species composition occurred in the transition from the Younger Dryas to Preboreal. At the time that the wetland existed, Lake Agassiz was draining either eastward to the North Atlantic Ocean or northwestward to the Arctic Ocean. The wetland was drowned during the Emerson Phase transgression that resulted in meltwater draining southward to the Gulf of Mexico after 9900 14C yr BP. Copyright © 2005 John Wiley & Sons, Ltd. 相似文献
4.
Continuous pollen and sediment records from two ∼8.5-m-long cores document late Pleistocene and Holocene sedimentation and vegetation change in the Ballston Lake basin, eastern New York State. Pebbles at the base of both cores and the geomorphology of the watershed reflect the presence of the Mohawk River in the basin prior to ∼12,900 ± 70 cal yr B.P. Ballston Lake formed at the onset of the Younger Dryas (YD) by an avulsion of the Mohawk River. The transition from clay to gyttja with low magnetic susceptibility (MS), low bulk density, and high organic carbon indicates rapid warming and increased lake productivity beginning 11,020 cal yr B.P. MS measurements reveal that the influx of magnetic particles, associated with pre-Holocene clastic sedimentation, ceased after ∼10,780 cal yr B.P. The pollen record is subdivided into six zones: BL1 (12,920 to 11,020 cal yr B.P.) is dominated by boreal forest pollen; BL2 (11,020 to 10,780 cal yr B.P.) by pine (Pinus) forest pollen; BL3 (10,780 to 5290 cal yr B.P.) by hemlock (Tsuga) and mixed hardwood pollen; BL4 (5290 to 2680 cal yr B.P.) by mixed hardwood pollen; BL5a (2680 cal yr B.P. to 1030 cal yr B.P.) by conifer and mixed hardwood pollen; and BL5b (1030 cal B.P. to present) by increasing ragweed (Ambrosia) pollen. A 62% decrease in spruce (Picea) pollen in <320 cal years during BL1 reflects rapid warming at the end of the YD. Holocene pollen zones record more subtle climatic shifts than occurred at the end of the YD. One of the largest changes in the Holocene pollen spectra began ∼5300 cal yr B.P., and is characterized by a marked decline in hemlock pollen. This has been noted in other pollen records from the region and may record preferential selection of hemlock by a pathogen or parasites. 相似文献
5.
Kenneth D. Adams 《Quaternary Research》2010,73(1):118-129
The Wono and Trego Hot Springs (THS) tephras are widespread in the Lahontan basin and have been identified in a variety of sedimentary environments at different elevations. Davis (1983) reported lake level to be at about 1256 m when the THS tephra was deposited, an interpretation questioned by Benson et al. (1997) who interpreted lake level to be ≤ 1177 m at that time. This is a significant difference in lake size with important implications for interpreting the climate that prevailed at that time. Based on new interpretations of depositional settings of the THS bed at multiple sites, the larger lake size is correct. Additional sites containing the Wono tephra indicate that it was deposited when lake level was at about 1217 m in the western subbasins and at about 1205 m in the Carson Sink. Sedimentary features associated with progressively deeper paleowater depths follow a predictable pattern that is modulated by proximity to sediment sources and local slope. Fine to coarse sands with wave-formed features are commonly associated with relatively shallow water. Silty clay or clay dominates in paleowater depths > 25 m, with thin laminae of sand and ostracods at sites located adjacent to or downslope from steep mountain fronts. 相似文献
6.
The late Quaternary paleoclimate of eastern Beringia has primarily been studied by drawing qualitative inferences from vegetation shifts. To quantitatively reconstruct summer temperatures, we analyzed lake sediments for fossil chironomids, and additionally we analyzed the sediments for fossil pollen and organic carbon content. A comparison with the δ18O record from Greenland indicates that the general climatic development of the region throughout the last glaciation–Holocene transition differed from that of the North Atlantic region. Between 17 and 15 ka, mean July air temperature was on average 5°C colder than modern, albeit a period of near-modern temperature at 16.5 ka. Total pollen accumulation rates ranged between 180 and 1200 grains cm− 2 yr− 1. At 15 ka, approximately coeval with the Bølling interstadial, temperatures again reached modern values. At 14 ka, nearly 1000 yr after warming began, Betula pollen percentages increased substantially and mark the transition to shrub-dominated pollen contributors. Chironomid-based inferences suggest no evidence of the Younger Dryas stade and only subtle evidence of an early Holocene thermal maximum, as temperatures from 15 ka to the late Holocene were relatively stable. The most recognizable climatic oscillation of the Holocene occurred from 4.5 to 2 ka. 相似文献
7.
The Younger Dryas Event and Holocene Climate Fluctuations Recorded in a Stalagmite from the Panlong Cave of Guilin 总被引:1,自引:1,他引:1
Stein-Erik LAURITZEN 《《地质学报》英文版》1998,72(4):455-465
Comprehensive studies on a stalagmite from the Panlong cave, Guilin, have shown that the isotopic records and sedimentary characteristics can reflect the changes of both palaeotemperatures and palaeorainfall, that is to say, it is possible to get some information about the changes in climate of the area from the speleothem. The results suggest that: (1) the Younger Dryas event might have persisted in the area from 11 300 to 10 800 a B.P.; (2) from 9000 to 7000 a B.P., the climate got warmer and wetter, and the summer monsoon was gradually enhanced; (3) from 7000 to 4500 a B.P., the climate was warm and wet, and the summer monsoon prevailed; and (4) from 4500 a B.P. on, the summer monsoon was weakened and the modern climate pattern appeared, but there were several cold and dry periods, namely, from 4000 to 2500 a B.P., ca. 2400 a B.P. and < 1000 a B.P. 相似文献
8.
泸沽湖地区受人类活动影响较小、对气候变化较为敏感,是开展古气候研究的理想区域。本文以孢粉为重要研究手段,对采自泸沽湖草海地区103cm的浅钻沉积物开展研究,采样间距2cm,共取得52块样品用于孢粉分析。沉积物年龄采用AMS-~(14)C测定,经校正之后钻孔底部年龄为3455cal.a BP。经实验分析之后,所有样品均含有丰富的孢粉类群,反映的植被组成主要以松(Pinus)林为主,铁杉(Tsuga)也较为常见,被子植物中则以栎属(Quercus)占绝对优势,栗属(Castanea)和木犀科(Oleaceae)植物也频繁出现,而草本植物则以禾本科(Gramineae)为主,蓼科(Polygonaceae)、菊科(Asteraceae)和莎草科(Cyperaceae)植物也是重要的组成成分,林下生长有大量的蕨类的植物,主要以紫萁属(Osmunda)、石松属(Lycopodium)和膜蕨科(Hymenophyllaceae)等为主,另外,采样点草海为季节性湿地,水生植物主要以香蒲属(Typha)和藻类植物中的双星藻(Zygnema)和水绵(Spirogyra)最为常见。为了获得该地区晚全新世以来的气候变化曲线,本研究采用共存分析法分别对划分的四个孢粉带进行了古气候的定量重建,年均温和年均降水量分别为:3455cal.a BP至2585cal.a BP,MAT(mean annual temperature)=11.5~18.6℃,MAP(mean annual precipitation)=797.5~1484.3mm;2585cal.a BP至1699cal.a BP,MAT=11.7~18.6℃,MAP=617.9~1523.1mm;1699cal.a BP至595cal.a BP,MAT=8.5~18.6℃,MAP=797.5~1484.3mm;595cal.a BP至今,MAT=5.7~18.6℃,MAP=617.9~1484.3mm。结果显示该地区3455cal.a BP以来气候经历了略微变暖-变凉-持续变凉-回暖四个阶段。本研究还将变化曲线与其他地区同时代的研究结果进行了对比分析,显示年均温的变化趋势与格陵兰冰芯δ~(18)O以及祁连山敦德冰芯所反映的温度变化趋势基本一致,并可观察到中世纪暖期、晚全新世小冰期及现代温暖期。 相似文献
9.
Recent studies of lake-level fluctuations during the last deglaciation in eastern France (Jura Mountains and Pre-Alps) and on the Swiss Plateau show distinct phases of higher water level developing at the beginning and during the latter part of Greenland Stade 1 (i.e., Younger Dryas event) and punctuating the early Holocene period at 11,250-11,050, 10,300-10,000, 9550-9150, 8300-8050, and 7550-7250 cal yr B.P. The phases at 11,250-11,050 and 8300-8050 cal yr B.P. appear to be related to the cool Preboreal Oscillation and the 8200 yr event assumed to be associated with deglaciation events. A comparison of this mid-European lake-level record with the outbursts from proglacial Lake Agassiz in North America suggests that, between 13,000 and 8000 cal yr B.P., phases of positive water balance were the response in west-central Europe to climate cooling episodes, which were induced by perturbation of the thermohaline circulation due to sudden freshwater releases to oceans. This probably was in response to a southward migration of the Atlantic Westerly Jet and its associated cyclonic track. Moreover, it is hypothesized that, during the early Holocene, varying solar activity could have been a crucial factor by amplifying or reducing the possible effects of Lake Agassiz outbursts on the climate. 相似文献
10.
Wetlands are a key archive for paleoclimatic and archeological work, particularly in arid regions, as they provide a focus for human occupation and preserve environmental information. The sedimentary record from 'Ayn Qasiyya, a spring site on the edge of the Azraq Qa, provides a well-dated sequence through the last glacial–interglacial transition (LGIT) allowing environmental changes in the present-day Jordanian desert to be investigated robustly through this time period for the first time. Results show that the wettest period at the site preceded the last glacial maximum, which itself was characterised by marsh formation and a significant Early Epipaleolithic occupation. A sedimentary hiatus between 16 and 10.5 ka suggests a period of drought in the region although seasonal rains and surface waters still allowed seasonal occupation of the Azraq region. Archeological evidence suggests that conditions had improved by the Late Epipaleolithic, about the time of the North Atlantic Younger Dryas. The changes between wet and dry conditions at the site show similarities to patterns in the eastern Mediterranean and in Arabia suggesting the Jordan interior was influenced by changes in both these regions through the LGIT climatic transition. 相似文献
11.
We reconstructed a chronology of glaciation spanning from the Late Pleistocene through the late Holocene for Fish Lake valley in the north‐eastern Alaska Range using 10Be surface exposure dating and lichenometry. After it attained its maximum late Wisconsin extent, the Fish Lake valley glacier began to retreat ca. 16.5 ka, and then experienced a readvance or standstill at 11.6 ± 0.3 ka. Evidence of the earliest Holocene glacial activity in the valley is a moraine immediately in front of Little Ice Age (LIA) moraines and is dated to 3.3–3.0 ka. A subsequent advance culminated at ca. AD 610–900 and several LIA moraine crests date to AD 1290, 1640, 1860 and 1910. Our results indicate that 10Be dating from high‐elevation sites can be used to help constrain late Holocene glacial histories in Alaska, even when other dating techniques are unavailable. Close agreement between 10Be and lichenometric ages reveal that 10Be ages on late Holocene moraines may be as accurate as other dating methods. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
12.
13.
Atsunori Nakamura Yusuke Yokoyama Hideaki Maemoku Hiroshi Yagi Makoto Okamura Hiromi Matsuoka Nao Miyake Toshiki Osada Hirofumi Teramura Danda Pani Adhikari Vishnu Dangol Yosuke Miyairi Stephen Obrochta Hiroyuki Matsuzaki 《第四纪科学杂志》2012,27(2):125-128
The Himalayas are a key location for understanding centennial‐ to millennial‐scale variations in the Asian monsoon, yet few studies of the late Holocene have been conducted in this sensitive area. Direct evidence for shifts in monsoonal wind strength is often limited to marine proxy records, while terrestrial reconstructions (e.g. lake levels and spleothems) focus on precipitation. Here, we present the first evidence of terrestrial summer monsoon wind strength changes from Lake Rara, western Nepal, based on Mn/Ti ratios, a proxy for lake stratification. These data indicate a link between the Arabian Sea and the Himalayas, suggesting that centennial‐ to millennial‐scale changes in wind strength occurred synchronously. Distinct similarity is also observed between Lake Rara and the southern part of China, which may support previous suggestions that the southern part of China is influenced by Indian summer monsoon. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
14.
A nearshore core (LT03-05) from the north basin of Lake Tanganyika provides diatom, pollen, and sedimentary time series covering the last ca. 3800 yr at 15-36 yr resolution. A chronology supported by 21 AMS dates on terrestrial and lacustrine materials allows us to account for ancient carbon effects on 14C ages and to propose refinements of the region's climatic history. Conditions drier than those of today were followed after ca. 3.30 ka by an overall wetting trend. Several century-scale climate variations were superimposed upon that trend, with exceptionally rainy conditions occurring 1.70-1.40 ka, 1.15-0.90 ka, 0.70-0.55 ka, and 0.35-0.20 ka. Around 0.55-0.35 ka, during the Spörer sunspot minimum, drier conditions developed in the northern Tanganyika basin while more humid conditions were registered at Lakes Victoria and Naivasha. This indicates significant variability in the nature and distribution of near-equatorial rainfall anomalies during much of the Little Ice Age. 相似文献
15.
16.
Kenneth D. Adams Ted Goebel Kelly Graf Geoffrey M. Smith Anna J. Camp Richard W. Briggs David Rhode 《Geoarchaeology》2008,23(5):608-643
The Great Basin of the western U.S. contains a rich record of Late Pleistocene and Holocene lake‐level fluctuations as well as an extensive record of human occupation during the same time frame. We compare spatial‐temporal relationships between these records in the Lahontan basin to consider whether lake‐level fluctuations across the Pleistocene‐Holocene transition controlled distribution of archaeological sites. We use the reasonably well‐dated archaeological record from caves and rockshelters as well as results from new pedestrian surveys to investigate this problem. Although lake levels probably reached maximum elevations of about 1230–1235 m in the different subbasins of Lahontan during the Younger Dryas (YD) period, the duration that the lakes occupied the highest levels was brief. Paleoindian and Early Archaic archaeological sites are concentrated on somewhat lower and slightly younger shorelines (_1220–1225 m) that also date from the Younger Dryas period. This study suggests that Paleoindians often concentrated their activities adjacent to large lakes and wetland resources soon after they first entered the Great Basin. © 2008 Wiley Periodicals, Inc. 相似文献
17.
V. B. Bazarova L. M. Mokhova L. A. Orlova P. S. Belyanin 《Russian Journal of Pacific Geology》2008,2(3):272-276
New data on the evolution of Lake Khanka and the formation of onshore bars at its western coast in the late Holocene are discussed in the paper. The late Subatlantic age of the bars and climatic conditions of their formation have been established. In the middle Holocene (SA II), the climate was warm and Lake Khanka was in the transgressive phase. Its level was 0.8–1 m higher than at present. At the end of the Subatlantic period (SA III), when the climatic conditions were cooler, regression of the lake began and continues up to now. The spore-pollen samples of different genesis taken near the studied section were examined for the more reliable interpretation of paleoclimatic events. 相似文献
18.
19.
Two sedimentary cores with pollen, charcoal and radiocarbon data are presented. These records document the Late‐glacial and Holocene dry forest vegetation, fire and environmental history of the southern Cauca Valley in Colombia (1020 m). Core Quilichao‐1 (640 cm; 3° 6′N, 76° 31′W) represents the periods of 13 150–7720 14C yr BP and, following a hiatus, from 2880 14C yr BP to modern. Core La Teta‐2 (250 cm; 3° 5′N, 76° 32′W) provides a continuous record from 8700 14C yr BP to modern. Around 13 150 14C yr BP core Quilichao‐1 shows an active Late‐glacial drainage system and presence of dry forest. From 11 465 to 10 520 14C yr BP dry forest consists mainly of Crotalaria, Moraceae/Urticaceae, Melastomataceae/Combretaceae, Piper and low stature trees, such as Acalypha, Alchornea, Cecropia and Celtis. At higher elevation Andean forest comprising Alnus, Hedyosmum, Quercus and Myrica was common. After 10 520 14C yr BP the floral composition of dry forest changed, with extensive open grass vegetation indicative of dry climatic conditions. This event may coincide with the change to cool and dry conditions in the second part of the El Abra stadial, an equivalent to the Younger Dryas. From 8850 14C yr BP the record from La Teta indicates dry climatic conditions relative to the present, these prevailing up to 2880 14C yr BP at Quilichao and to 2720 14C yr BP at La Teta. Severe dryness reached maxima at 7500 14C yr BP and 4300 14C yr BP, when dry forest reached maximum expansion. Dry forest was gradually replaced by grassy vegetation, reaching maximum expansion around 2300 14C yr BP. After 2300 14C yr BP grassy vegetation remains abundant. Presence of crop taxa (a.o. Zea mays), disturbance indicators (Cecropia) and an increase in charcoal point to the presence of pre‐Columbian people since 2300 14C yr BP. After 950 14C yr BP, expansion of secondary forest taxa may indicate depopulation and abandonment of previously cultivated land. After 400 14C yr BP, possibly related to the Spanish conquest, secondary forest expanded and charcoal concentrations increased, possibly indicating further reduction of cultivated land. During the past century, Heliotropium and Didymopanax became abundant in an increasingly degraded landscape. Copyright © 2002 John Wiley & Sons, Ltd. 相似文献
20.
Glaciated alpine landscapes are sensitive to changes in climate. Shifts in temperature and precipitation can cause significant changes to glacier size and terminus position, the production and delivery of organic mass, and in the hydrologic energy related to the transport of water and sediment through proglacial environments. A sediment core representing a 12,900-yr record collected from Swiftcurrent Lake, located on the eastern side of Glacier National Park, Montana, was analyzed to assess variability in Holocene and latest Pleistocene environment. The spectral signature of total organic carbon content (%TOC) since ~ 7.6 ka matches that of solar forcing over 70-500 yr timescales. Periodic inputs of dolomite to the lake reflect an increased footprint of Grinnell Glacier, and occur during periods when sediment sinks are reduced, glacial erosion is increased, and hydrologic energy is increased. Grain size, carbon/nitrogen (C/N) ratios, and %TOC broadly define the termination of the Younger Dryas chronozone at Swiftcurrent Lake, as well as major Holocene climate transitions. Variability in core parameters is linked to other records of temperature and aridity in the northern Rocky Mountains over the late Pleistocene and Holocene. 相似文献