首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An ∼8000-cal-yr stratigraphic record of vegetation change from the Sierra de Apaneca, El Salvador, documents a mid-Holocene warm phase, followed by late Holocene cooling. Pollen evidence reveals that during the mid-Holocene (∼8000-5500 cal yr B.P.) lowland tropical plant taxa were growing at elevations ∼200-250 m higher than at present, suggesting conditions about 1.0°C warmer than those prevailing today. Cloud forest genera (Liquidambar, Juglans, Alnus, Ulmus) were also more abundant in the mid-Holocene, indicating greater cloud cover during the dry season. A gradual cooling and drying trend began by ∼5500 cal yr B.P., culminating in the modern forest composition by ∼3500 cal yr B.P. A rise in pollen from weedy plant taxa associated with agriculture occurred ∼5000 cal yr B.P., and pollen from Zea first appeared in the record at ∼4440 cal yr B.P. Human impacts on local vegetation remained high throughout the late Holocene, but decreased abruptly following the Tierra Blanca Joven (TBJ) eruption of Volcán Ilopango at ∼1520 cal yr B.P. The past 1500 years are marked by higher lake levels and periodic depositions of exogenous inorganic sediments, perhaps indicating increased climatic variability.  相似文献   

2.
In 1997, seismic surveys in the troughs off northwest and north Iceland indicated the presence of a major, regional sub‐bottom reflector that can be traced over large areas of the shelf. Cores taken in 1997, and later in 1999 on the IMAGES V cruise, penetrated through the reflector. In core MD99‐2269 in Húnaflóaáll, this reflector is shown to be represented by a basaltic tephra with a geochemical signature and radiocarbon age correlative with the North Atlantic‐wide Saksunarvatn tephra. We trace this tephra throughout northwest Iceland in a series of marine and lake cores, as well as in terrestrial sediments; it forms a layer 1 to 25 cm thick of fine‐ to medium‐grained basaltic volcanic shards. The base of the tephra unit is always sharp but visual inspection and other measurements (carbonate and total organic carbon weight %) indicate a more diffuse upper boundary associated with bioturbation and with sediment reworking. Off northwest Iceland the Saksunarvatn tephra has distinct sediment magnetic properties. This is evident as a dramatic reduction in magnetic susceptibility, an increase in the frequency dependant magnetic susceptibility and ‘hard’ magnetisation in a −0.1T IRM backfield. Geochemical analyses from 11 sites indicate a tholeiitic basalt composition, similar to the geochemistry of a tephra found in the Greenland ice‐core that dates to 10 180 ± 60 cal. yr BP, and which was correlated with the 9000 14C yr BP Saksunarvatn tephra. We present accelerator mass spectrometry 14C dates from the marine sites, which indicate that the ocean reservoir correction is close to ca. 400 yr at 9000 14C yr BP off northwest Iceland. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

3.
In the west-central part of Lago Argentino, the Puerto Bandera moraines are clearly detached from longer, more prominent moraines of the last glaciation and from shorter and smaller Neoglacial moraines. Scientists have long speculated about the age of the Puerto Bandera moraines. Detailed geomorphologic studies in the western area of Lago Argentino, including stratigraphic profiles at Bahía del Quemado in the northern branch (Brazo Norte), indicate that the Puerto Bandera moraines were deposited by three pulses of ice. Each of the three pulses is represented by single moraine ridges and belts of tightly arranged ridges. The timing of the three glacier advances was established by radiocarbon dating, including data published by John Mercer. The oldest moraine system, formed during the Puerto Bandera I substade, was deposited ca. 13,000 14C yr B.P. Moraines of the Puerto Bandera II substade were deposited ca. 11,000 14C yr B.P. The youngest moraine system was deposited during a minor readvance, shortly before 10,390 C14 yr B.P., and thus appears to have occurred some time during the European Younger Dryas interval. After this third substade, the ice tongues retreated into the interior branches of Lago Argentino and have remained there since. Evidence found at Bahía del Quemado, together with data provided by other authors, attests to a significant climatic change by the middle Holocene, which we believe occurred during the Herminita advance, the first Holocene glacial readvance recognized within the area.  相似文献   

4.
Seismic stratigraphy, sedimentary facies, pollen stratigraphy, diatom-inferred salinity, stable isotope (δ18O and δ13C), and chemical composition (Sr/Ca and Mg/Ca) of authigenic carbonates from Moon Lake cores provide a congruent Holocene record of effective moisture for the eastern Northern Great Plains. Between 11,700 and 950014C yr B.P., the climate was cool and moist. A gradual decrease in effective moisture occurred between 9500 and 710014C yr B.P. A change at about 710014C yr B.P. inaugurated the most arid period during the Holocene. Between 7100 and 400014C yr B.P., three arid phases occurred at 6600–620014C yr B.P., 5400–520014C yr B.P., and 4800–460014C yr B.P. Effective moisture generally increased after 400014C yr B.P., but periods of low effective moisture occurred between 2900–280014C yr B.P. and 1200–80014C yr B.P. The data also suggest high climatic variability during the last few centuries. Despite the overall congruence, the biological (diatom), sedimentological, isotopic, and chemical proxies were occassionally out of phase. At these times the evaporative process was not the only control of lake-water chemical and isotopic composition.  相似文献   

5.
Tephra-fall deposits from Cook Inlet volcanoes were detected in sediment cores from Tustumena and Paradox Lakes, Kenai Peninsula, Alaska, using magnetic susceptibility and petrography. The ages of tephra layers were estimated using 21 14C ages on macrofossils. Tephras layers are typically fine, gray ash, 1-5 mm thick, and composed of varying proportions of glass shards, pumice, and glass-coated phenocrysts. Of the two lakes, Paradox Lake contained a higher frequency of tephra (0.8 tephra/100 yr; 109 over the 13,200-yr record). The unusually large number of tephra in this lake relative to others previously studied in the area is attributed to the lake's physiography, sedimentology, and limnology. The frequency of ash fall was not constant through the Holocene. In Paradox Lake, tephra layers are absent between ca. 800-2200, 3800-4800, and 9000-10,300 cal yr BP, despite continuously layered lacustrine sediment. In contrast, between 5000 and 9000 cal yr BP, an average of 1.7 tephra layers are present per 100 yr. The peak period of tephra fall (7000-9000 cal yr BP; 2.6 tephra/100 yr) in Paradox Lake is consistent with the increase in volcanism between 7000 and 9000 yr ago recorded in the Greenland ice cores.  相似文献   

6.
Radiocarbon‐dated sediment cores from six lakes in the Ahklun Mountains, south‐western Alaska, were used to interpolate the ages of late Quaternary tephra beds ranging in age from 25.4 to 0.4 ka. The lakes are located downwind of the Aleutian Arc and Alaska Peninsula volcanoes in the northern Bristol Bay area between 159° and 161°W at around 60°N. Sedimentation‐rate age models for each lake were based on a published spline‐fit procedure that uses Monte Carlo simulation to determine age model uncertainty. In all, 62 14C ages were used to construct the six age models, including 23 ages presented here for the first time. The age model from Lone Spruce Pond is based on 18 ages, and is currently the best‐resolved Holocene age model available from the region, with an average 2σ age uncertainty of about ± 109 years over the past 14.5 ka. The sedimentary sequence from Lone Spruce Pond contains seven tephra beds, more than previously found in any other lake in the area. Of the 26 radiocarbon‐dated tephra beds at the six lakes and from a soil pit, seven are correlated between two or more sites based on their ages. The major‐element geochemistry of glass shards from most of these tephra beds supports the age‐based correlations. The remaining tephra beds appear to be present at only one site based on their unique geochemistry or age. The 5.8 ka tephra is similar to the widespread Aniakchak tephra [3.7 ± 0.2 (1σ) ka], but can be distinguished conclusively based on its trace‐element geochemistry. The 3.1 and 0.4 ka tephras have glass major‐ and trace‐element geochemical compositions indistinguishable from prominent Aniakchak tephra, and might represent redeposited beds. Only two tephra beds are found in all lakes: the Aniakchak tephra (3.7 ± 0.2 ka) and Tephra B (6.1 ± 0.3 ka). The tephra beds can be used as chronostratigraphic markers for other sedimentary sequences in the region, including cores from Cascade and Sunday lakes, which were previously undated and were analyzed in this study to correlate with the new regional tephrostratigraphy. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
Uncalibrated radiocarbon data from core PLC92B taken from Wizards Cove in the Pyramid Lake subbasin indicate that the Trego Hot Springs and Wono tephra layers were deposited 23,200 ± 300 and 27,300 ± 30014C yr B.P. (uncorrected for reservoir effect). Sedimentological data from sites in the Pyramid Lake and Smoke Creek–Black Rock Desert subbasins indicate that the Trego Hot Springs tephra layer was deposited during a relatively dry period when Pyramid Lake was at or below its spill point (1177 m) to the Winnemucca Lake subbasin. The Wono tephra layer was deposited when lake depth was controlled by spill across Emerson Pass sill (1207 m) to the Smoke Creek–Black Rock Desert subbasin.18O data from core PLC92B also support the concept that the Trego Hot Springs tephra fell into a relatively shallow Pyramid Lake and that the Wono tephra fell into a deeper spilling lake.  相似文献   

8.
A Glacier Peak tephra has been found in the mid-Holocene sediment records of two subalpine lakes, Frozen Lake in the southern Coast Mountains and Mount Barr Cirque Lake in the North Cascade Mountains of British Columbia, Canada. The age–depth relationship for each lake suggests an age of 5000–5080 14C yr B.P. (5500–5900 cal yr B.P.) for the eruption which closely approximates the estimated age (5100–5500 14C yr B.P.) of the Dusty Creek tephra assemblage found near Glacier Peak. The tephra layer, which has not been reported previously from distal sites and was not readily visible in the sediments, was located using contiguous sampling, magnetic susceptibility measurements, wet sieving, and light microscopy. The composition of the glass in pumice fragments was determined by electron microprobe analysis and used to confirm the probable source of this mid-Holocene tephra layer. Using the same methods, the A.D. 1481–1482 Mount St. Helens We tephra layer was identified in sediments from Dog Lake in southeastern British Columbia, suggesting the plume drifted further north than previously thought. This high-resolution method for identifying tephra layers in lake sediments, which has worldwide application in tephrachronologic/paleoenvironmental studies, has furthered our knowledge of the timing and airfall distribution of Holocene tephras from two important Cascade volcanoes.  相似文献   

9.
Loess and dune sands that mantle volcanic rocks on the northwest flank of Mauna Kea volcano consist predominantly of fine-grained pyroclasts of the alkalic Laupahoehoe Volcanics produced by explosive eruptions. The loess is divided into lower and upper units, separated by a well-developed paleosol, while older and younger dune sands are separated by loess. Four interstratified tephra marker horizons aid in regional stratigraphic correlation. Radiocarbon ages of charcoal fragments within the loess, U-series ages of rhizoliths in the dune sand, and K/Ar ages and relative stratigraphic positions of lava flows provide a stratigraphic and temporal framework. The lower loess overlies lava flows less than 103,000 ± 10,000 K/Ar yr old, and14C dates from the paleosol developed at its top average ca. 48,000 yr. Loess separating the dune sand units ranges from ca. 38,000 to 25,00014C yr old; the youngest ages from the upper loess are 17,000–18,00014C yr B.P. Dips of sand-dune foreset strata, isopachs on the upper loess, and reconstructed isopachs representing cumulative thickness of tephra associated with late-Pleistocene pyroclastic eruptions suggest that vents upslope (upwind) from the sand dunes were the primary source of the eolian sediments. Average paleowind directions during the eruptive interval (ca. 50,000–15,000 yr B.P.), inferred from cinder-cone asymmetry, distribution of tephra units, orientation of dune foreset strata, and the regional pattern of loess isopachs, suggest that Mauna Kea has remained within the trade-wind belt since before the last glaciation.  相似文献   

10.
Valleys tributary to the Mississippi River contain fossiliferous slackwater lake sediment (Equality Formation) deposited in response to aggradation of the Mississippi River valley during the last glaciation. In the St. Louis Metro East area, the lower part of the Equality Formation is primarily laminated, fossiliferous silt and clay deposited from about 44,150 to 24,310 14C yr B.P. The upper Equality Formation is primarily very fine sand to silt deposited from about 21,200 to 17,000 14C yr B.P. Among the four cores that sample this succession in the St. Louis Metro East area, core MNK-3 (38.64EN, 90.01EW) was selected for detailed study. Three sources are distinguished by the following characteristics: (1) gray smectite-quartz-Se-rich, feldspar-poor material of the Des Moines, Wadena, and James lobes; (2) reddish brown kaolinite-Cu-Fe-rich sediment of the Superior and Rainy lobes; and (3) brown illite-dolomite-Sr-rich sediment of the Lake Michigan and Green Bay lobes. The earliest sediments (44,150 to 41,700 14C yr B.P.) were derived from the central and western provenances and are chronocorrelative with the lower Roxana Silt. A hiatus occurred from about 41,700 to 29,030 14C yr B.P. when much of the middle Roxana Silt (Meadow Member) was deposited on adjacent uplands. The youngest sediment includes evidence of heightened activity of the Superior Lobe at about 29,000 14C yr B.P., the Lake Michigan and Green Bay lobes from about 25,000 to 24,000 14C yr B.P., and the Wadena-Des Moines-James lobes at about 21,000 14C yr B.P.  相似文献   

11.
A newly identified tephra in stratified deposits in southwestern Utah, dated 14,000 14C yr B.P., may aid in correlating late Pleistocene deposits across parts of the southern Great Basin and west-central Colorado Plateau. Geochemical analyses of the ash suggest the tephra originated from Mono Craters, California, and most probably correlates with Wilson Creek ash #3. Because the ash is 2 mm thick 550 km from its source, the event may have been larger than others correlated to Mono Craters eruptions.  相似文献   

12.
Major Holocene monsoon changes in continental Southeast Asia are reconstructed from analysis of 14C-dated changes in pollen and organic/inorganic carbon in sediment cores taken from permanent, closed-basin, volcanic lakes in Ratanakiri Province, northeastern Cambodia. Analysis focuses on the nature and timing of monsoon changes, inferred from changes in vegetation and lake conditions. These data provide the first well-dated palynological record, covering most of the Holocene and continuous up to the present, from a terrestrial site in mainland Southeast Asia. The record from a 15-m core retrieved from Kara Lake, representing the last 9300 years, shows that the late Glacial conditions ended about 8500 14C yr B.P., more than 1000 years later than sites in southwest China. Summer monsoon intensity increased over the period ca. 8400–5300 14C yr B.P., similar to most other sites in the Asian monsoon region. A subsequent expansion of secondary forests at the expense of dense semievergreen forests suggest a drier climate leading to more frequent fire disturbance. After ca. 3500 14C yr B.P. disturbance frequency may have increased further with increasing seasonality. From ca. 2500 14C yr B.P. to the present, dense forest has recovered in a mosaic with annually burned dry forest, but climate may not be the main control on local vegetation dynamics in the late Holocene.  相似文献   

13.
New cross sections and dates from along the Pomme de Terre River clarify the complex local history of valley development and floodplain sedimentation. The observed history begins with a series of ancient bedrock strath terraces that record past bedrock valley positions at 15.5 to more than 58 m above the modern bedrock floor. Each strath is capped by 1–2 m of channel gravel and sand permeated by red clay. Sometime previous to ca. 140,000 yr B.P., a much lower bedrock valley only about 5–6 m above the modern level was excavated. By 140,000 yr B.P., accumulation of red and gray mottled silty clay had commenced, and had reached to 8.5 m above the modern floodplain before 48,900 ± 900 14C yr B.P. Sometime between ca. 49,000 and 45,000 14C yr B.P., erosion caused abandonment of an oxbow meander, and lowered the bedrock valley to about its present depth. Younger yellowish-red and gray mottled silty clay alluvium then began accumulating. This mid-Wisconsinan fill reached to 2.5 m above the modern floodplain sometime before 31,800 ± 1340 14C yr B.P., at which time another erosional phase was in progress. A late Wisconsinan olive clay accumulated between 27,480 ± 1950 and ca. 23,000 14C yr B.P., followed by approximate stability until 13,550 ± 400 14C yr B.P. After stability, an erosional episode began, but by 10,200 ± 330 14C yr B.P., deposition of a distinctive brown clayey silt was underway. This early Holocene fill reached to about the same level as the mid-Wisconsinan fill by 8100 ± 140 14C yr B.P. Erosion occurred between this date and 7490 ± 170 14C yr B.P., but the former floodplain level was rapidly reattained, and was apparently stable until ca. 5000 14C yr B.P. Finally, erosional unconformities and 17 dates from the brown clayey silt, and from younger grayish-brown silty sand underlying the modern floodplain, record subsequent episodes of floodplain erosion at ca. 5000, 2900, 1500 and 350 14C yr B.P. The timing of Pomme de Terre floodplain sedimentary regimes, characterized by net aggradation, erosion, or stability, may have been controlled by climate. In particular, both periods of stability appear to have been coeval to times of strongly zonal upper atmospheric circulation. Intensified zonal circulation would have resulted in less frequent large floods and an increased dominance by floods of small to moderate size. In contrast, there are no obvious parallels to be drawn between this local alluvial history and sea level or glacial outwash induced baselevel changes.  相似文献   

14.
Sediment cores with new radiocarbon dates from the southern outlet of glacial Lake Agassiz indicate that meltwater delivery to the Mississippi valley was disrupted at 10,800 14C yr B.P. and the outlet was abandoned by 9400 14C yr B.P. These findings confirm the timing of generally accepted terminations of the Lockhart and Emerson Phases of Lake Agassiz. Additionally, the radiocarbon chronology indicates that the spillway was fully formed by 10,800 14C yr B.P. and that the occupancy in late-Emerson time was likely short-lived with minimal spillway erosion.  相似文献   

15.
Five widespread tephra layers are found in late Quaternary sediments (0–130,000 yr B.P.) of the Eastern Mediterranean Sea. These layers have been correlated among abyssal cores and to their respective terrestrial sources by electron-probe microanalysis of glass and pumice shards. Major element variations are sufficient to discriminate unambiguously between the five major layers. Oxygen isotope stratigraphy in one of the cores studied was used to data four of the five layers. Two of the widespread layers are derived from explosive eruptions of the Santorini volcanic complex: the Minoan Ash (3370 yr B.P.) and the Acrotiri Ignimbrite (18,000 yr B.P.). An additional layer, found in one core only, is most likely correlated to the Middle Pumice Series of Santorini (approximately 100,000 yr B.P.). Two layers are correlated to deposits on the islands of Yali and Kos and date to 31,000 and 120,000 yr B.P., respectively. One layer originated from the Neapolitan area of Italy 38,000 yr B.P.  相似文献   

16.
In order to establish paleoenvironmental conditions during the late Quaternary, four cores from the Basin of Mexico (central Mexico) were drilled in Chalco Lake, located in the southeastern part of the basin. The upper 8 m of two parallel cores were studied, using paleomagnetic, loss-on-ignition, pollen, and diatom analyses. Based on 11 14C ages, the analyzed record spans the last 19,000 14C yr B.P. Volcanic activity has affected microfossil abundances, both directly and indirectly, resulting in absence or reduction of pollen and diatom assemblages. Important volcanic activity took place between 19,000 and 15,000 yr B.P. when the lake was a shallow alkaline marsh and an increase of grassland pollen suggests a dry, cold climate. During this interval, abrupt environmental changes with increasing moisture occurred. From 15,000 until 12,500 yr B.P. the lake level increased and the pollen indicates wetter conditions. The highest lake level is registered from 12,500 to ca. 9000 yr B.P. The end of the Pleistocene is characterized by an increase in humidity. From 9000 until ca. 3000 yr B.P. Chalco Lake was a saline marsh and the pollen record indicates warmer conditions. After 3000 yr B.P. the lake level increased and human disturbance dominates the lacustrine record.  相似文献   

17.
Pollen in Quaternary deposits from the subtropical Hanjiang Delta records three major phases in the local vegetation and climate history during the last 55,000 yr: (1) a prevalent cool-to-temperate and humid climate at ca. 24,000 14C yr B.P. is indicated by abundant pollen of temperate trees including conifers; (2) between 20,000 and 15,000 14C yr B.P., a cold, dry environment was associated with low sea level during the last glaciation, leading to subaerial exposure, weathering, and interruption of sedimentation, as well as departure from the region of Dacrydium and Sonneratia; (3) a short-term expansion of grassland at ca. 10,300 14C yr B.P. reduced the predominant Lauraceae-Fagaceae evergreen forest, possibly corresponding to the Younger Dryas cooling. The combined data indicate a maximum sea-level rise in the mid-Holocene (7500–4000 14C yr B.P.) and a marine influence in the late Pleistocene at 45,000–20,000 14C yr B.P. The Holocene warming, however, did not bring back moisture-sensitive taxa, indicating high seasonal aridity probably caused by renewed monsoon conditions.  相似文献   

18.
Andesitic and basaltic andesitic tephra layers are abundant in Holocene deposits from the Antarctic Peninsula. Visually discernible tephra horizons occur in three lakes on Livingston Island. Tephra in two other lakes and in a moss bank on Elephant Island, with very low ash concentrations, were detected magnetically. Deception Island is the most likely volcanic source for the tephra. With direct 14C dating, age/depth curves, and cross-correlations at least 14 tephra horizons dating to between ca. 4700 and 250 yr B.P. were identified and now form the basis for a preliminary regional tephrochronology that will be a valuable dating tool for investigating the Holocene climatic history of Antarctica.  相似文献   

19.
Holocene environments have been reconstructed by multiproxy studies of an 850-cm-long core from Rio Curuá dating to >8000 14C yr B.P. The low-energy river lies in the eastern Amazon rain forest in the Caxiuanã National Forest Reserve, 350 km west of Belém in northern Brazil. Sedimentological, mineralogical, and geochemical dates demonstrate that the deposits correspond to two different environments, sediments of an active river before 8000 14C yr B.P. and later a passive river system. The pollen analytical results indicate four different local and regional Holocene paleoenvironmental periods: (1) a transition to a passive fluvial system and a well-drained terra firme (unflooded upland) Amazon rain forest with very limited development of inundated forests (várzea and igapó) (>7990–7030 14C yr B.P.); (2) a sluggish river with a local Mauritia palm-swamp and similar regional vegetation, as before (7030–5970 14C yr B.P.); (3) a passive river, forming shallow lake conditions and with still-abundant terra firme forest in the study region (5970–2470 14C yr B.P.); and (4) a blocked river with high water levels and marked increase of inundated forests during the last 2470 14C yr B.P. Increased charcoal during this last period suggests the first strong presence of humans in this region. The Atlantic sea level rise was probably the major factor in paleoenvironmental changes, but high water stands might also be due to greater annual rainfall during the late Holocene.  相似文献   

20.
A geochemical traverse across Honduras reveals the heterogeneity of the mantle underneath Central America. Alkali basalts from Lake Yojoa (170 km behind the front) have low 87Sr/86Sr but high La/Yb, and elevated incompatible trace element abundances, consistent with derivation from a normal mid-ocean ridge basalt source mantle via low degrees of melting. These lavas lack evidence for an enriched source thought to be intermingled with normal mid-ocean ridge basalt source mantle beneath most of Central America. The amplitude of the subducted slab signature decreases smoothly with distance from the volcanic front. Lavas from Zacate Grande, the area nearest to the volcanic front (17 km behind the arc), display large ion lithophile element enrichment and high field strength element depletion indicating the involvement of subducted material in magma genesis. Components of subducted material are not evident in lavas from Lake Yojoa, the area furthest from the arc. Basalts and basaltic andesites from Tegucigalpa, 102 km behind the volcanic front, are geochemically intermediate between those of Lake Yojoa and Zacate Grande. The lavas from Tegucigalpa show a decreased influence of the subduction component, and are affected by assimilation-fractional crystallization processes at shallow depths. The gradual decrease in the subducted component from the volcanic front to Zacate Grande, Tegucigalpa and finally Lake Yojoa contrasts with the abrupt decrease documented for southeast Guatemala, the only other area in Central America where a cross-arc transect has been studied. Received: 1 July 1995 / Accepted: 16 July 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号