首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A combination of major and trace elements have been used to characterize surface- and groundwater in El Minia district, Egypt. Surface water versus groundwater chemistry data enabled geographical zonation and chemical types to be differentiated. The main target of this research is to investigate the groundwater quality and hydrochemical evaluation. The situation is further complicated by contamination with lithogenic and anthropogenic (agricultural and sewage wastewaters) sources and low plan exploitation techniques. The investigated Pleistocene aquifer is composed of sand and gravel of different sizes, with some clay intercalation. The semi-confined condition was around the River Nile shifted to unconfine outside the floodplain. The groundwater flow generally from south to north and locally diverts towards the western part from the River Nile. Fifty-six, 11, five, and two water samples were collected from the Pleistocene aquifer, River Nile, Ibrahimia canal, and Al Moheet drain, respectively. The collected water samples were analyzed for major and trace elements. The toxic metal concentrations of Al Moheet drain are higher than those in the River Nile and the Ibrahimia canal. Cr, Hg, As, and Cd concentrations in the River Nile and Ibrahimia canal are fluctuated above and below the WHO drinking standards. Se concentration in River Nile and Ibrahimia canal is below WHO drinking and irrigation guidelines. Total dissolved solid content in groundwater is generally low, but it is increased due to the western part of the study area. The geographic position of the River Nile, Ibrahimia canal, and Al Moheet drain impact on the groundwater quality. The PHREEQC confirm the high mixing proportions from the River Nile into the groundwater and decline away from it. In addition to the thicknesses of the Pleistocene, aquifer and aquitard layer enhance the River Nile and agricultural wastewaters intrusion into the aquifer system. The toxic metal concentrations (Pb, Cd, Cr, PO4, Se, Mn, As, Hg, Ni, Al, Fe, and SIO2) in groundwater were increased mainly in the northwestern and southeastern part (far from the River Nile). It is attributed to anthropogenic, high vulnerability rate (unconfined), and partially to lithogenic. In most localities, the groundwater are unsuitable for drinking and irrigation purposes with respect to Se concentration, while they are unsuitable for dinking according Mn, As, and Hg contents. There are some Cd and Pb anomalies concentrations, which cause severe restriction if used in irrigation. The results suggested that significant changes are urgently needed in water use strategy to achieve sustainable development.  相似文献   

2.
扬-泰-靖地区地下水系统水力联系与硫酸盐污染特征   总被引:2,自引:0,他引:2  
本文对长江三角洲扬-泰-靖地区第四系松散层地下水中环境同位素(D、18O、34S)的分布特征进行了分析,旨在揭示大气降水、长江水、潜水及承压水之间的水力联系,辨别地下水中硫酸盐的来源及其污染状况。研究结果表明潜水含水层接受大气降水及长江水的补给,硫酸盐主要为农业污染来源或与海源硫酸盐的混合。承压含水层主要接受大气降水的补给,与潜水含水层及长江之间的水力联系较差,硫酸盐来源不同。在研究区顶部和沿江地段的浅层孔隙承压水中,硫酸盐来源于硫化物的氧化;在东部的深层孔隙承压水中,硫酸盐主要来源于硫酸盐岩的溶解或海源硫酸盐的滞留,基本未受到潜水或地表水中硫酸盐的污染。  相似文献   

3.
Salinization is a process impacting groundwater quality and availability across much of southern Louisiana, USA. However, a broad divergence of opinion exists regarding the causes of this elevated salinity: updip-migrating marine waters from the Gulf of Mexico, saline fluids migrating up fault planes, movement of water from salt domes, and/or remnant seawater from the last major marine transgression. The Mississippi River Alluvial Aquifer (MRAA) in south-central Louisiana is recharged by the Mississippi River, and there are discharge zones to the west and east. Recharge waters from the Mississippi River are fresh, but Cl levels in the western portions of the aquifer are as high as 1000 mg/L. The aquifer is an important source of water for several municipalities and industries, but prior to this study the source(s) of the elevated salinity or whether the salinization can be remediated had not been determined.The low Br/Cl ratios in the groundwaters are consistent with a saline endmember produced by subsurface dissolution of salt domes, not a marine source. The H and O isotopic systematics of the aquifer waters indicate meteoric sources for the H2O, not marine waters or diagenetically-altered deep brines. The westward salinization of aquifer water represents a broad regional process, instead of contamination by point sources. Mapping of spatial variations in salinity has permitted the identification of specific salt domes whose subsurface dissolution is producing waters of elevated salinity in the aquifer. These include the Bayou Choctaw and St. Gabriel domes, and possibly the Bayou Blue dome. Salinization is a natural, on-going process, and the potential for remediation or control is slight, if not non-existent.  相似文献   

4.
Ayadi  Rahma  Trabelsi  Rim  Zouari  Kamel  Saibi  Hakim  Itoi  Ryuichi  Khanfir  Hafedh 《Hydrogeology Journal》2018,26(4):983-1007

Major element concentrations and stable (δ18O and δ2H) and radiogenic (3H and 14C) isotopes in groundwater have proved useful tracers for understanding the geochemical processes that control groundwater mineralization and for identifying recharge sources in the semi-arid region of Sfax (southeastern Tunisia). Major-ion chemical data indicate that the origins of the salinity in the groundwater are the water–rock interactions, mainly the dissolution of evaporitic minerals, as well as the cation exchange with clay minerals. The δ18O and δ2H relationships suggest variations in groundwater recharge mechanisms. Strong evaporation during recharge with limited rapid water infiltration is evident in the groundwater of the intermediate aquifer. The mixing with old groundwater in some areas explains the low stable isotope values of some groundwater samples. Groundwaters from the intermediate aquifer are classified into two main water types: Ca-Na-SO4 and Ca-Na-Cl-SO4. The high nitrate concentrations suggest an anthropogenic source of nitrogen contamination caused by intensive agricultural activities in the area. The stable isotopic signatures reveal three water groups: non-evaporated waters that indicate recharge by recent infiltrated water; evaporated waters that are characterized by relatively enriched δ18O and δ2H contents; and mixed groundwater (old/recent) or ancient groundwater, characterized by their depleted isotopic composition. Tritium data support the existence of recent limited recharge; however, other low tritium values are indicative of pre-nuclear recharge and/or mixing between pre-nuclear and contemporaneous recharge. The carbon-14 activities indicate that the groundwaters were mostly recharged under different climatic conditions during the cooler periods of the late Pleistocene and Holocene.

  相似文献   

5.
This paper gives an account of the implementation of hydrochemical and isotopic techniques to identify and explain the processes that govern solute exchange in two groundwater-dependent shallow lakes in the Southeastern Pampa Plain of Argentina. Water samples (lakes, streams, spring water and groundwater) for hydrochemical and stable isotopic determination were collected and the main physical–chemical parameters were measured. The combination of stable isotope data with hydrogeochemical techniques was used for the identification of sources and preferential recharge areas to these aquatic ecosystems which allowed the explanation of the lake water origin. The hydrochemical processes which explain Los Padres Lake water chemistry are evaporation from groundwater, CO2 input, calcite dissolution, Na+ release by Ca2+ and Mg2+ exchange, and sulfate reduction. The model that best aligns with La Brava Lake hydrochemical constraints includes: mixing, CO2 and calcite dissolution, cationic exchange with Na+ release and Mg2+ adsorption, and to a lesser extent, Ca/Na exchange. This model suggests that the fractured aquifer contribution to this water body is greater than 50 %. An isotopic-specific fingerprint for each lake was identified, finding a higher evaporation rate for La Brava Lake compared to Los Padres Lake. Isotopic data demonstrate the importance of these shallow lakes as recharge areas to the regional aquifer, becoming areas of high groundwater vulnerability. The Tandilia Range System, considered in many hydrogeological studies as the impermeable bedrock of the Pampean aquifer, acts as a fissured aquifer in this area, contributing to low salinity waters and with a fingerprint similar to groundwater isotopic composition.  相似文献   

6.
The current research has been conducted to evaluate groundwater aquifers qualitatively in the area located in the Western side of Qena city. The Quaternary aquifer represents the main groundwater source in the study area. It exists under unconfined to semiconfined conditions at depths varying between 4 m due North and 80 m in the South. The chemical analyses of the groundwater samples indicate that 77% of the total samples are fresh and 20% are brackish, while only 3% are saline. In addition, the iso-salinity contour map indicates that the salinity increases towards the central and northern parts of the study area. The total and permanent hardness increase as water salinity increases and vice versa in case of temporary hardness in the groundwater samples. The chemical water types and the ion ratios indicate meteoric origin of groundwater as well as the dissolution of terrestrial and marine salts. The contribution of recent recharge from the River Nile to a few groundwater wells in the study area varies from low to high. In addition, the most recharge sources are from the precipitation. Nitrate concentrations in groundwater increase towards the central and Northern areas significantly elevated in response to increasing anthropogenic land uses. Much of the solutes and physicochemical parameters in these waters are under the undesirable limits of World Health Organization (WHO) for drinking purpose, and a plot of sodium adsorption ratio versus EC shows that about 23% of the groundwater samples are good water quality, about 45% of groundwater samples are moderate quality, and 23% of the groundwater samples are intermediate water class, while the rest of samples (9%) are out of the range.  相似文献   

7.
Chemical and isotopic data in atmospheric precipitation, surface water, and groundwater in arid Rasafeh area, northeast Syria, are used to clarify the status of groundwater quality, the interaction of water components, groundwater dating, and vulnerability to anthropogenic contamination. Interpretation of chemical data with thermodynamic calculation reveals that the dissolution of evaporate mineral is the main factor of high salinity. The δ18O and δ2H relationships indicate that the groundwater is fed by mixing water from Euphrates River and precipitation and the isotope balance equation were used to estimate the contribution of the Euphrates River to the aquifers recharge. High tritium content, together with high 14C activity in the majority of groundwater samples, indicate shorter residence times and consequently potentially greater recharge. The presence of high nitrate concentration associated with high tritium concentration in both shallow and deep aquifer units indicates the presence of high permeability, so that groundwater is highly susceptible to anthropogenic contamination. Nitrate seems to derive exclusively from the application of N fertilizers. The high nitrate values are characteristic of the areas with intensive agricultural activity, indicating the importance of irrigated return flow on the groundwater.  相似文献   

8.
Teboursouk region, Northwestern Tunisia, is characterized by the diversity of its natural resources (petroleum, groundwater and minerals). It constitutes a particular site widely studied, especially from a tectonic stand point as it exhibits a complex architecture dominated by multi-scale synclinals and Triassic extrusions. It has typical karst landform that constitutes important water resources devoted for human consumption and agriculture activities, besides to the exploitation of the Mio-Plio-Quaternary aquifer (MPQ). Thus, hydrogeological investigations play a significant role in the assessment of groundwater mineralization and the evaluation of the used water quality for different purposes. Hence, the current study based on a combined geochemical–statistical investigation of 50 groundwater samples from the multilayered aquifer system in the study area give crucial information about the principal factors and processes influencing groundwater chemistry. The chemical analysis of the water samples showed that Teboursouk groundwater is dominantly of Ca–Mg–Cl–SO4 water type with little contribution of Ca–Mg–HCO3, Na–K–Cl–SO4 and Na–K–HCO3. The total dissolved solids (TDS) values range from 0.37 to 3.58 g/l. The highest values are located near the Triassic outcrops. Furthermore, the hydrogeochemistry of the studied system was linked with various processes such as carbonates weathering, evaporites dissolution of Triassic outcrops and anthropogenic activities (nitrate contamination). Additionally, the main processes controlling Teboursouk water system were examined by means of multivariate statistical analysis (PCA and HCA) applied in this study based on 10 physicochemical parameters (TDS, pH, SO4, HCO3, pCO2, Ca, Mg, Na, K, Cl and NO3). Two principal components were extracted from PCA accounting 61% of total variance and revealing that the chemical characteristics of groundwater in the region were acquired through carbonates and evaporite dissolution besides to nitrate contamination. Similarly, according to Cluster analysis using Ward’s method and squared Euclidean distance, groundwater from the studied basin belongs to five different groups suggesting that the geochemical evolution of Teboursouk groundwater is controlled by dissolution of carbonates minerals, chemical weathering of Triassic evaporite outcrops, cation exchange and anthropogenic activities (nitrate contamination).  相似文献   

9.
《Applied Geochemistry》2005,20(9):1658-1676
Geochemical and environmental isotope data were used to gain the first regional picture of groundwater recharge, circulation and its hydrochemical evolution in the upper Blue Nile River basin of Ethiopia. Q-mode statistical cluster analysis (HCA) was used to classify water into objective groups and to conduct inverse geochemical modeling among the groups. Two major structurally deformed regions with distinct groundwater circulation and evolution history were identified. These are the Lake Tana Graben (LTG) and the Yerer Tullu Wellel Volcanic Lineament Zone (YTVL). Silicate hydrolysis accompanied by CO2 influx from deeper sources plays a major role in groundwater chemical evolution of the high TDS Na–HCO3 type thermal groundwaters of these two regions. In the basaltic plateau outside these two zones, groundwater recharge takes place rapidly through fractured basalts, groundwater flow paths are short and they are characterized by low TDS and are Ca–Mg–HCO3 type waters. Despite the high altitude (mean altitude ∼2500 masl) and the relatively low mean annual air temperature (18 °C) of the region compared to Sahelian Africa, there is no commensurate depletion in δ18O compositions of groundwaters of the Ethiopian Plateau. Generally the highland areas north and east of the basin are characterized by relatively depleted δ18O groundwaters. Altitudinal depletion of δ18O is 0.1‰/100 m. The meteoric waters of the Blue Nile River basin have higher d-excess compared to the meteoric waters of the Ethiopian Rift and that of its White Nile sister basin which emerges from the equatorial lakes region. The geochemically evolved groundwaters of the YTVL and LTG are relatively isotopically depleted when compared to the present day meteoric waters reflecting recharge under colder climate and their high altitude.  相似文献   

10.
The geochemical and isotopic composition of surface waters and groundwater in the Velenje Basin, Slovenia, was investigated seasonally to determine the relationship between major aquifers and surface waters, water–rock reactions, relative ages of groundwater, and biogeochemical processes. Groundwater in the Triassic aquifer is dominated by HCO3 , Ca2+, Mg2+ and δ13CDIC indicating degradation of soil organic matter and dissolution of carbonate minerals, similar to surface waters. In addition, groundwater in the Triassic aquifer has δ18O and δD values that plot near surface waters on the local and global meteoric water lines, and detectable tritium, likely reflecting recent (<50 years) recharge. In contrast, groundwater in the Pliocene aquifers is enriched in Mg2+, Na+, Ca2+, K+, and Si, and has high alkalinity and δ13CDIC values, with low SO4 2– and NO3 concentrations. These waters have likely been influenced by sulfate reduction and microbial methanogenesis associated with coal seams and dissolution of feldspars and Mg-rich clay minerals. Pliocene aquifer waters are also depleted in 18O and 2H, and have 3H concentrations near the detection limit, suggesting these waters are older, had a different recharge source, and have not mixed extensively with groundwater in the Triassic aquifer.  相似文献   

11.
A robust classification scheme for partitioning groundwater chemistry into homogeneous groups was an important tool for the characterization of Eocene limestone aquifer. The aquifer locally is composed of chalky limestone with thin clay intercalated (Samalut Fm.), the fissures, the joints, and the fractures are represented the conduits of the aquifer system. The flow patterns are conditioned by karstification processes which develop a conduit network and preserve low permeability microfractured blocks. The aquifer is mainly recharged by surrounding aquifers and agricultural wastewaters. The groundwater flows in the eastern part (due the Bahr Yossef and River Nile), which is a discharge area rather than a recharge. Twenty-eight groundwater samples was collected from the Eocene limestone aquifer and analyzed for isotopes, major, and trace elements. δD and δ18O concentrations ranged widely due to geology, infiltration of different surface waters, evaporation, and hydrogeology. The concentration of δD and δ18O isotopes is depleted in the northern zone of the northern part and western zone of the central and southern part of the study area. They are enriched due the eastern area of the central and southern part of the study area. δD vs. δ18O delineate the Pleistocene aquifer and has a strong influence than other waters on aquifer hydrogeochemistry. It is confirmed by the AquaChem outputs of the mixing proportions of different water types included in the aquifer system. Cl-δD and Cl-δ18O relationships indicate the role of evaporation especially due the eastern area of the central and southern part of the study area. This research tests the performance of the many available graphical and statistical methodologies used to classify water samples. R-mode clustering, correlation analysis, and principal component analysis were investigated. All the methods were discussed and compared as to their ability to cluster, ease of use, and ease of interpretation. Nearly most low-salinity waters are in equilibrium to supersaturate with respect to both carbonate minerals, while it is shifted to undersaturate with salinity. The inverse modeling findings clarify that the calcite, gypsum, and anhydrite dissolution increased due the northeastern area, middle zone, and southern corner of the northern, central, and southern part of the study area, respectively. The latter areas also were characterized by the lowest precipitation of the dolomite. Such areas are distinguished by much more enhancement for aquifer permeability and therefore transmissivity. The latter areas can be use as injection zone by fresh water. It can be a triple function; firstly, it recharges the saline Eocene limestone aquifer through the enhancement hydraulic conductivity and dilutes it. Secondly, it enhances much more the aquifer permeability and therefore the transmissivity. The Eocene limestone aquifer can be improved in quality and quantity by using such a model and exploits it as an alternative water resource with Quaternary aquifer and Nile water. Thirdly, it irrigates more areas to increase the income/capita. The dedolomitization represents the main hydrogeochemical process in the aquifer system. The geomedia (limestone, clay, marl, shale, and sand deposits) are in contact with water, therefore, the rock/water interaction, mixing, and ion exchange were estimated by the geochemical evolution of the groundwater systems.  相似文献   

12.
In Darb El-Arbaein, the groundwater is the only water resource. The aquifer system starts from Paleozoic–Mesozoic to Upper Cretaceous sandstone rocks. They overlay the basement rocks and the aquifer is confined. In the present research, the performance of the statistical analyses to classify groundwater samples depending on their chemical characters has been tested. The hydrogeological and hydrogeochemical data of 92 groundwater samples were obtained from the General Authority for Rehabilitation Projects and Agricultural Development authority in northern, central, and southern Darb El-Arbaein. A robust classification scheme for partitioning groundwater chemistry into homogeneous groups was an important tool for the characterization of Nubian sandstone aquifer. We test the performance of the many available graphical and statistical methodologies used to classify water samples. R-mode, Q-mode, correlation analysis, and principal component analysis were investigated. All the methods were discussed and compared as to their ability to cluster, ease of use, and ease of interpretation. The correlation investigation clarifies the relationship among the lithologic, hydrogeologic, and anthropogenic factors. Factor investigation revealed three factors, namely, the evaporation process–agricultural impact–lithogenic dissolution, the hydrogeological characteristics of the aquifer system, and the surface meteoric water that recharge the aquifer system. Two main clusters that subdivided into four subclusters were identified in the groundwater system based on hydrogeological and hydrogeochemical data. They reflect the impact of geomedia, hydrogeology, geographic position, and agricultural wastewater. The groundwater is undersaturated with respect to most selected minerals. The groundwater was supersaturated with respect to iron minerals in northern and southern Darb El-Arbaein. The partial pressure of the groundwater versus saturation index of calcite shows the gradual change in PCO2 from atmospheric to the present aquifer pressures.  相似文献   

13.
Detailed hydrogeochemical and isotopic data of groundwaters from the Hammamet–Nabeul unconfined aquifer are used to provide a better understanding of the natural and anthropogenic processes that control the groundwater mineralization as well as the sources of different groundwater bodies. It has been demonstrated that groundwaters, which show Na–Cl and Ca–SO4–Cl water facies, are mainly influenced by the dissolution of evaporates, the dedolomitization and the cation-exchange process; and supplementary by anthropogenic process in relation with return flow of irrigation waters. The isotopic signatures permit to classify the studied groundwaters into two different groups. Non-evaporated groundwaters that are characterized by depleted δ 18O and δ 2H contents highlighting the importance of modern recharge at higher altitude. Evaporated groundwaters with enriched contents reflecting the significance infiltration of return flow irrigation waters. Tritium data in the studied groundwaters lend support to the existence of pre-1950 and post-1960 recharge. Carbon-14 activities in shallow wells that provide evidence to the large contamination by organic 14C corroborate the recent origin of the groundwaters in the study area.  相似文献   

14.
An investigation was carried out to delineate the hydrogeologic framework and to understand groundwater quality of the Kompsatos River fan aquifer system, northeastern Greece, as well as to assess environmental impact induced by human activities. As groundwater is the only major source of water in this area, it is important to know the effect of geological formations, and anthropogenic activities on groundwater chemistry and environment. A thorough hydrogeological study was performed during the period 2004–2007. The differential river gauging method was used for estimating the volume of water leaking from (or discharging into) the river. Groundwater samples were collected from 89 monitoring wells, during the summer period of 2007, and analyzed for major ions and trace elements. A potential reservoir of groundwater is formed within the Kompsatos River fan. The aquifer system/Kompsatos River interaction is the outstanding feature of this area. Ca–Mg–HCO3–SO4 is the dominant water type as a result of dissolving carbonate salts. B, Ba, Mn, Li, Sr, and Zn are the most abundant trace elements in groundwater. Both the major-ion chemistry and trace element enrichment of the groundwater are controlled by mineral dissolution and water–rock interaction. Nitrate contamination of groundwater is related to agricultural practices. An improperly constructed drainage system led locally to salinization of groundwater. Channelization has caused considerable disruption to the river ecosystem. The eventual construction of a dam on the river will adversely affect the environment and the aquifer system. The lack of managerial policy for water is putting environmental resources and water supply in jeopardy.  相似文献   

15.
An investigation was carried out to evaluate the geochemical processes regulating groundwater quality in a coastal region, Barka, Sultanate of Oman. The rapid urban developments in Barka cause depletion of groundwater quantity and deterioration of quality through excessive consumption and influx of pollutants from natural and anthropogenic activities. In this study, 111 groundwater samples were collected from 79 wells and analysed for pH, EC, DO, temperature, major ions, silica and nutrients. In Barka, water chemistry shows large variation in major ion concentrations and in electrical conductivity, and implies the influence of distinguished contamination sources and hydrogeochemical processes. The groundwater chemistry in Barka is principally regulated by saline sources, reverse ion exchange, anthropogenic pollutants and mineral dissolution/precipitation reactions. Due to ubiquitous pollutants and processes, groundwater samples were classified into two groups based on electrical conductivity. In group1, water chemistry is greatly influenced by mineral dissolution/precipitation process and lateral recharge from upstream region (Jabal Al-Akdar and Nakhal mountains). In group 2, the water chemistry is affected by saline water intrusion, sea spray, reverse ion exchange and anthropogenic pollutants. Besides, high nitrate concentrations, especially in group 2 samples, firm evidence for impact of anthropogenic activities on groundwater quality, and nitrate can be originated by the effluents recharge from surface contamination sources. Ionic ratios such as SO4/Cl, alkalinity/Cl and total cation/Cl indicate that effluents recharged from septic tank, waste dumping sites and irrigation return flow induce dissolution of carbonate minerals, and enhances solute load in groundwater. The chemical constituents originating from saline water sources, reverse ion exchange and mineral dissolution are successfully differentiated using ionic delta, the difference between the actual concentration of each constituent and its theoretical concentration for a freshwater–seawater mix calculated from the chloride concentration of the sample, and proved that this approach is a promising tool to identify and differentiate the geochemical processes in coastal region. Hence, both regular geochemical methods and ionic delta ensured that groundwater quality in Barka is impaired by natural and human activities.  相似文献   

16.
Rock water interactions play an important role in the flow of groundwater. Groundwater samples were collected from deep production wells with depths ranging from 120 to 230 m. Complete chemical analysis of 40 groundwater samples was collected from the fractured limestone aquifer including major cations (Na+, K+, Ca2+, Mg2+) and major anions (Cl?, SO4 2?, HCO3 ?, CO3 2?). A geochemical modeling (NETPATH Software) was applied for environmental simulate net geochemical mass-balance reactions between initial and final waters along a hydrologic flow path. This program simulates selected evolutionary waters for every possible combination of the plausible phases that account for the composition of a selected set of chemical constraints in the system. The groundwater of the Eocene aquifer mainly belongs to fairly fresh water with salinity contents ranging from 228 to 3595 ppm. The measured groundwater levels range between 8 and 25 m near the river Nile to the limestone plateau (eastwards). Consequently, groundwater flows from east to westward toward the river Nile. Groundwater aquifer in the study area is mainly composed of fractured limestone; the saturated states of the PCO2, calcite, aragonite, dolomite, siderite, gypsum, anhydrite, hematite, and goethite in addition to H2 gas were estimated. The undersaturated state of carbon dioxide reflects closed conditions and very low probability of recent recharge, and it reveals also the high tendency of water to precipitates carbonate species. Undersaturation by carbonate minerals is only restricted to some pockets distributed on the different places of the aquifer in the study area. The majority of groundwater samples of Eocene aquifer in the study area indicated that groundwater is not suitable for irrigation with treatment and requires good drainage.  相似文献   

17.

The Mio-Pliocene aquifer of the coastal sedimentary basin of Benin is the most exploited aquifer for water supply to the urbanised region in the southern part of the country. The population explosion is putting increasing pressure on quantitative and qualitative aspects of the groundwater resources. Preventing groundwater contamination caused by surface waters requires a thorough understanding of surface-water/groundwater interactions, especially the interactions between the Mio-Pliocene aquifer and surface waters. This study aimed to investigate the interactions between groundwater and surface waters along the major rivers (Sô River and Ouémé Stream) and brooks in the Ouémé Delta. Field campaigns identified 75 springs located in the valleys which feed the rivers, and thus maintain their base flow. The piezometric results indicated, through flow direction assessment, that the Mio-Pliocene aquifer feeds Ouémé Stream and Sô River. Chemical analyses of groundwater and surface waters show similar chemical facies, and changes in the chemical composition in groundwater are also observed in the surface waters. Moreover, the isotopic signatures of surface waters are similar to those of the groundwater and springs, which led to the identification of potential groundwater discharge areas. As a result of groundwater discharge into surface waters, the fraction of groundwater in the surface water is more than 66% in the brooks, regardless of the season. In the Ouémé Stream and Sô River, the fraction of groundwater is 0–21% between June and September, while from October to March it is 47–100%.

  相似文献   

18.
The alluvial aquifer of Upper Cheliff (northern Algeria) is known for its intensive agricultural activities, which is based especially on groundwater exploitation. This aquifer is now facing a dual problem of quantity and quality, with a decrease in the groundwater levels and an increase in mineralization. Twenty monitoring samples were collected and analyzed for major ion during the dry season 2014. In the present study, we try to characterize the hydrogeochemical processes and to assess the impact of natural and anthropogenic conditions on groundwater mineralization. The analytical results of the dry season 2014 show a groundwater quality slightly alkaline (pH > 7) and indicate that the majority of samples have a values exceeding the limits of potability fixed by WHO in 2008, due to the various sources of anthropogenic pollution. The Piper diagram shows the dominance of groundwater types: Ca–Cl, the mixed facies (Cl–SO4–Ca–Mg), and Ca–HCO3: The mineralization process in this aquifer is mainly controlled by the lithology of the aquifer (exchange water–rock and weathering of calcareous crust dissolution in the unsaturated zone), by anthropogenic factors (discharges of untreated urban sewage, intensive use of fertilizers in agriculture and the use of domestic septic tanks by rural inhabitants) and also by geoclimatic conditions (semiarid climate). Suitability of groundwater shows more than 80% of samples have very poor quality for drinking and more than 20% of samples indicate a quality unsuitable for irrigation.  相似文献   

19.
A study was conducted to evaluate production strategies for a well field system near a source of groundwater contamination. Numerical modeling of groundwater flow was employed to generate hydraulic head configurations for different production scenarios. For a given scenario, an evaluation of contamination susceptibility was made by comparing head distributions in two aquifer units to the positions of the contaminant source and discharging water supply wells. The results of this study suggest that groundwater flow modeling can be a useful technique for planning the production of water supply wells in aquifers at risk of contamination from anthropogenic pollution sources.  相似文献   

20.
This study examined the natural and anthropogenic pollution of groundwater at a national groundwater monitoring station (NGMS) in a dyeing industry complex, Korea. The arsenic contamination of a shallow well at the NGMS was noticed, starting from 22 months after the well installation. Possibilities of several mechanisms for As pollution of the groundwater were examined. The arsenical pyrite oxidation as a source mechanism in the shallow aquifer may be disregarded because of deficiency of pyrite in the shallow sediments, concomitant with depleted dissolved oxygen and very low levels of redox potentials of the As-polluted groundwater. The effect of wastewater from the general industrial area through a covered sewer stream was also considered as a possible source. Even though occurrence patterns of phenol and volatile organic hydrocarbons were very similar to those of the polluted shallow groundwater, As was not detected in the wastewater. One of the most plausible sources of the arsenic pollution was believed to be the reductive dissolution of Fe hydroxide. The As-polluted shallow groundwater had also very high levels of pH, HCO3, COD and very low levels of DO and NO3, which support the possibility of As pollution by the reductive dissolution. Consequently, the shallow groundwater in and around the NGMS has been polluted with various contaminants including As, phenol, chlorinated solvents, and petroleum hydrocarbons through multiple sources of contamination, such as natural reductive dissolution, dyeing wastewater, industrial wastewater, and municipal sewage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号