共查询到20条相似文献,搜索用时 0 毫秒
1.
The record of Almoloya Lake in the Upper Lerma basin starts with the deposition of the late Pleistocene Upper Toluca Pumice layer. The data from this interval indicate a period of climatic instability that lasted until 8500 cal yr B.P., when temperature conditions stabilized, although moisture fluctuations continued until 8000 cal yr B.P. Between 8500 and 5000 cal yr B.P. a temperate climate is indicated by dominance of Pinus. From 5000 to 3000 cal yr B.P. Quercus forest expanded, suggesting a warm temperate climate: a first indication of drier environmental conditions is an increase in grassland between 4200 and 3500 cal yr B.P. During the Late Holocene (3300 to 500 cal yr B.P.) the increase of Pinus and grassland indicates temperate dry conditions, with a considerable increase of Pinus between 1100 and 950 cal yr B.P. At the end of this period, humidity increased. The main tendency during the Holocene was a change from humid to dry conditions. During the Early Holocene, Almoloya Lake was larger and deeper; the changing humidity regime resulted in a fragmented marshland, with the presence of aquatic and subaquatic vegetation types. 相似文献
2.
Philippe Sorrel Speranta-Maria Popescu Stefan Klotz Jean-Pierre Suc Hedi Oberhnsli 《Quaternary Research》2007,67(3):357-370
High-resolution pollen analyses ( 50 yr) from sediment cores retrieved at Chernyshov Bay in the NW Large Aral Sea record shifts in vegetational development from subdesertic to steppe vegetation in the Aral Sea basin during the late Holocene. Using pollen data to quantify climatic parameters, we reconstruct and date for the first time significant changes in moisture conditions in Central Asia during the past 2000 yr. Cold and arid conditions prevailed between ca. AD 0 and 400, AD 900 and 1150, and AD 1500 and 1650 with the extension of xeric vegetation dominated by steppe elements. These intervals are characterized by low winter and summer mean temperatures and low mean annual precipitation (Pmm < 250 mm/yr). Conversely, the most suitable climate conditions occurred between ca. AD 400 and 900, and AD 1150 and 1450, when steppe vegetation was enriched by plants requiring moister conditions (Pmm 250–500 mm/yr) and some trees developed. Our results are fairly consistent with other late Holocene records from the eastern Mediterranean region and the Middle East, showing that regional rainfall in Central Asia is predominantly controlled by the eastern Mediterranean cyclonic system when the North Atlantic Oscillation (NAO) is in a negative phase. 相似文献
3.
The last ca. 20,000 yr of palaeoenvironmental conditions in Podocarpus National Park in the southeastern Ecuadorian Andes have been reconstructed from two pollen records from Cerro Toledo (04°22'28.6S, 79°06'41.5W) at 3150 m and 3110 m elevation. Páramo vegetation with high proportions of Plantago rigida characterised the last glacial maximum (LGM), reflecting cold and wet conditions. The upper forest line was at markedly lower elevations than present. After ca. 16,200 cal yr BP, páramo vegetation decreased slightly while mountain rainforest developed, suggesting rising temperatures. The trend of increasing temperatures and mountain rainforest expansion continued until ca. 8500 cal yr BP, while highest temperatures probably occurred from 9300 to 8500 cal yr BP. From ca. 8500 cal yr BP, páramo vegetation re-expanded with dominance of Poaceae, suggesting a change to cooler conditions. During the late Holocene after ca. 1800 cal yr BP, a decrease in páramo indicates a change to warmer conditions. Anthropogenic impact near the study site is indicated for times after 2300 cal yr BP. The regional environmental history indicates that through time the eastern Andean Cordillera in South Ecuador was influenced by eastern Amazonian climates rather than western Pacific climates. 相似文献
4.
Field, micromorphological, pollen, whole soil (XRF), and stable isotope geochemical methods were used to evaluate the latest Pleistocene to Holocene climate record from a floodplain-terrace system in southeastern West Virginia. A late Pleistocene (22,940 ± 150 14C yr B.P.) silt paleosol with low-chroma colors formed from fluviolacustrine sediment deposited during the last glacial maximum (Wisconsinan) and records a cooler full-glacial paleoclimate. Fluvial gravel deposited between the latest Pleistocene and earliest Holocene (prior to 6360 ± 40 14C yr B.P.) was weathered in the middle Holocene under warmer, drier climate conditions, possibly correlated with the Hypsithermal and Altithermal Events of the eastern and southwestern United States, respectively. The glacial to interglacial climate shift is recorded by: (1) changes from a poorly drained landscape with fine-textured soil, characterized by high organic C and redoximorphic features related to Fe removal and concentration, to a well-drained, coarse-textured setting without gley and with significant argillic (Bt) horizon development; (2) changes from a high Zr and Ti silt-dominated parent material to locally derived, coarse fluvial gravels lower in Zr and Ti; (3) a shift from dominantly conifer and sedge pollen in the paleosol to a modern oak/hickory hardwood assemblage; and (4) a shift in δ13C values of soil organic matter from −28‰ to −24‰ PDB, suggesting an ecosystem shift from cooler, C3-dominated flora to one that was mixed C3 and C4, but still predominantly composed of C3 plants. A root-restrictive placic horizon developed between the late Pleistocene silt paleosol and the overlying fluvial gravel because of the high permeability contrast between the two textures of soil materials. This layer formed a barrier that effectively isolated the Pleistocene paleosol from later Holocene pedogenic processes. 相似文献
5.
The paucity of low- and middle-elevation paleoecologic records in the Northern Rocky Mountains limits our ability to assess current environmental change in light of past conditions. A 10,500-yr-long vegetation, fire and climate history from Lower Decker Lake in the Sawtooth Range provides information from a new region. Initial forests dominated by pine and Douglas-fir were replaced by open Douglas-fir forest at 8420 cal yr BP, marking the onset of warmer conditions than present. Presence of closed Douglas-fir forest between 6000 and 2650 cal yr BP suggests heightened summer drought in the middle Holocene. Closed lodgepole pine forest developed at 2650 cal yr BP and fires became more frequent after 1450 cal yr BP. This shift from Douglas-fir to lodgepole pine forest was probably facilitated by a combination of cooler summers, cold winters, and more severe fires than before. Five drought episodes, including those at 8200 cal yr BP and during the Medieval Climate Anomaly, were registered by brief intervals of lodgepole pine decline, an increase in fire activity, and mistletoe infestation. The importance of a Holocene perspective when assessing the historical range of variability is illustrated by the striking difference between the modern forest and that which existed 3000 yr ago. 相似文献
6.
Ioan Tantau Maurice Reille Jacques-Louis de Beaulieu Sorina Farcas Simon Brewer 《Quaternary Research》2009,72(2):164-173
Pollen analysis from a peat core 7.0 m in length, taken from a bog near Bisoca, in a mid-altitude area of the Buzăului Subcarpathian mountains, is used to reconstruct the postglacial vegetation history of the region. The vegetation record, which is supported by twelve 14C dates, starts at the end of the Late Glacial period. At the Late Glacial/Holocene transition, open vegetation was replaced by forest, suggesting a fast response to climatic warming. The Holocene began with the expansion of Betula, Pinus and Ulmus, followed, after 11,000 cal yr BP, by Fraxinus, Quercus, Tilia and Picea. The rapid expansion of these taxa may be due to their existence in the area during the Late Glacial period. At ca. 9200 cal yr BP, Corylus expanded, reaching a maximum after 7600 cal yr BP. The establishment of Carpinus occurred at ca. 7200 cal yr BP, with a maximum at ca. 5700 cal yr BP. Fagus pollen is regularly recorded after 7800 cal yr BP and became dominant at ca. 2000 cal yr BP. The first indications of human activities appear around 3800 cal yr BP. 相似文献
7.
An AMS radiocarbon-dated pollen record from a peat deposit on Mitkof Island, southeastern Alaska provides a vegetation history spanning ∼12,900 cal yr BP to the present. Late Wisconsin glaciers covered the entire island; deglaciation occurred > 15,400 cal yr BP. The earliest known vegetation to develop on the island (∼12,900 cal yr BP) was pine woodland (Pinus contorta) with alder (Alnus), sedges (Cyperaceae) and ferns (Polypodiaceae type). By ∼12,240 cal yr BP, Sitka spruce (Picea sitchensis) began to colonize the island while pine woodland declined. By ∼11,200 cal yr BP, mountain hemlock (Tsuga mertensiana) began to spread across the island. Sitka spruce-mountain hemlock forests dominated the lowland landscapes of the island until ∼10,180 cal yr BP, when western hemlock (Tsuga heterophylla) began to colonize, and soon became the dominant tree species. Rising percentages of pine, sedge, and sphagnum after ∼7100 cal yr BP may reflect an expansion of peat bog habitats as regional climate began to shift to cooler, wetter conditions. A decline in alders at that time suggests that coastal forests had spread into the island's uplands, replacing large areas of alder thickets. Cedars (Chamaecyparis nootkatensis, Thuja plicata) appeared on Mitkof Island during the late Holocene. 相似文献
8.
Postglacial vegetation, fire, and climate history of the Siskiyou Mountains, Oregon, USA 总被引:1,自引:0,他引:1
The forests of the Siskiyou Mountains are among the most diverse in North America, yet the long-term relationship among climate, diversity, and natural disturbance is not well known. Pollen, plant macrofossils, and high-resolution charcoal data from Bolan Lake, Oregon, were analyzed to reconstruct a 17,000-yr-long environmental history of high-elevation forests in the region. In the late-glacial period, the presence of a subalpine parkland of Artemisia, Poaceae, Pinus, and Tsuga with infrequent fires suggests cool dry conditions. After 14,500 cal yr B.P., a closed forest of Abies, Pseudotsuga, Tsuga, and Alnus rubra with more frequent fires developed which indicates more mesic conditions than before. An open woodland of Pinus, Quercus, and Cupressaceae, with higher fire activity than before, characterized the early Holocene and implies warmer and drier conditions than at present. In the late Holocene, Abies and Picea were more prevalent in the forest, suggesting a return to cool wet conditions, although fire-episode frequency remained relatively high. The modern forest of Abies and Pseudotsuga and the present-day fire regime developed ca. 2100 cal yr B.P. and indicates that conditions had become slightly drier than before. Sub-millennial-scale fluctuations in vegetation and fire activity suggest climatic variations during the Younger Dryas interval and within the early Holocene period. The timing of vegetation changes in the Bolan Lake record is similar to that of other sites in the Pacific Northwest and Klamath region, and indicates that local vegetation communities were responding to regional-scale climate changes. The record implies that climate-driven millennial- to centennial-scale vegetation and fire change should be considered when explaining the high floristic diversity observed at present in the Siskiyou Mountains. 相似文献
9.
The 800 cm long sequence from the Bereket provides the first detailed fire history in the western Taurus Mountains for the last three millennia. The main disturbances occurred during the Bey?ehir Occupation Phase (BO Phase), a period of intensive polyculture and dated at Bereket from ca. 2230 to 1550 cal yr BP. Four phases of local and extra-local fire periods have been recorded at 2320-2240, 1985-1970, 1865-1820 cal yr BP and post-AD 1950. The fire history established for the BO Phase is complex, with fire periods alternating with periods without local fires, as is the case for the late BO Phase from 1820 until 1550 cal yr BP. It is suggested that the past agricultural practices including fires cause a higher soil erodibility than agricultural practices without fires. A climatic shift towards aridity during Roman times may have triggered the observed change in fire regime but local processes, mainly human disturbances, appear to be the proximal cause of all recorded changes. In the Bereket surroundings, fires led to a simplification of the vegetation structure, favouring soil erosion, pastures and intensive cultivation. 相似文献
10.
Cathy Whitlock Maria Martha Bianchi Vera Markgraf Megan Walsh 《Quaternary Research》2006,66(2):187-201
The history of the low-elevation forest and forest-steppe ecotone on the east side of the Andes is revealed in pollen and charcoal records obtained from mid-latitude lakes. Prior to 15,000 cal yr BP, the vegetation was characterized by steppe vegetation with isolated stands of Nothofagus. The climate was generally dry, and the sparse vegetation apparently lacked sufficient fuels to burn extensively. After 15,000 cal yr BP, a mixture of Nothofagus forest and shrubland/steppe developed. Fire activity increased between 13,250 and 11,400 cal yr BP, contemporaneous with a regionally defined cold dry period (Huelmo/Mascardi Cold Reversal). The early-Holocene period was characterized by an open Nothofagus forest/shrubland mosaic, and fire frequency was high in dry sites and low in wet sites; the data suggest a sharp decrease in moisture eastward from the Andes. A shift to a surface-fire regime occurred at 7500 cal yr BP at the wet site and at 4400 cal yr BP at the dry site, preceding the expansion of Austrocedrus by 1000-1500 yr. The spread of Austrocedrus is explained by a shift towards a cooler and wetter climate in the middle and late Holocene. The change to a surface-fire regime is consistent with increased interannual climate variability and the onset or strengthening of ENSO. The present-day mixed forest dominated by Nothofagus and Austrocedrus was established in the last few millennia. 相似文献
11.
We present here the results of pollen analysis of two sequences of about 8.06 m and 11.90 m length, originating from two adjacent peat bogs in the southern part of Transylvania province, Romania (155 and 122 pollen spectra). The vegetation record, which is supported by 17 14C dates, begins in the Late Glacial interstadial when forest recolonisation began with the development of Pinus, without a pioneer Betula phase. Picea began to expand from regional refuges. After a well‐defined Younger Dryas, the Holocene opens with the expansion of Betula, Ulmus and Picea, followed, at about 10 400 cal. yr BP, by Fraxinus, Quercus and Tilia. The Corylus optimum is correlated with the Atlantic chronozone (after 8600 cal. yr BP). The local establishment of Carpinus occurred at about 6500 cal. yr BP, with a maximum at about 5700 cal. yr BP. Fagus pollen is regularly recorded after 8200 cal. yr BP. This taxon became dominant at about 3700 cal. yr BP. The first indications of human activities appear at around 7200 cal. yr BP. Copyright © 2005 John Wiley & Sons, Ltd. 相似文献
12.
We reconstructed a 10,500-yr fire and vegetation history of a montane site in the North Cascade Range, Washington State based on lake sediment charcoal, macrofossil and pollen records. High-resolution sampling and abundant macrofossils made it possible to analyze relationships between fire and vegetation. During the early Holocene (> 10,500 to ca. 8000 cal yr BP) forests were subalpine woodlands dominated by Pinus contorta. Around 8000 cal yr BP, P. contorta sharply declined in the macrofossil record. Shade tolerant, mesic species first appeared ca. 4500 cal yr BP. Cupressus nootkatensis appeared most recently at 2000 cal yr BP. Fire frequency varies throughout the record, with significantly shorter mean fire return intervals in the early Holocene than the mid and late Holocene. Charcoal peaks are significantly correlated with an initial increase in macrofossil accumulation rates followed by a decrease, likely corresponding to tree mortality following fire. Climate appears to be a key driver in vegetation and fire regimes over millennial time scales. Fire and other disturbances altered forest vegetation at shorter time scales, and vegetation may have mediated local fire regimes. For example, dominance of P. contorta in the early Holocene forests may have been reinforced by its susceptibility to frequent, stand-replacing fire events. 相似文献
13.
The Mixteca Alta Oaxaqueña is in the state of Oaxaca, southern Mexico. This region is characterized by numerous Pleistocene fossiliferous localities. The objective of this study is to describe a diverse assemblage of Late Pleistocene freshwater and terrestrial mollusks in two localities from northeastern Oaxaca, Coixtlahuaca District. We identified 10 taxa of gastropods and one of bivalves. By the sedimentological characteristics and the mollusks assemblage, it is possible to relate the first locality with meandriform river deposits, without vegetation. The second locality was associated with a floodplain with short-lived associated vegetation. Five identified species constitute the most austral records of these taxa in Neartic Realm. In all the taxa, the Late Pleistocene occurrences constitute the last records of the identified mollusks in the study zone. 相似文献
14.
The pollen record at Area Longa is the westernmost sequence available for investigation of the last glaciation in continental Europe. It is located in a region, NW Iberia, for which data from times earlier than the late glacial period are scarce. It comprises a series of exposed limnetic levels that lie above an Eemian (Oxygen Isotope Stage [OIS] 5e) beach and are separated by inorganic layers. The oldest limnetic level (Level I), attributed to the early glacial period (OIS 5a to OIS 5d), shows a dominance of woodland with high proportions of Fagus pollen and is tentatively identified with St. Germain I. The lower pleniglacial (OIS 4) Level II records a stadial landscape of grassland and shrub. Level III, from the pleniglacial interstade (OIS 3), reflects a complex period in which three warmer woodland phases alternated with periods of more open vegetation. This cyclical behavior correlates with the ice core isotope record and with the general tendencies observed in other Würmian pollen records, but the composition of our pollen profiles differs from those observed in these other records. In NW Iberia, the dominant trees were deciduous taxa, not conifers. Of particular note is the presence of lowland Fagus woodlands during the pre-Würm, and the occurrence of Carpinus considerably farther west than the boundary of its current distribution in the Iberian Peninsula. 相似文献
15.
The transitional character of climatic conditions confers great relevance to paleoclimate studies in the semiarid region where glacial and Holocene geomorphologic records are scarce. Here we present the paraglacial and fluvial evolution of the Turbio valley (30°S) using both field observations and 14C AMS chronology. Two key sites at the uppermost Turbio valley show glacial margins which likely formed during the 17-12 ka Central Andean Pluvial Event and earlier 37-27 ka episodes associated with glacial advances reported elsewhere in the semiarid Andes. Likewise, two episodes of subsequent paraglacial response are identified: a first episode corresponds to early Holocene fine-grained deposits (~ 11,500-7800 cal yr BP) extending far downstream (> 40 km) from the glacial margins. These deposits and coeval debris cones (~ 11,000-5500 cal yr BP) are the result of arid conditions with occasional runoffs that were unable to export sediments along the trunk valley. The second episode corresponds to disconformably overlying fluvial gravels extending ~ 70 km downstream from the glacial margin, indicative of an increase in the fluvial transport capacity occurring not long after 5500 cal yr BP. Fluvial transport increase resulted from a late Holocene shift to wetter climate conditions, representing a forcing factor which enhanced the paraglacial response. 相似文献
16.
Michelle Elliott Christopher T. Fisher Roberto S. Molina Garza Deborah M. Pearsall 《Quaternary Research》2010,74(1):26-35
Scholars attribute the growth and decline of Classic period (AD 200-900) settlements in the semi-arid northern frontier zone of Mesoamerica to rainfall cycles that controlled the extent of arable land. However, there is little empirical evidence to support this claim. We present phytolith, organic carbon, and magnetic susceptibility analyses of a 4000-yr alluvial record of climate and human land use from the Malpaso Valley, the site of one such Classic frontier community. The earliest farming occupation is detected around 500 BC and appears related to a slight increase of aridity, similar to the level of the modern day valley. By AD 500, the valley's Classic period Mesoamerican settlements were founded under these same dry conditions, which continued into the Postclassic period. This indicates that the La Quemada occupation did not develop during a period of increased rainfall, but rather an arid phase. The most dramatic changes detected in the valley resulted from the erosion associated with Spanish Colonial grazing and deforestation that began in the 16th century. The landscape of the modern Malpaso Valley is thus primarily the product of a series of intense and rapid transformations that were concentrated within the last 400 yr. 相似文献
17.
Sedimentological, malacological, and pollen analyses from 14C-dated alluvial sections from the Luján River provide a detailed record of environmental changes during the Holocene in the northeastern Pampas of Argentina. From 11,200 to 9000 14C yr B.P., both sedimentary and biological components suggest that the depositional environment was eutrophic, alkaline, and freshwater to brackish shallow water bodies without significant water circulation. During this time, bioclastic sedimentation was dominant and the shallow water bodies reached maximum development as the climate became more humid, suggesting an increase in precipitation. Short-term fluctuations in climate during the last stage of this interval may have been sufficient to initiate changes in the water bodies, as reduction of the volume alternated with periods of flooding. The beginning of the evolution of shallow swamps in the wide floodplain or huge wetlands was contemporaneous with a sea level lower than the present one. From 9000 and 7000 14C yr B.P., mesotrophic, alkaline, brackish, probably anoxic swamps existed. Between 7000 and 3000 14C yr B.P., anoxic calcareous swamps were formed, with subaerial exposure and development of the Puesto Berrondo Soil (3500-2900 14C yr B.P.). A trend to a reduction of water bodies is recorded from 9000 to ca. 3000 14C yr B.P., with a significant reduction after ca. 7000 14C yr B.P. A shift to subhumid-dry climate after 7000 14C yr B.P. appears to be the main cause. During this time, an additional external forcing toward higher groundwater levels was caused by Holocene marine transgression causing changes in the water bodies levels. The climate became drier during the late Holocene (ca. 3000 yr B.P.), when clastic sedimentation increased, under subhumid-dry conditions. Flood events increased in frequency during this time. From ca. A.D. 1790 to present, the pollen record reflects widespread disturbance of the vegetation during the European settlement. 相似文献
18.
High‐resolution charcoal analysis of lake sediment cores was used to reconstruct the fire history from two sites in a mesic hardwood forest of south‐eastern Wisconsin located in the Kettle Moraine State Forest. Pollen data from the region indicate that the sites, which lie within 5 km of each other, have had a consistent presence of mesic hardwood forest for the last 6500 years. A pollen record from one of the sites confirmed the regional vegetation history and the charcoal analysis indicated that fire frequency at each site was temporally linked to regional drought. Periods of high fire occurrence occurred in connection with a region‐wide drought 4200 years ago and, over the last 2000 years, shorter‐scale regional droughts were centred at 1800, 1650, 1100, 1000, 800, 700 and 600 cal a BP. The fire histories indicate that the last 1000 years have had lower fire frequencies than the previous 6500 years and suggest that the mesic hardwood forests may be resilient to increases in fire that may result from future climate change. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
19.
M.G. Tossou A. Akogninou A. Ballouche M.A. Sowunmi K. Akpagana 《Journal of African Earth Sciences》2008,52(4-5):167-174
Pollen analysis of three core samples,YEV-I, GOHO.00 and DO.00, taken in the coastal area of Bénin shows the existence of mangrove during the Holocene. This mangrove underwent many physiognomic changes from the middle to the late Holocene. In the course of the middle Holocene (from 7500 to 2500 years before present (BP)), it stretched over a large area from the littoral inland. It was tightly closed and almost monospecific, dominated by Rhizophora. During the late Holocene, this mangrove started to regress around 3000 years BP and disappeared about 2500 years BP from the studied sites. It has been replaced by swamp meadows dominated by Paspalum vaginatum Sw. and a fresh water environment colonised by taxa such as Persicaria, Typha, Ludwigia, and Nymphaea. 相似文献
20.
We use the radiocarbon ages of marine shells and terrestrial vegetation to reconstruct relative sea level (RSL) history in northern Southeast Alaska. RSL fell below its present level around 13,900 cal yr BP, suggesting regional deglaciation was complete by then. RSL stayed at least several meters below modern levels until the mid-Holocene, when it began a fluctuating rise that probably tracked isostatic depression and rebound caused by varying ice loads in nearby Glacier Bay. This fluctuating RSL rise likely reflects the episodic but progressive advance of ice in Glacier Bay that started around 6000 cal yr BP. After that time, RSL low stands probably signaled minor episodes of glacier retreat/thinning that triggered isostatic rebound and land uplift. Progressive, down-fjord advance of the Glacier Bay glacier during the late Holocene is consistent with the main driver of this glacial system being the dynamics of its terminus rather than climate change directly. Only after the glacier reached an exposed position protruding into Icy Strait ca. AD 1750, did its terminus succumb - a century before the climate changes that marked the end of the Little Ice Age - to the catastrophic retreat that triggered the rapid isostatic rebound and RSL fall occurring today in Icy Strait. 相似文献