首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neutral Line associated Sources (NLSs) are quasi-stationary microwave sources projected onto vicinities of the neutral line of the photospheric magnetic field. NLSs are often precursors of powerful flares, but their nature is unclear. We endeavor to reveal the structure of an NLS and to analyze a physical connection between such a source with a site of energy release in the corona above NOAA 10488 (October/November 2003). Evolution of this AR includes emergence and collision of two bipolar magnetic structures, rise of the main magnetic separator, and the appearance of an NLS underneath. The NLS appears at a contact site of colliding sunspots, whose relative motion goes on, resulting in a large shear along a tangent. Then the nascent NLS becomes the main source of microwave fluctuations in the AR. The NLS emission at 17 GHz is dominated by either footpoints or the top of a loop-like structure, an NLS loop, which connects two colliding sunspots. During a considerable amount of time, the emission dominates over that footpoint of the NLS loop, where the magnetic field is stronger. At that time, the NLS resembles a usual sunspot–associated radio source, whose brightness center is displaced towards the periphery of a sunspot. Microwave emission of an X2.7 flare is mainly concentrated in an ascending flare loop, initially coinciding with the NLS loop. The top of this loop is located at the base of a non-uniform bar-like structure visible in soft X-rays and at 34 GHz at the flare onset. We reveal i) upward lengthening of this bar before the flare onset, ii) the motion of the top of an apparently ascending flare loop along the axis of this bar, and iii) a non-thermal microwave source, whose descent along the bar was associated with the launching of a coronal ejection. We connect the bar with a probable position of a nearly vertical diffusion region, a site of maximal energy release inside an extended pre-flare current sheet. The top of the NLS loop is located at the bottom of this region. A combination of the NLS loop and diffusion region constitutes the skeleton of a quasi-stationary microwave NLS.  相似文献   

2.
A numerical simulation method is used to show the possibility of forming a current sheet in the solar corona in an active region with four magnetic poles. The evolution of the quasi-stationary current sheet can lead to its transfer to an unsteady state. The MHD instability of this sheet causes its decay, accompanied by a set of events which characterizes the solar flare. The electrodynamical model of a solar flare includes a system of field-aligned currents typical of a magnetospheric substorm. Several events in substorms and solar flares are explained by the generation of field-aligned currents.  相似文献   

3.
4.
We study the magnetic structure of five well-known active regions that produced great flares (X5 or larger). The six flares under investigation are the X12 flare on 1991 June 9 in AR 6659, the X5.7 flare on 2000 July 14 in AR 9077, the X5.6 flare on 2001 April 6 in AR 9415, the X5.3 flare on 2001 August 25 in AR 9591, the X17 flare on 2003 October 28 and the X10 flare on 2003 October 29, both in AR 10486. The last five events had corresponding LASCO observations and were all associated with Halo CMEs. We analyzed vector magne-tograms from Big Bear Solar Observatory, Huairou Solar Observing Station, Marshall Space Right Center and Mees Solar Observatory. In particular, we studied the magnetic gradient derived from line-of-sight magnetograms and magnetic shear derived from vector magne-tograms, and found an apparent correlation between these two parameters at a level of about 90%. We found that the magnetic gradient could be a better proxy than the shear for predicting where a major flare might occur: all six flares occurred in neutral lines with maximum gradient. The mean gradient of the flaring neutral lines ranges from 0.14 to 0.50 G km-1, 2.3 to 8 times the average value for all the neutral lines in the active regions. If we use magnetic shear as the proxy, the flaring neutral line in at least one, possibly two, of the six events would be mis-identified.  相似文献   

5.
Based on a topological model for the magnetic field of a solar active region (AR), we suggest a criterion for the existence of magnetic null points on the separators in the corona. With the problem of predicting solar flares in mind, we have revealed a model parameter whose decrease means that the AR evolves toward a major eruptive flare. We analyze the magnetic field evolution for AR 9077 within two days before the Bastille Day flare on July 14, 2000. The coronal conditions are shown to have become more favorable for magnetic reconnection, which led to a 3B/X5.7 eruptive flare.  相似文献   

6.
We present and interpret observations of two morphologically homologous flares that occurred in active region (AR) NOAA 10501 on 20 November 2003. Both flares displayed four homologous Hα ribbons and were both accompanied by coronal mass ejections (CMEs). The central flare ribbons were located at the site of an emerging bipole in the centre of the active region. The negative polarity of this bipole fragmented in two main pieces, one rotating around the positive polarity by ≈ 110° within 32 hours. We model the coronal magnetic field and compute its topology, using as boundary condition the magnetogram closest in time to each flare. In particular, we calculate the location of quasi-separatrix layers (QSLs) in order to understand the connectivity between the flare ribbons. Though several polarities were present in AR 10501, the global magnetic field topology corresponds to a quadrupolar magnetic field distribution without magnetic null points. For both flares, the photospheric traces of QSLs are similar and match well the locations of the four Hα ribbons. This globally unchanged topology and the continuous shearing by the rotating bipole are two key factors responsible for the flare homology. However, our analyses also indicate that different magnetic connectivity domains of the quadrupolar configuration become unstable during each flare, so that magnetic reconnection proceeds differently in both events.  相似文献   

7.
Sequences of line-of-sight (LOS) magnetograms recorded by the Michelson Doppler Imager are used to quantitatively characterize photospheric magnetic structure and evolution in three active regions that rotated across the Sun??s disk during the Whole Heliosphere Interval (WHI), in an attempt to relate the photospheric magnetic properties of these active regions to flares and coronal mass ejections (CMEs). Several approaches are used in our analysis, on scales ranging from whole active regions, to magnetic features, to supergranular scales, and, finally, to individual pixels. We calculated several parameterizations of magnetic structure and evolution that have previously been associated with flare and CME activity, including total unsigned magnetic flux, magnetic flux near polarity-inversion lines, amount of canceled flux, the ??proxy Poynting flux,?? and helicity flux. To catalog flare events, we used flare lists derived from both GOES and RHESSI observations. By most such measures, AR 10988 should have been the most flare- and CME-productive active region, and AR 10989 the least. Observations, however, were not consistent with this expectation: ARs 10988 and 10989 produced similar numbers of flares, and AR 10989 also produced a few CMEs. These results highlight present limitations of statistics-based flare and CME forecasting tools that rely upon line-of-sight photospheric magnetic data alone.  相似文献   

8.
1 INTRODUCTIONRecently Bao, Zhang, Ai, and Zhang (1999), using Huairou vector magnetograph data,have shown that the average current helicity (h.) or the curreflt helicity imbalance ph of activeregions change rapidly after so1ar flares. Up'an the onset of flares it tends to decrease for a fewhours and then to increase again, whereas ifQ some cases the flare promotes an increase in thecurrent helicity The observations led to tbe fol1owing conclusions: (1) raPid and substantialchanges of c…  相似文献   

9.
Wang  Haimin 《Solar physics》1997,174(1-2):163-173
This paper reviews studies of the relationship between the evolution of vector magnetic fields and the occurrence of major solar flares. Most of the data were obtained by the video magnetograph systems at Big Bear Solar Observatory (BBSO) and Huairou Solar Observatory (HSO). Due to the favorable weather and seeing conditions at both stations, high-resolution vector magnetograph sequences of many active regions that produced major flares during last solar maximum (1989–1993) have been recorded. We have analyzed several sequences of magnetograms to study the evolution of vector magnetic fields of flare productive active regions. The studies have focused on the following three aspects: (1) processes which build up magnetic shear in active regions; (2) the pre-flare magnetic structure of active regions; and (3) changes of magnetic shear immediately preceding and following major flares. We obtained the following results based on above studies: (1) Emerging flux regions (EFRs) play very important roles in the production of complicated photospheric flow patterns, magnetic shear and flares. (2) Although the majority of flares prefer to occur in magnetically sheared regions, many flares occurred in regions without strong photospheric magnetic shear. (3) We found that photospheric magnetic shear increased after all the 6 X-class flares studied by us. We want to emphasize that this discovery is not contradictory to the energy conservation principle, because a flare is a three-dimensional process, and the photosphere only provides a two-dimensional boundary condition. This argument is supported by the fact that if two initial ribbons of a flare are widely separated (which may correspond to a higher-altitude flare), the correlation of the flare with strong magnetic shear is weak; if the two ribbons of a flare are close (which may correspond to a lower-altitude flare), its correlation with the strong shear is strong. (4) We have analyzed 18 additional M-class flares observed by HSO in 1989 and 1990. No detectable shear change was found for all the cases. It is likely that only the most energetic flares can affect the photospheric magnetic topology.  相似文献   

10.
陈协珍 《天文学报》1996,37(1):51-59,T001
本文利用紫金山天文台太阳光谱仪缝前附属Daystar滤光器拍摄的,发生在NOAA5395活动区中的三个耀斑的Hα单色光资料,对比北京天文台怀柔观测站取得的光球磁场资料,研究耀斑产生位置与光球磁场演化的关系,结果表明:(1)在所研究的50个耀斑亮核中,有38个位于新浮磁流区附近,另有少数亮核出现在磁对消区;(2)耀斑亮核多集中在横场方向交叉,剪切角大的复杂磁区,耀斑后多数区域磁场结构简化;(3)耀斑  相似文献   

11.
By analysing the relationship between flares and the morphology of velocity and magnetic fields in active regions AR 5528, AR 5629, and AR 6891, we found that initial brightening points at the earliest phase and flare ribbons at the maximum phase are more closely related to the velocity field patterns than to magnetic field patterns. We also found that the velocity patterns related to the flares are different from Evershed flows in the chromosphere. Finally, a model of vortex-induced reconnection has been applied to solar flares and some preliminary results are discussed.  相似文献   

12.
Ground level enhancements (GLEs) of cosmic-ray intensity occur, on average, once a year. Because they are rare, studying the solar sources of GLEs is especially important to approach understanding their origin. The SOL2001-12-26 eruptive-flare event responsible for GLE63 seems to be challenging in some aspects. Deficient observations limited our understanding of it. Analysis of additional observations found for this event provided new results that shed light on the flare configuration and evolution. This article addresses the observations of this flare with the Siberian Solar Radio Telescope (SSRT). Taking advantage of its instrumental characteristics, we analyze the detailed SSRT observations of a major long-duration flare at 5.7 GHz without cleaning the images. The analysis confirms that the source of GLE63 was associated with an event in active region 9742 that comprised two flares. The first flare (04:30?–?05:03 UT) reached a GOES importance of about M1.6. Two microwave sources were observed, whose brightness temperatures at 5.7 GHz exceeded 10 MK. The main flare, up to an importance of M7.1, started at 05:04 UT and occurred in strong magnetic fields. The observed microwave sources reached a brightness temperature of about 250 MK. They were not static. After appearing on the weaker-field periphery of the active region, the microwave sources moved toward each other nearly along the magnetic neutral line, approaching the stronger-field core of the active region, and then moved away from the neutral line like expanding ribbons. These motions rule out an association of the non-thermal microwave sources with a single flaring loop.  相似文献   

13.
The role of the electric currents distributed over the volume of an active region on the Sun is considered from the standpoint of solar flare physics. We suggest including the electric currents in a topological model of the magnetic field in an active region. Typical values of the mutual inductance and the interaction energy of the coronal electric currents flowing along magnetic loops have been estimated for the M7/1N flare on April 27, 2006. We show that if these currents actually make a significant contribution to the flare energetics, then they must manifest themselves in the photosphericmagnetic fields. Depending on their orientation, the distributed currents can both help and hinder reconnection in the current layer at the separator during the flare. Asymmetric reconnection of the currents is accompanied by their interruption and an inductive change in energy. The reconnection of currents in flares differs significantly from the ordinary coalescence instability of magnetic islands in current layers. Highly accurate measurements of the magnetic fields in active regions are needed for a quantitative analysis of the role of distributed currents in solar flares.  相似文献   

14.
Van Driel-Gesztelti  L.  Csepura  G.  Schmieder  B.  Malherbe  J.-M.  Metcalf  T. 《Solar physics》1997,172(1-2):151-160
We present a study of the evolution of NOAA AR 7205 in the photosphere and corona, including an analysis of sunspot motions, and show the evolutionary aspects of flare activity using full-disc white-light observations from Debrecen, vector magnetograms from Mees Observatory, Hawaii, and Yohkoh soft X-ray observations. NOAA AR 7205 was born on the disc on 18 June, 1992. During the first 3 days it consisted of intermittent minor spots. A vigorous evolution started on 21 June when, through the emergence and merging (v 100–150 m s-1) of several bipoles, a major bipolar sunspot group was formed. Transverse magnetic fields and currents indicated the presence of shear (clockwise twist) already on 21 June (with 0.015 Mm-1). On 23 June, new flux emerged in the trailing part of the region with the new negative polarity spot situated very close to the big positive polarity trailing spot of the main bipole. The secondary bipole seemed to emerge with high non-potentality (currents). From that time the AR became the site of recurrent flare activity. We find that all 14 flares observed with the Yohkoh satellite occurred between the highly sheared new bipole and the double-headed principal bipole. Currents observed in the active region became stronger and more extended with time. We propose that the currents have been (i) induced by sunspot motions and (ii) increased by non-potential flux emergence leading to the occurrence of energetic flares (X1.8 and X3.9). This observation underlines the importance of flare analysis in the context of active region evolution.  相似文献   

15.
16.
Subramanian  Prasad  Ananthakrishnan  S.  Janardhan  P.  Kundu  M.R.  White  S.M.  Garaimov  V.I. 《Solar physics》2003,218(1-2):247-259
We present the first observations of a solar flare with the GMRT. An M2.8 flare observed at 1060 MHz with the GMRT on 17 November 2001 was associated with a prominence eruption observed at 17 GHz by the Nobeyama radioheliograph and the initiation of a fast partial halo CME observed with the LASCO C2 coronagraph. Towards the start of the eruption, we find evidence for reconnection above the prominence. Subsequently, we find evidence for rapid growth of a vertical current sheet below the erupting arcade, which is accompanied by the flare and prominence eruption.  相似文献   

17.
1986年2月4日太阳耀斑的演化研究   总被引:1,自引:0,他引:1  
本文根据乌鲁木齐天文站的H_α耀斑及3.2cm射电流量观侧资料、云南天文台的黑子精细结构照相和Marshall Space Flight Center的向量磁场图,对1986年2月4日的六个耀斑的形态相关及演化联系,特别是0736UT 4B/3X大耀斑的发展过程进行了综合分析。主要结果是: 1.4日大耀斑的初始亮点和闪光相的主要形态演化,与活动区中沿中性线新浮现的强大电流/磁环系密切相关。后者的主要标志是沿中性线的长的剪切半影纤维及它两端的偶极旋涡黑子群(1_3F_3)。 2.上述大耀斑与1972年8月4日0624 UT大耀斑爆发的磁场背景及主要形态特征相似,表明两者的储能和触发机制可能相同。 3.大耀斑爆发的H_α初始亮点,双带出现,环系形成,亮物质抛射和吸收冕珥等现象同3.2cm射电流量的变化在时间上有较好的对应关系。 4.重复性的前期小耀斑爆发位置和发展趋势与大耀斑的主要形态及演化特征相似。它们相对于剪切的纵场中性线两侧的位置相近或相同。因而,可以看作上述强大电流/磁环系不稳性发展过程中的前置小爆发。  相似文献   

18.
19.
Morita  Satoshi  Uchida  Yutaka  Hirose  Shigenobu  Uemura  Shuhei  Yamaguchi  Tomotaka 《Solar physics》2001,200(1-2):137-156
In February 1992, three flares, which we consider constitute a homologous flare series (flares having basically the same configuration repeating in the same situation), occurred in the active region NOAA 7070 and were observed by Yohkoh SXT. In the present paper, we first discuss the homology of these three flares, and derive the 3D structure by making use of the information obtained from the three different lines of sight at common phases. The result of this analysis made clear for the first time that the so-called `cusped arcade' at the maximum phase in the well-known 21 February 1992 flare is, contrary to the general belief, an `elongated arch' created at the beginning of the flare, seen with a shallow oblique angle. It is not the `flare arcade' seen on axis as widely conceived. This elongated arch roughly coincides with a diagonal of the main body of the soft X-ray arcade that came up later. The magnetic structure responsible for the flare as a whole turned out to be a structure with quadruple magnetic sources – with the third and fourth sources also playing essential roles. The observationally derived information in our paper provides strong restrictions to the theoretical models of the process occurring in arcade flares.  相似文献   

20.
Litvinenko  Yuri E. 《Solar physics》2003,212(2):379-388
Yohkoh observations strongly suggest that electron acceleration in solar flares occurs in magnetic reconnection regions in the corona above the soft X-ray flare loops. Unfortunately, models for particle acceleration in reconnecting current sheets predict electron energy gains in terms of the reconnection electric field and the thickness of the sheet, both of which are extremely difficult to measure. It can be shown, however, that application of Ohm's law in a turbulent current sheet, combined with energy and Maxwell's equations, leads to a formula for the electron energy gain in terms of the flare power output, the magnetic field strength, the plasma density and temperature in the sheet, and its area. Typical flare parameters correspond to electron energies between a few tens of keV and a few MeV. The calculation supports the viewpoint that electrons that generate the continuum gamma-ray and hard X-ray emissions in impulsive solar flares are accelerated in a large-scale turbulent current sheet above the soft X-ray flare loops.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号