首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Flyrock is one of the most hazardous events in blasting operation of surface mines. There are several empirical methods to predict flyrock. Low performance of such models is due to complexity of flyrock analysis. Existence of various effective parameters and their unknown relationships are the main reasons for inaccuracy of the empirical models. Presently, application of new approaches such as artificial intelligence is highly recommended. In this paper, an attempt has been made to predict and control flyrock in blasting operation of Sangan iron mine, Iran incorporating rock properties and blast design parameters using artificial neural network (ANN) method. A three-layer feedforward back-propagation neural network having 13 hidden neurons with nine input parameters and one output parameter were trained using 192 experimental blast datasets. It was also observed that in ascending order, blastability index, charge per delay, hole diameter, stemming length, powder factor are the most effective parameters on the flyrock. Reducing charge per delay caused significant reduction in the flyrock from 165 to 25 m in the Sangan iron mine.  相似文献   

3.
Blasting operations usually produce significant environmental problems which may cause severe damage to the nearby areas. Air-overpressure (AOp) is one of the most important environmental impacts of blasting operations which needs to be predicted and subsequently controlled to minimize the potential risk of damage. In order to solve AOp problem in Hulu Langat granite quarry site, Malaysia, three non-linear methods namely empirical, artificial neural network (ANN) and a hybrid model of genetic algorithm (GA)–ANN were developed in this study. To do this, 76 blasting operations were investigated and relevant blasting parameters were measured in the site. The most influential parameters on AOp namely maximum charge per delay and the distance from the blast-face were considered as model inputs or predictors. Using the five randomly selected datasets and considering the modeling procedure of each method, 15 models were constructed for all predictive techniques. Several performance indices including coefficient of determination (R 2), root mean square error and variance account for were utilized to check the performance capacity of the predictive methods. Considering these performance indices and using simple ranking method, the best models for AOp prediction were selected. It was found that the GA–ANN technique can provide higher performance capacity in predicting AOp compared to other predictive methods. This is due to the fact that the GA–ANN model can optimize the weights and biases of the network connection for training by ANN. In this study, GA–ANN is introduced as superior model for solving AOp problem in Hulu Langat site.  相似文献   

4.
Flyrock arising from blasting operations is one of the crucial and complex problems in mining industry and its prediction plays an important role in the minimization of related hazards. In past years, various empirical methods were developed for the prediction of flyrock distance using statistical analysis techniques, which have very low predictive capacity. Artificial intelligence (AI) techniques are now being used as alternate statistical techniques. In this paper, two predictive models were developed by using AI techniques to predict flyrock distance in Sungun copper mine of Iran. One of the models employed artificial neural network (ANN), and another, fuzzy logic. The results showed that both models were useful and efficient whereas the fuzzy model exhibited high performance than ANN model for predicting flyrock distance. The performance of the models showed that the AI is a good tool for minimizing the uncertainties in the blasting operations.  相似文献   

5.
露天矿高台阶爆破的数值分析   总被引:1,自引:0,他引:1  
周楠  王德胜  王华  常建平 《岩土力学》2013,34(Z1):516-522
高台阶爆破可行性研究属于多因素影响、复杂的系统工程。针对高台阶爆破的研究现状,提出了从爆破机制角度证实高台阶爆破可行性的方法,基于数值模拟方法对台阶爆破过程进行分析。通过对比现行普通台阶爆破与高台阶爆破过程中台阶难爆部位(台阶底部与顶部)应力场变化趋势,发现采用高台阶爆破可以得到与普通台阶爆破相当或更好的爆破效果。从爆破机制角度证实,高台阶爆破技术在巴润铁矿具有可行性。数值分析结果表明,高台阶爆破时采用的最佳起爆方式为全药柱同时起爆方式,其次为中间起爆和两端起爆方式,不适宜采用孔底起爆方式。  相似文献   

6.
This paper presents the results of ground vibration measurements carried out in Hisarcik Boron open pit mine located on the west side of central Anatolia near Kütahya province in Turkey. Within the scope of this study to predict peak particle velocity (PPV) level for this site, ground vibration components were measured for 304 shots during bench blasting. In blasting operations, ANFO (blasting agent), gelatin dynamite (priming), and delay electric detonators (firing) were used as explosives. Parameters of scaled distance (charge quantity per delay and the distance between the source and the station) were recorded carefully and the ground vibration components were measured for all blast events using two different types of vibration monitors (one White Mini-Seis and one Instantel Minimate Plus Model). The absolute distances between shot points and monitor stations were determined using GPS. The equation of square root scaled distance extensively used in the literature was taken into consideration for the prediction of PPV. Then, the data pairs of scaled distance and particle velocity obtained from the 565 event records were analyzed statistically. At the end of statistical evaluation of the data pairs, an empirical relation which gives 50% prediction line with a reasonable correlation coefficient was established between PPV and scaled distance.  相似文献   

7.
The influence of air deck blasting on blast performance and blast economics and its feasibility has been studied in the production blasting of soft and medium strength sandstone overburden rocks in an open pit coal mine in India. The air deck blasting technique was very effective in soft and medium strength rocks. Its main effects resulted in reducing fines, in producing more uniform fragmentation and in improving blast economics. The fines were reduced by 60–70% in homogeneous sandstones. Oversize boulders were reduced by 80% and shovel loading efficiency was improved by 20–40% in blocky sandstones. The explosive cost was reduced by 10–35% dependent on the type of rock mass. Throw, backbreak and ground vibration were reduced by 10–35%, 50–80% and 30–94% respectively. For a particular rock mass and blast design environment, air deck length (ADL) significantly influenced the fragmentation. ADL as represented by air deck factor (ADF) in the range of 0.10–0.35 times the original charge length (OCL) produced optimum results. ADF beyond 0.35 resulted in poor fragmentation and in inadequate burden movement.  相似文献   

8.
Summary Formulation and case studies of a three dimensional kinematic model are presented. Thein situ overburden geometry can be simulated accurately and various initiation patterns of blasts can be modelled. The overburden geometry, hole patterns and explosive distribution are all explicit model inputs. Because the effect of explosive properties, rock mass condition and inter-row delay are very difficult to measure in terms of blast performance, these are represented in the model by control parameters which are left for calibration using field data. The output of the model is a three dimensional muckpile shape of any cross section and a contour map of grade distribution within the muckpile. Two case studies are presented which have shown that the model is a valuable tool for optimizing production blasting as well as for controlling grade dilution during blasting.  相似文献   

9.
Summary An example of the generalized probabilistic approach to slope analysis is given through a case study on an iron ore mine. A step by step engineering procedure is described, so that a practical application can be made to other structures under different field conditions.  相似文献   

10.
Environmental impact assessment of open pit mining in Iran   总被引:2,自引:0,他引:2  
Mining is widely regarded as having adverse effects on environment of both magnitude and diversity. Some of these effects include erosion, formation of sinkhole, biodiversity loss and contamination of groundwater by chemical from the mining process in general and open-pit mining in particular. As such, a repeatable process to evaluate these effects primarily aims to diminish them. This paper applies Folchi method to evaluate the impact of open-pit mining in four Iranian mines that lacked previous geo-environmental assessment. Having key geologic resources, these mines are: Mouteh gold mine, Gol-e-Gohar and Chogart iron mines, and Sarcheshmeh copper mine. The environmental components can be defined as public health and safety, social relationships, air and water quality, flora and fauna hence, various impacting factors from the mining activities were estimated for each environmental component. For this purpose, each impacting factor was first given a magnitude, based solely on the range of possible scenarios. Thereafter, a matrix of weighted factors was derived to systematically quantify and normalize the effects of each impacting factor. The overall impact upon each individual environmental component was then calculated by summing the weighted rates. Here, Folchi method was applied to evaluate those environmental conditions. Based on the acquired results, the present paper finally concludes that amongst four case histories in Iran, Sarcheshmeh copper mine significantly affects the environment, with critical level of air pollution there.  相似文献   

11.
12.
The creep strain is proportional to the logarithm of the time under load, and is proportional to the stress and the temperature. At higher temperatures the creep rate falls off less rapidly with time, and the creep strain is proportional to a fractional power of time, with exponent increasing as the temperature increases and reaching a value ∼1/3 at temperatures, of about 0.5 T m. At these temperatures the creep increases with stress according to a power greater than unity and possibly exponentially increases with temperature as (−U/kT), where U is an activation energy and k is Boltzman’s constant. There are different methods to determine the creep strain and the energy of Jog (B) such as by experimental methods and multivariate regression analysis etc. These methods are cumbersome and time consuming. In conjunction with statistics and conventional mathematical methods, a hybrid method can be developed that may prove a step forward in modeling geotechnical problems. In the present investigation, Artificial Neural Network (ANN) technique and Co-active neuro-fuzzy inference system (CANFIS) backed Genetic algorithm technique have been used for the prediction of creep strain and energy of Jog (B), and a comparative study has made between the two models.  相似文献   

13.
露天地下开采隔离层稳定性研究   总被引:2,自引:0,他引:2  
岩小明  李夕兵  郭雷  高峰 《岩土力学》2007,28(8):1682-1686
露天地下开采隔离层稳定性分析是矿山中经常遇到的问题。以大宝山矿露天地下开采的工程实例,采用数值分析方法,对隔离层稳定性进行分析计算,发现空区顶板的拉应力是关系隔离层稳定性的关键因素。通过对隔离层的安全厚度数值计算,与5种理论计算方法结果进行了比较,综合求和归一法数据处理和多项式数值逼近得到了不同空区跨度与隔离层安全厚度关系。结果为露天地下开采隔离层稳定性分析的方法进行了验证和补充,也为矿山设计隔离层厚度提供了参考,对指导露天地下开采安全生产施工具有重要意义。  相似文献   

14.
为了掌握高海拔多年冻土区露天煤矿边坡形成后的水分变化规律,明晰其对边坡稳定性的影响特征,依托青海木里聚乎更矿区露天煤矿矿坑开挖过程,运用调查和监测的方法分析了采场边坡的水冰环境。调查分析结果表明,矿区内分布着连续的厚度不等的多年冻土(岩)层,矿坑开挖切割不同岩性的冻结地层而形成多种类型的边坡,由于边坡地层岩性和结构的差异而使岩体含冰特征体现出较大不同。原始冻结岩土体因开挖形成边坡而使其温度与水分环境发生了显著变化,边坡表面地层由温度和水分稳定态转化为温度与水分敏感态,即逐渐由多年冻土(岩)层转化为季节冻土(岩)层,在水分和温度的双重因素作用下,边坡岩体的水冰环境在不断地发生着复杂的变化。通过地层温度和水冰环境的调查与分类概化,可为研究岩体的真实冻融劣化规律及边坡稳定性演化规律提供科学基础。  相似文献   

15.
以SPOT卫星数据为主要信息源,通过不同时相对比,对南京东部地区露天采矿活动进行了动态监测,详细查明了不同时间段露采矿山的空间展布特征,分析了矿山开采对景观、环境的影响,探讨其与社会经济发展、政府决策之间的内部联系。  相似文献   

16.
Slope stability is a critical safety and production issue for mining. Major wall failure can occur seemingly without any visual warning, causing loss of lives, damage to equipment, and disruption to the mining process. Monitoring systems, ranging from simple piezometers and extensometers to highly sophisticated radars and global navigation satellite systems, are employed to predict impending instabilities and failure. Here, we provide a review of the available monitoring systems used in slope management and highlight their major advantages and shortcomings. We propose a simple method for evaluating the effectiveness and reliability of monitoring systems to warn of pending slope failures. The method is based on constructing monitoring reliability maps for the slope by evaluating two slope parameters: Expected deformation to failure and critical reading frequency, which depend on the slope characteristics (e.g., geology and design), service condition (e.g., rainfall, blast), and the economic impact of the failure. The reliability of a deformation monitoring system can be subsequently assessed by identifying three parameters of the system: Coverage area (large or discrete), Deformation monitoring precision, and Measurement frequency. The application of the method to most commonly used deformation monitoring systems is demonstrated. The advantages and implications of the proposed method are highlighted.  相似文献   

17.
《Applied Geochemistry》2000,15(4):475-492
Between 1968 and 1983, the North pit at the Getchell Mine, Humboldt County, NV, filled with water to form a lake. In 1983, water quality data were collected with the following results: As concentrations of 0.29 to 0.59 mg/L, pH of 7.1 to 7.9, SO4 concentrations of 1490 to 1640 mg/L, and TDS of 2394 to 2500 mg/L. Using geochemical modeling techniques presented here, pit lake waters have been theoretically allowed to react for 8.5 a, the approximate time that the North pit had been completely full by 1983. Modeling results predict pH of 7.9 to 8.2, SO4 concentrations of 1503 to 1644 mg/L, TDS of 2054 to 2366 mg/L, and As concentrations ranging from 0.57 in the hypolimnion to 96 mg/L in the epilimnion. In the epilimnion, model results do not match observed As concentrations, suggesting that mechanisms, such as precipitation of arsenate salts or adsorption to mineral surfaces, may control As levels in an actual pit lake system. Adsorption to Fe oxyhydroxide surfaces is questioned by the authors because of the low Fe content in the Getchell system, but adsorption to Al(OH)3 (gibbsite) and clay mineral surfaces may be important in controlling natural As concentrations.  相似文献   

18.
SummaryOn the Mechanism and Process of Slope Deformation in an Open Pit Mine This paper presents an example of slide-toppling deformation in the slope of Jinchuan open pit mine. The composite mechanism and deformation process are controlled by the tabular-blocky structure of a faulted rock mass. The rheologic behaviour is found to be consistent with a three stage creep law and can be expressed by an exponential function. The results of field investigations and long-term observations demonstrate that the time-dependent deformation of rock masses is essentially related to creep along faults and other weak surfaces.
ZusammenfassungÜber den Mechanismus und den Verlauf von Hangbewegungen in einem Tagbau Als Beispiel für eine Gleitbewegung, die mit Rotationsvorgängen kombiniert ist, wird eine Hangbewegung im Tagbau von Jinchuan beschrieben. Der komplizierte Mechanismus und der Verlauf der Deformationen werden von den bankigen Strukturen des Gebirges geprägt. Das rheologische Verhalten entspricht dem Drei-Phasen-Kriechgesetz und kann durch eine Exponentialfunktion dargestellt werden. Im Verlauf von langfristigen Beobachtungen zeigt sich, daß die zeitabhängigen Deformationen stark mit Kriechvorgängen an Störungen und anderen Schwächezonen zusammenhängen.

RésuméSur le mécanisme et le processus des déformations de la pente dans une mine à ciel ouvert On discute dans cet article l'exemple des déformations du glissement-ecroulement de la pente dans la mine à ciel ouvert de Jingchun. Le mécanisme et la processus de ces déformations complexités sont controlés par la structure de la fracture du massif rocheux. Le comportement rheologique correspond au caractère de trois phases du flauge et s'interprete par l'exponentiele. Le resultat de l'etude a la place et l'observation prolongée démontre que la comportement du massif rocheux en foction du temps est régés essentiellement par la flauge des failles et fractures.


With 12 Figures  相似文献   

19.
A new formulation is given to conduct a probabilistic block theory analysis. A new computer code (PBTAC) is developed to perform both deterministic and probabilistic block theory analysis. The variability of the discontinuity orientation and shear strength is incorporated in the probabilistic block theory analysis. Discontinuity orientation is treated as a bivariate random variable including the correlation that exists between the dip angle and dip direction. PBTAC code was applied to perform both deterministic and probabilistic block theory analyses for a part of an open pit mine in USA. Needed geological and geotechnical data for the analyses were obtained from field and laboratory investigations. The variability of the discontinuity orientations resulted in important differences between the probabilistic and deterministic block theory analyses results. The results confirmed that the design value selected for the maximum safe slope angle (MSSA) for a particular region in the open pit mine based on the deterministic block theory analysis can be on the unsafe side. In summary, the results showed clearly the superiority of probabilistic block theory analysis over the deterministic block theory analysis in obtaining additional important information with respect to designing rock slopes. The calculated values agree very well with the existing almost stable bench face angles reported by the mining company.  相似文献   

20.
在露采矿山地质环境调查成果的基础上,分析了南京市露采矿山环境现状,指出了矿山存在的环境问题,提出了矿山环境保护与整治建议,为科学有序地开展矿山环境整治及制定相关政策提供了依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号