首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Baghdad City is characterized by high population density and wide variation in land use. It is covered by Quaternary flood plain deposits of variable nature where silt is the predominant component. The shallow aquifer is unconfined to semi-confined at some locations. The hydraulic properties of the aquifer are highly variable in the study area. A study of this groundwater shallow aquifer and the hydrochemical relation with the Tigris River were conducted using geochemical modeling approach. Baghdad Meteoric Water Line (BMWL) was also constructed using data of stable isotopes of hydrogen and oxygen. The hydrochemical parameters of the Tigris River show significant differences at high and low flow conditions, and there are clear difference among the selected stations. Groundwater parameters show also significant spatial and temporal variations in major and minor elements concentrations. Geochemical modeling results indicate that dissolution of dolomite, gypsum, chlorite, siderite, chalcedony, cation exchange of Ca2+/Na+ and precipitation of calcite, illite, kaolinite, and hematite are the main chemical reactions in the Rasafa side, whereas no specific reactions can be shown in the Karkh side. Mixing models of the shallow groundwater and Tigris River water show various patterns affected by other factors such as the aquifer recharge and evaporation, especially at the most shallow parts. The BMWL has been defined by the equation $ {\delta^2}\mathrm{H} = 8.6\ {\delta^{18}}\mathrm{O} + 17.48 $ and the stable isotopes of hydrogen and oxygen reveal different signatures in the Karkh and Rasafa sides, where clear zonation at Rasafa can be observed. We conclude that recharge water undergoes significant evaporation through its transit to the aquifer.  相似文献   

2.
This research aims to evaluate the groundwater resources of Paleogene aquifer in the Upper Jazireh area (Syria), in terms of chemical water type, recharge zones and water ages. The results show that the main recharge zones for the Paleogene aquifer range between 650 and 900 m a.s.l., which coincide with the outcrop of the karstified limestone in the Mardin uplift. The chemical and isotopic behaviors of groundwater, together with radiometric 14C reflect the existence of three different groundwater groups: (1) the fresh and cold water, percolating in short and shallow flow paths, for which the main replenishment processes are recent; (2) the brackish and thermal water containing certain amounts of H2S gas, that percolate in longer and deeper flow paths, for which the main replenishment processes occurred during the palaeoclimatic humid conditions of Pleistocene time, placed at 10–18 Ka BP; (3) the brackish and admixed thermal groundwater with intermediate 14C age, which seems to be formed as a result of mixing between the previous two groups.  相似文献   

3.
A study of the hydrogeochemical processes in the Morsott-El Aouinet aquifer was carried out with the objective of identifying the geochemical processes and their relation with groundwater quality as well as to get an insight into the hydrochemical evaluation of groundwater. The high salinity coupled with groundwater level decline pose serious problems for current irrigation and domestic water supplies as well as future exploitation. A combined hydrogeologic and isotopic investigation have been carried out using chemical and isotopic data to deduce a hydrochemical evaluation of the aquifer system based on the ionic constituents, water types, hydrochemical facies and factors controlling groundwater quality. The ionic speciation and mineral dissolution/precipitation was calculated by WATEQF package software. The increase in salinity is related to the dissolution and/or precipitation processes during the water–rock interaction and to the cationic exchange reactions between groundwater and clay minerals. The isotopic analysis of some groundwater samples shows a similarity with the meteoric waters reflect their short residence time and a lowest evaporation phenomenon of infiltrated groundwater.  相似文献   

4.
Geochemical characterization of groundwater from an arid region in India   总被引:2,自引:1,他引:2  
A study on the geochemical processes in arid region of western India (Kachchh district) was carried out using major, minor, trace metal data and isotopic composition (δ2H, δ18O) of groundwaters. Results indicate that the distribution of chemical species in groundwater of this district is controlled by leaching of marine sediments, dissolution of salts in root zone and incongruent dissolution of carbonate minerals. Common inorganic contaminants such as fluoride, nitrate and phosphate are within drinking water permissible limits. However, most of the samples analyzed contain total dissolved salts more than desirable limits and fall in doubtful to unsuitable category with regard to irrigational purpose. Trace metal data indicates no contamination from toxic elements such as arsenic and lead. An increased salt content is observed in groundwater at shallower depths indicating mixing with surface water sources. The chemical characteristics of the groundwater have found to be strongly dependent on the local lithological composition. Environmental isotopic data indicates that the groundwater is of meteoric origin and has undergone limited modification before its recharge. The processes responsible for observed brackishness are identified using chemical and isotope indicators, which are in agreement with subsurface lithology and hydrochemistry. These data though represent hydrochemical scenario of 2001 can still be used for understanding the long-term fluctuations in water chemistry and would be quite useful for the planners in validating groundwater quality models.  相似文献   

5.
Stable isotopes (δ18O, δ2H and 13C) and radioactivity (3H, 14C) have been used in conjunction with chemical data to evaluate the processes generating the chemical composition, reconstruct the origin of the water and groundwater residence time. The Aleppo basin is comprised of two main limestone aquifers: the first one is unconfined of Paleogene age and the second is confined of Upper Cretaceous age. The chemical data indicate that the dissolution of minerals and evaporation are the main processes controlling groundwater mineralization. The groundwater from the two aquifers is characterized by distinctive stable isotope signatures. This difference in water isotopes is interpreted in terms of difference origin and recharge period. Fresh and brackish shallow groundwater were mostly recharged during the Holocene period. The presence of 3H in several groundwater samples of this aquifer gives evidence that groundwater recharge is going on. Brackish water of the deep confined aquifer has depleted stable isotope composition and very low 14C activity that indicates recharge during the late Pleistocene cold period.  相似文献   

6.
Worldwide, groundwater resources have been considered as the main sources of drinking, domestic uses, industrial and agriculture water demands, especially in arid and semiarid regions. Accordingly, the monitoring of the groundwater quality based on different tools and methods becomes a necessity. The aim of this study was to apply several approaches to assess the water quality and to define the main hydrochemical process which affect groundwater of the Maritime Djeffara shallow aquifer. In addition to the hydrochemical approach, two multivariate statistical analyses, hierarchical clusters analysis (HCA) and principal component analysis (PCA), were carried out to identify the natural and the anthropogenic processes affecting groundwater chemistry. Hydrochemical approach, based on 47 analyzed groundwater samples, shows that most of samples present a sulfate to mixed chloride, with sodi-potassic tendency facies. According to their chemically composition, the HCA revealed three different groups (C1, C2 and C3) according to their electrical conductivity (EC) values: C1 (average EC = 4500 µS/cm), C2 (average EC = 7040 µS/cm) and C3 (average EC = 9767 µS/cm). Furthermore, PCA results show two principal factors account 84.05% of the total variance: (1) F1 represents the natural component, and (2) F2 symbolizes the anthropic component. Moreover, the groundwater quality map of the Maritime Djeffara shows three categories: suitable, doubtful and unsuitable water for irrigation. These different results should be taken to protect water resources in arid and semiarid regions, especially at the alluvial coastal regions. Also, they help to make a suitable planning to manage and protect the groundwater resources.  相似文献   

7.
A hydrochemical evaluation of the hydrogeological surface aquifer of Ouargla was conducted using 17 samples of water. The analysis of the samples focused on the determination of calcium, magnesium, sodium, potassium, chloride, sulfate, bicarbonate, and nitrate, while electrical conductivity, temperature, and pH were measured on the ground. The obtained data are processed by multivariate techniques with a varimax rotation approach after standardization. The chemical data follow four factorial axes that provide a cumulative total variance explained by 67 %. Considering the EC as an additional variable, the matrix components after varimax rotation have identified a first axis related to NaCl, a second axis associated with CaSO4, a third axis of HCO3 and a fourth axis of NO3. These variables control a significant part of the chemistry of the groundwater in the region of Ouargla.  相似文献   

8.
在沿海地区,尤其是围海造陆工程形成的陆域地区地下水水位受潮汐影响较大,使传统水文地质试验求取含水层参数存在较大误差。因此通过合理概化地下水在潮汐作用下运动规律,建立数学模型,推导解析公式求取沿海含水层参数具有重要意义。分析天津滨海新区两处观测孔地下水位及潮汐波动特征,在滞后时间不明显的情况下,利用观测孔水位变幅数据计算了含水层水头扩散系数,并根据承压含水层储水系数经验值进一步获得含水层渗透系数。通过两个观测孔分别计算,对比计算结果互相验证发现,该方法取得了令人满意的结果。利用地下水潮汐效应计算含水层参数可以广泛应用于沿海地区水文地质工作中。  相似文献   

9.
Hydrochemistry of groundwater is largely determined by both natural processes, such as dissolution, cation exchange, mixing, evaporation; and anthropogenic activities, which can affect the aquifer systems by contaminating them or by modifying their hydrological cycle. Both natural and anthropogenic processes vary in time and space; which is reflected in groundwater hydrochemistry variation. The objective of this study is the determination of the main hydrogeochemical processes that affect the quality of shallow groundwaters in the Grombalia basin, located in the Cap Bon Peninsula, north-eastern Tunisia. In this area, the chemical composition of groundwater is mostly characterized by Na–Cl–NO3–Ca water type which reveals the implication of natural and anthropogenic major factors. Natural factors are dissolution of evaporatic minerals, i.e. halite and gypsum and cation exchange with clays, while anthropogenic factors are pollution with industrial Sr-rich waste water and return flow of irrigation water, highly contaminated by MgSO4 and methyl-bromide fertilizers.  相似文献   

10.
Located in semi-arid regions of northwestern China, Datong basin is a Quaternary sedimentary basin, where groundwater is the most important source for water supply. It is very important to study groundwater characteristics and hydrogeochemical processes for better management of the groundwater resource. We have identified five geochemical zones of shallow groundwater (between 5 and 80 m) at Datong: A. Leaching Zone (Zone I); B. Converging Zone (Zone II); C. Enriching Zone (Zone III); D. Reducing Zone (Zone IV); E. Oxidizing Zone (Zone V). In Zones I, II, and V and some parts of Zones III and IV, hydrolysis of albite/K-feldspar/chalcedony system and/or albite/K-feldspar/quartz system enhanced concentrations of Na+, K+, HCO3 and silicate. In Zone I, dissolution of carbonate and hydrolysis of feldspar generally controlled the groundwater chemistry. Infiltration of meteoric water promoted the formation of HCO3 in the water. In Zone II, the main geochemical processes influencing the groundwater chemistry were dissolutions of calcite and dolomite, ion exchange and evaporation. In Zones III and IV, in addition to ion exchange, evaporation and precipitation of calcite and dolomite, leaching of NaHCO3 in saline–alkaline soils dominated the water quality. Zone IV was under anoxic condition, and reduction reactions led to the decrease of SO42−, NO3 and occurrence of H2S, with the highest arsenic content (mean value of 366 μg/L), far exceeding Maximum Contaminant Level (MCL). Abnormal arsenic in the groundwater resulted in endemic disease of waterborne arsenic poisoning among local people. Zone V overlapped Zone I was intensively affected by coal mining activities. Sulfide minerals, such as pyrite, would have been oxidized when exposed to air due to coal mining, which directly added sulfate to groundwater and thus increased SO42− concentration. Oxidization of sulfide minerals also decreased pH and promoted dissolutions of calcite and dolomite.  相似文献   

11.
Groundwater constitutes the main source of water supply in the High Mekerra watershed of northwestern Algeria. This resource is currently under heavy pressures to meet the growing needs of drinking water and irrigation. This study assesses the geochemical characteristics of groundwater of the High Mekerra watershed at 21 points distributed across the two main aquifers (Ras El Ma and Mouley Slissen) in the region. Hydrochemical facies of Ras El Ma groundwater are dominantly MgCl and CaCl type, while those of Mouley Slissen groundwater are of CaHCO3 type. Principal component analysis shows a strong correlation between groundwater mineralization and Ca2+, Na+, Cl? and SO4 2? ions stemming from the dissolution of carbonates, gypsum and anhydrite. Groundwater mineralization evolves from south to north. Geochemical modeling shows that the High Mekerra groundwater is saturated with respect to calcite and dolomite and undersaturated with respect to gypsum and anhydrite. Nitrate concentrations that exceed the WHO standard (50 mg L?1) at several points are linked to the agro-pastoral activities in this region.  相似文献   

12.
The aim of the present study is to identify the geochemical processes responsible for higher fluoride (F) content in the groundwater of the Yellareddigudem watershed located in Nalgonda district, Andhra Pradesh. The basement rocks in the study area comprise mainly of granites (pink and grey varieties), which contain F-bearing minerals (fluorite, biotite and hornblende). The results of the study area suggest that the groundwater is characterized by Na+: HCO facies. The F content varies from 0.42 to 7.50 mg/L. In about 68% of the collected groundwater samples, the concentration of F exceeds the national drinking water quality limit of 1.5 mg/L. The weathering of the granitic rocks causes the release of Na+ and HCO ions, which increase the solubility of ions. Ion exchange between Na+ and Ca2+, and precipitation of CaCO3 reduce the activity of Ca2+. This favours dissolution of CaF2 from the F-bearing minerals present in the host rocks, leading to a higher concentration of F in the groundwater. The study further suggests that the spatial variation in the F content appears to be caused by difference in the relative occurrence of F-bearing minerals, the degree of rockweathering and fracturing, the residence time of water in the aquifer materials and the associated geochemical processes. The study emphasizes the need for appropriate management measures to mitigate the effect of higher F groundwater on human health.  相似文献   

13.
Hydrogeochemical investigations are carried out in the northeastern part of Nagpur urban to assess the quality of groundwater for its suitability for drinking and irrigation purposes. Groundwater samples are collected from both shallow and deep aquifers to monitor the hydrochemistry of various ions. The groundwater quality of the area is adversely affected by urbanization as indicated by distribution of EC and nitrate. In the groundwater of study area, Ca2+ is the most dominant cation and Cl and HCO3 are the dominant anions. Majority of the samples have total dissolved solids values above desirable limit and most of them belong to very hard type. As compared to deep aquifers, shallow aquifer groundwaters are more polluted and have high concentration of NO3 . The analytical results reveal that most of the samples containing high nitrate also have high chloride. Major hydrochemical facies were identified using Piper trilinear diagram. Alkaline earth exceeds alkalis and weak acids exceed strong acids. Shoeller index values reveal that base-exchange reaction exists all over the area. Based on US salinity diagram most of samples belong to high salinity-low sodium type. A comparison of groundwater quality in relation to drinking water standards showed that most of the water samples are not suitable for drinking purpose.  相似文献   

14.
Thirty-two springs, draining different aquifers in northern Israel, including fresh as well as brackish water sources, were seasonally sampled for two consecutive years and the water samples analyzed for major as well as trace elements. Based on these analyses, the geochemical parameters, the trace element to Cl ratios, as well as the anomalous concentration of different elements enable the characterization and differentiation of different aquifer waters. In addition, indications were obtained regarding the salinity sources of the brackish waters and the suspected sources of polluted water. Electronic supplementary material to this paper can be obtained by using the Springer LINK server located at http://dx.doi.org/10.1007/s00254-001-0502-y.  相似文献   

15.
Quantitative evaluations of the impact of groundwater abstraction on recharge are rare. Over a period (1975??007) during which groundwater abstraction increased dramatically in the Bengal Basin, changes in net groundwater recharge in Bangladesh are assessed using the water-table fluctuation method. Mean annual groundwater recharge is shown to be higher (300??00?mm) in northwestern and southwestern areas of Bangladesh than in southeastern and northeastern regions (<100?mm) where rainfall and potential recharge are greater. Net recharge in many parts of Bangladesh has increased substantially (5??5?mm/year between 1985 and 2007) in response to increased groundwater abstraction for irrigation and urban water supplies. In contrast, net recharge has slightly decreased (??.5 to ???mm/year) in areas where groundwater-fed irrigation is low (<30% of total irrigation) and where abstraction has either decreased or remained unchanged over the period of 1985??007. The spatio-temporal dynamics of recharge in Bangladesh illustrate the fundamental flaw in definitions of “safe yield??based on recharge estimated under static (non-pumping) conditions and reveal the areas where (1) further groundwater abstraction may increase actual recharge to the shallow aquifer, and (2) current groundwater abstraction for irrigation and urban water supplies is unsustainable.  相似文献   

16.
An insect, Folsomia candida, was found in a shallow aquifer along the southwestern coast of Michigan. F. candida is a standard organism for soil toxicity testing but its occurrence in groundwater is uncommon to rare, or has been under-reported in the literature. Attempts to correlate the presence of F. candida to water and soil parameters yielded: (1) F. candida is present in the upper 15–25 cm of topsoil, but absent in the underlying vadose zone except directly above the water table, regardless of the presence in groundwater; (2) F. candida is most abundant in groundwater 4.3–5.0 m below land surface; (3) Most F. candida occur in wells with dissolved oxygen ranging from 4 to 5 ppm; (4) F. candida is most abundant in water between about 14 and 18°C; (5) F. candida is abundant in groundwater with high concentrations of Cl, Na+, and K+; and, (6) Small differences in pore space volume determine the feasibility of F. candida occupancy, but not the presence of F. candida in the study area.  相似文献   

17.
With the exception of the south of the country, the Netherlands has a strong bipartite hydrogeology: the Holocene part with a coastal dune belt and confining top layer of clay and peat further inland, and the Pleistocene, where thick phreatic aquifers dominate. This research aimed to ascertain the geochemical and palaeohydrological controls on the composition of shallow groundwater in 27 regions. Close to 6000 groundwater analyses were grouped and interpreted in terms of 1. salinity, 2. redox status, 3. acid/base and carbonate status and 4. natural nutrients NH4 and PO4. The a priori classification into geographical regions and geological formations revealed many statistically significant differences in medians, even for geologically or geographically related data groups. The compound-specific interpretation indicates that there are geogenically controlled, systematic differences in groundwater composition at the regional scale. The imprint of the geological sediments on the groundwater composition decreases in the order marine/estuarine via limnological, fluvial to aeolian. The imprints with respect to pH and carbonate status, natural nutrients and redox status are not necessarily interrelated. The vertical stratification in groundwater composition turns out to be often limited at the regional scale due to mutual occurrence of infiltrating and exfiltrating groundwater in regions and either the presence of a highly reactive Holocene, confining top layer or temporal changes in contamination. In the Holocene part, the salinity is controlled by the palaeoenvironmental conditions during the Holocene and by the recharge origin: the average Cl concentration decreases from estuarine via lagoonal to the former Zuider Sea (which was a bay). The most reduced states and also the highest nutrient concentrations and highest CO2 pressure are related to the presence of Holocene marine sediments in the confining top layer. Degradation of marine-derived organic matter as a nutrient source, is likely more intense in the Holocene deposits than that of peat and sedimentary remnants of terrestrial plants. A broad range in pH, carbonate status and redox status is encountered in the Pleistocene part. Here, the palaeohydrological evolution in terms of carbonate leaching together with the geological controls on the calcareous nature of the shallow sedimentary deposits cause regional differences in pH, calcite saturation and silicate weathering. One region with Late Pleistocene limnological deposits has deviating groundwater characteristics and appears more similar to the Holocene part of the Netherlands. Furthermore, reactive Fe is not abundant in all Pleistocene fluvial sediments nor is it maximally mobilised, as not all anoxic groundwater in these sediments is siderite-saturated. This leads to considerable intra- and inter-region variability.  相似文献   

18.
This study focuses on denitrification in a sandy aquifer using geochemical analyses of both sediment and groundwater, combined with groundwater age dating (3H/3He). The study sites are located underneath cultivated fields and an adjacent forested area at Oostrum, The Netherlands. Shallow groundwater in the region has high nitrate concentrations (up to 8 mM) due to intense fertilizer application. Nitrate removal from the groundwater below cultivated fields correlates with sulfate production, and the release of dissolved Fe2+ and pyrite-associated trace metals (e.g. As, Ni, Co and Zn). These results, and the presence of pyrite in the sediment matrix within the nitrate removal zone, indicate that denitrification coupled to pyrite oxidation is a major process in the aquifer. Significant nitrate loss coupled to sulfate production is further confirmed by comparing historical estimates of regional sulfate and nitrate loadings to age-dated groundwater sulfate and nitrate concentrations, for the period 1950-2000. However, the observed increases in sulfate concentration are about 50% lower than would be expected from complete oxidation of pyrite to sulfate, possibly due to the accumulation of intermediate oxidation state sulfur compounds, such as elemental sulfur. Pollutant concentrations (NO3, Cl, As, Co and Ni) measured in the groundwater beneath the agricultural areas in 1996 and 2006 show systematic decreases most likely due to declining fertilizer use.  相似文献   

19.
We present a method of aquifer characterization that is able to utilize multiple sources of conditioning data to build a more realistic model of heterogeneity. This modeling approach (InMod) uses geophysical data to delineate bounding surfaces within sedimentary deposits. The depositional volumes between bounding surfaces are identified automatically from the geophysical data by a region growing algorithm. Simple geometric rules are used to constrain the growth of the regions in 3-D. The nodes within the depositional volume are assigned to categorical lithologies using geostatistical realizations and a dynamic lookup routine that can be conditioned to field data. The realizations created with this method preserve geologically expected features and produces sharp juxtapositions of high and low hydraulic conductivity lithologies along bounding surfaces. The realizations created with InMod also have higher variance than models created only with geostatistics and honor the volumetric distribution of sediments measured from field data.  相似文献   

20.
Jordan Valley is one of the important areas in Jordan that involves dense agricultural activities, which depend on groundwater resources. The groundwater is exploited from an unconfined shallow aquifer which is mainly composed of alluvial deposits. In the vicinity of the Kafrein and South Shunah, the shallow aquifer shows signs of contamination from a wide variety of non-point sources. In this study, a vulnerability map was created as a tool to determine areas where groundwater is most vulnerable to contamination. One of the most widely used groundwater vulnerability mapping methods is SINTACS, which is a point count system model for the assessment of groundwater pollution hazards. SINTACS model is an adaptation for Mediterranean conditions of the well-known DRASTIC model. The model takes into account several environmental factors: these include topography, hydrology, geology, hydrogeology, and pedology. Spatial knowledge of all these factors and their mutual relationships is needed in order to properly model aquifer vulnerability using this model. Geographic information system was used to express each of SINTACS parameters as a spatial thematic layer with a specific weight and score. The final SINTACS thematic layer (intrinsic vulnerability index) was produced by taking the summation of each score parameter multiplied by its specific weight. The resultant SINTACS vulnerability map of the study area indicates that the highest potential sites for contamination are along the area between Er Ramah and Kafrein area. To the north of the study area there is a small, circular area which shows fairly high potential. Elsewhere, very low to low SINTACS index values are observed, indicating areas of low vulnerability potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号