首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
基于1992—2015年国际共享的ECCO v4 (Estimating the Circulation and Climate of the Ocean Version 4)同化产品,利用热含量控制方程定量地诊断赤道太平洋(118°E—75°W, 5°S—5°N, 0~300m)和Ni?o 3.4区(170°W—120°W, 5°S—5°N,0~80m)这两块区域热含量变化机制。对于去掉季节平均后的年际变化,在赤道太平洋地区,时间趋势项主要由经向输送和海表热通量项共同驱动。通过5°N断面的输送决定了时间趋势项的幅值和正负符号。在Ni?o3.4区,时间趋势项主要由海表热通量项和热量输送项共同驱动,其中垂向输送对总输送贡献最大。赤道太平洋地区经向热量输送异常领先于Ni?o3.4区垂向热量输送异常,这解释了在年际尺度上赤道太平洋热含量异常领先Ni?o3.4指数变化的原因。尽管EP(Eastern Pattern)型El Ni?o和CP(Central Pattern)型El Ni?o有许多不同之处,合成分析表明,两类El Ni?o的共同点为:在赤道太平洋地区,两类El Ni?o事件的热量输送异常在发展期和衰退期由经向输送主导;在Ni?o 3.4区, EP型El Ni?o和CP型El Ni?o的热量输送在发展期和衰退期由垂向输送主导。  相似文献   

2.
利用SODA(Simple Ocean Data Assimilation)的海温资料和Unisys Weather的热带气旋资料,研究了1960-2008年期间北太平洋上层150 m的热含量分布特征及其与西北太平洋热带气旋发生频次的关系。考虑了纬度的变化对热含量的影响后,北太平洋热含量的高值中心位于10°N左右,与上层海温结构相符,计算结果更加符合物理意义。北太平洋热含量与西北太平洋热带气旋频数年际相关性研究表明在北太平洋中高纬度大洋内区和赤道东太平洋热带不稳定波发生区呈现出前期冬季正相关性。此相关性存在显著年代际的变化,在1970-1975年和1984-2008年期间最强,1976-1983年期间较弱。在北太平洋中高纬度大洋内区,同期春夏秋季同样存在强正相关。在西太平洋暖池区,同期秋季负相关最为显著。赤道中太平洋区域在夏季呈显著的正相关,秋季减弱。赤道东太平洋海域的相关性前期冬季负相关最为显著,春季负相关性减弱,夏季和秋季无显著相关。  相似文献   

3.
1964—1982年热带西北太平洋海洋上层热含量的变化特征   总被引:7,自引:0,他引:7  
林传兰 《热带海洋》1990,9(2):78-85
  相似文献   

4.
基于1992—2015年国际共享的ECCO v4 (Estimating the Circulation and Climate of the Ocean Version 4)同化产品, 利用热含量控制方程定量地诊断赤道太平洋(118°E—75°W, 5°S—5°N, 0~300m)和Niño 3.4区(170°W—120°W, 5°S—5°N, 0~80m)这两块区域热含量变化机制。对于去掉季节平均后的年际变化, 在赤道太平洋地区, 时间趋势项主要由经向输送和海表热通量项共同驱动。通过5°N断面的输送决定了时间趋势项的幅值和正负符号。在Niño 3.4区, 时间趋势项主要由海表热通量项和热量输送项共同驱动, 其中垂向输送对总输送贡献最大。赤道太平洋地区经向热量输送异常领先于Niño 3.4区垂向热量输送异常, 这解释了在年际尺度上赤道太平洋热含量异常领先Niño 3.4指数变化的原因。尽管EP(Eastern Pattern)型El Niño和CP(Central Pattern)型El Niño有许多不同之处, 合成分析表明, 两类El Niño的共同点为: 在赤道太平洋地区, 两类El Niño事件的热量输送异常在发展期和衰退期由经向输送主导; 在Niño 3.4区, EP型El Niño和CP型El Niño的热量输送在发展期和衰退期由垂向输送主导。  相似文献   

5.
西太平洋暖池热含量与南海夏季风强度的关系   总被引:2,自引:1,他引:1  
为了进一步明确西太平洋暖池热含量对南海夏季风强度的影响,利用1948~2012年日本气象厅(japan meteorological agency,JMA)逐月的海温资料、Hadley中心的海表面温度(Sea Surface Temperature,SST)资料以及NCEP/NCAR再分析资料,分析比较了南海夏季风强度与热带太平洋上层海洋热含量和SST的关系;探讨了海洋热含量影响南海夏季风强度的机制。结果表明:(1)相比于西太暖池SST,西太暖池上层海洋热含量是南海夏季风强度更好的预测因子;(2)前期冬春季的西太平洋暖池热含量与南海夏季风强度呈现显著的正相关,尤其在3月,二者相关系数最大;当暖池热含量偏高(低)时,西太平洋副热带高压偏弱(强),赤道印度洋出现异常反气旋(气旋),印度洋上空的Walker环流分支偏强(弱),南海越赤道气流增强(减弱),最终使得南海夏季风强度偏强(弱)。  相似文献   

6.
本文利用1950~1992年全球海温月平均(2°×2°)和NCAR/NCEP提供的1950~1997年全球500hPa月平均高度(2.5°×2.5°)资料,分析了大西洋海表温度异常的特征及其与中国东北地区夏季降水的关系。结果指出北大西洋冬季海表温度经验正交展开的第二特征向量表明海表温度的距平分布有南北差异的异常特征其中心位置和中国东北地区夏季降水与冬季大西洋海表温度相关显著区中心基本重合;北大西洋冬季海表温度出现南暖北冷异常时,北大西洋中高纬度地区的阻塞形势偏强,与之相对称的北太平洋北部的阻塞高压也偏强,对应夏季东亚西风环流指数偏低,造成东北地区夏季降水偏多。  相似文献   

7.
西太平洋暖池海域热含量场的变异及其影响   总被引:7,自引:2,他引:7       下载免费PDF全文
基于 1 95 5— 1 999年间太平洋月平均海温资料 ,利用经验正交函数 (EOF)分解法 ,研究了西太平洋暖池海域 ( 1 2 0°E— 1 60°W ,1 8°N— 1 6°S)热含量场的时空变化 ,并分析了该海域东、西区热含量变化与南方涛动、副热带高压及ENSO的关系。结果表明 ,暖池海域热含量场主要包括年变化型、年际变化型和年代际变化型三个模态 ,其主要变化周期依次为 1 .0、3.6和 1 3.7年。相关和合成分析表明 ,暖池东、西区热含量的变化均与南方涛动、副热带高压和ENSO循环有十分密切的关系。  相似文献   

8.
利用1980年1月至2007年12月逐月的南海上层海洋热含量和逐层海温资料,分析了南海夏季风爆发早年和晚年前一年冬季和春季南海上层海洋热含量的时空分布特征及其与南海夏季风爆发的关系,并在此基础上,进一步探讨了热含量影响南海夏季风爆发早晚的可能原因。结果表明,南海上层海洋热含量的变化集中体现在中南部(8°~16°N,110°~120°E),而且热含量变化的信号在南海100~200 m之间最强。季风爆发早、晚年的冬春季,南海中南部热含量呈反位相变化。当南海夏季风早(晚)爆发,热含量为正(负)距平。南海夏季风爆发早晚与前期1~5月份南海中南部上层海洋热含量有显著负相关关系,尤其是3月份相关关系最好。当热含量为正(负)距平时,上层海洋异常得到(失去)热量,增大(减弱)了季风爆发前陆地冷海洋暖的海陆温差,有利于南海夏季风的早(晚)爆发。  相似文献   

9.
热带西太平洋暖池是太平洋中海气相互作用最活跃的海区之一,它在全球气侯变化中起着极为重要的作用。 热带西太平洋暖池幅员广阔,占全球热带海洋面积的35%-45%。它是全球大洋表面水温(SST)最高的海域,其SST终年都高于28℃。Andow(1987)的研究表明,暖池域次表层(50-300m)海水温度的变化较表层明显,其年际变化的标准偏差可达3-4℃。邹娥梅等(1991)指出,热带西太平洋海域次表层海水的热状况具有较好的指标性。因此研究热带西太平洋暖池域次表层水热状况的变化,对于阐明热带西太平洋暖池与东亚气候异常,特别是对我国旱涝的影响具有重要意义。  相似文献   

10.
西北太平洋上层热含量的时空变化   总被引:1,自引:0,他引:1  
基于全球月平均海温资料、137°E断面海温观测资料、同化水位资料和太平洋850 hPa纬向风资料,利用EOF、功率谱和最大熵谱等分析方法,分析了西北太平洋上层热含量的时空变化,并讨论了热含量变化与水位和赤道太平洋纬向风异常的关系.结果表明,西北太平洋上层热含量具有明显的年际和年代际变化;热含量的年际变化与热带太平洋大尺度海气系统异常相联系,即在El Ni(n)o期间,热含量减少,而在La Ni(n)a期间热含量增多;热含量在20世纪70年代末发生了一次气候跃变,在跃变前热含量偏多,而在跃变后则偏少;热含量与水位间存在着非常一致的同位相年际变化,而这种变化与赤道西、中太平洋的纬向风异常有关.  相似文献   

11.
齐庆华  蔡榕硕 《海洋学报》2017,39(11):37-48
气候变暖背景下,全球平均海洋变暖和海平面上升显著,为人类社会的可持续发展带来巨大挑战。上层海洋热力状况是海平面变化的主导因子之一。本文围绕"21世纪海上丝绸之路"途经海区(文中简称为丝路海区)上层海洋热含量异常的区域性时空特征,分析探讨了丝路海区热比容海平面异常的时空变化、演变特征及可能影响,以期为"21世纪海上丝绸之路"海洋环境安全保障提供服务支撑。结果表明,自20世纪70年代中后期,丝路海区上层(0~700 m)海洋已明显变暖,尤其20世纪90年代中后期增暖幅度显著加大。近60年来,在丝路海区热带海洋中,西太平洋的北赤道流区及以北海域、东海黑潮流域以及南海北部和南部海区、阿拉伯海西北部海域、马来西亚西北部海域及南印度洋部分海域具有长期增暖趋势。热带西太平洋暖池区整体增暖不明显,主要与印度洋中部海域呈反位相变化,且明显受到季节和年际变化的调制。长江口附近沿岸、南海北部沿岸、中南半岛南部沿岸以及阿拉伯海西北部沿岸的近岸海域长期增暖明显,自20世纪90年代中后期,中南半岛东部和西部沿海、澳大利亚西部沿海以及我国东南沿海热比容海平面上升明显。近岸热比容海平面的季节演变对沿海地区社会和经济发展会造成一定影响。此外,东亚夏季风与东海、黄海和渤海热比容海平面的上升显著相关,同时,ENSO、太平洋年代际振荡和印度洋偶极子的发生也均与我国东南沿海和印度洋西部沿海热比容海平面上升明显关联。特别是,气候变暖情形下,各种区域性致灾因子和气候变率的协同影响会对丝路海区海岸带和沿海地区的防灾减灾与社会经济发展带来较大挑战,开展海岸带和沿海地区全球变化综合风险研究成为当前首要任务。  相似文献   

12.
南大西洋在地理上连接着北大西洋、南大洋和印度洋。通过环流输运或海表温度变化,该海域的上层海洋热含量(OHC)的变化可能对与之相连的各个洋盆间的再分布产生影响。本文基于1958—2015年的ORAS4全球海洋再分析数据和中国科学院大气物理研究所的格点海温数据集,利用经验正交函数(EOF)分析、相关分析等方法,分析了南大西洋上层海洋不同积分深度(0~100 m,0~300 m,0~500 m,0~700 m)OHC的时空变化特征。EOF第一模态显示,过去60 a来,南大西洋上层700 m存在一个洋盆尺度的变暖趋势,而且随着热含量积分深度的增加,第一模态所解释的方差占比也明显增加。OHC变化EOF第一模态与以年际变化为主的NAO和ENSO指数相关性很低,而与代表较长时间变率的AMO和PDO指数却有较好相关性,且与AMO的相关性随着积分深度的增加而提高。超前滞后相关分析显示AMO滞后南大西洋OHC变化9~12 a,显示南大西洋OHC变化对北大西洋气候变化的潜在影响。南大西洋OHC变化EOF第一模态与PDO之间相关性随着积分深度的增加而降低,显示PDO对OHC的影响主要在表层。另外发现整个洋盆的热含量变化与温跃层变化呈正相关,热含量的变化反映温跃层的动态波动。  相似文献   

13.
We have investigated interannual-scale variations of oceanic and atmospheric anomaly fields, such as upper ocean heat content (OHC), sea surface temperature (SST), latent heat flux (LHF) through the sea surface, sea level pressure (SLP) and wind stress curl (WSC) in the tropical Pacific and their relationships to El Niño/Southern Oscillation (ENSO) events. The results reported here show that the OHC and SST anomalies are almost in phase and lead LHF anomalies in the western tropical Pacific (WTP) region, which are preferable to the generation of subsequent atmospheric anomalies in the WTP. We also describe linear relationships between the amplitudes of these variables in the WTP. In addition, the results show that the both WSC and LHF anomalies are in phase with the temporal trend of OHC anomalies in the WTP, and suggest a combined effect of the local WSC and LHF anomaly in the WTP and ENSO-related, off-equatorial, westward propagating OHC anomaly to generate a large OHC anomaly in the WTP. In contrast to the WTP, OHC and SST anomalies are not in phase to the east of the WTP. The results also indicate that OHC anomalies in the WTP have a potential effect on the generation of an equatorial OHC anomaly via both a reflection of waves at the western boundary and atmospheric variations, which force the enhancement of western equatorial OHC anomaly. Therefore, the WTP is a key region where ENSO events are significantly modulated, and OHC anomalies in the WTP play an important role in the subsequent ENSO event.  相似文献   

14.
基于2001年1月~2014年7月期间的Argo温盐剖面资料,利用循环平稳经验正交函数(CSEOF)分解、最大熵谱分析和相关分析等方法,研究了西太平洋暖池海域上层海洋热盐含量的空间分布、季节和年际变化特征,并探讨了其影响机制。结果表明,暖池海域近表层与次表层热含量逐年变化呈反位相变化模态,同样盐含量变化趋势也不尽相同。无论热含量还是盐含量,都存在着明显的季节和年际变化。CSEOF分析表明,暖池海域热含量第一模态空间场具有显著的东—西反相位年际振荡,盐含量第一模态则呈正-负-正的三极子模态,但时间序列显示,热含量在2007年以后经过3次位相调整,而盐含量2007年以后只经过一次位相调整,且这种年际变化都与ENSO事件有关,且热含量相比于盐含量受ENSO影响更大。El Niño期间,暖池海域西部热含量减少, 东部增加,La Niña期间则相反;研究海域南北部盐含量在El Niño期间增加,中部(暖池高温中心)减少,La Niña期间则相反;进一步分析表明,热含量变化主要受到局地风场以及纬向流的影响,而盐含量变化则受淡水通量和纬向流的影响。  相似文献   

15.
太平洋是海表温度年际变化和年代际变化发生的主要区域,但对太平洋海洋热含量变化的研究相对较少。为此, 本文分析了1980—2020年太平洋上层(0~300 m)热含量的时空变化特征。基于IAP数据,本文首先利用集合经验模态分解法(EEMD)提取不同时间尺度的海洋热含量信号,并利用正交经验分解法(EOF)对不同时间尺度的海洋热含量进行时空特征分析,得到了太平洋0~300 m海洋热含量的年际变化、年代际变化以及长期变暖的时空特征。结果表明,除了年际变化之外,热带西北太平洋上层热含量还存在明显的年代际变化和长期变暖趋势。在东太平洋和高纬度西太平洋,热含量的年代际变化特征并不突出。热带西北太平洋热含量的年代际变化在1980—1988年和1999—2013年较高,而在1989—1998年和2014—2020年期间较低。此外,针对热带西北太平洋热含量的经向、纬向和垂向特征分析,发现这种年代际变化主要发生在5°N—20°N,120°E—180°E,次表层50~200 m范围内。热带西北太平洋热含量的年代际变化对全球海表温度的年代际变化有着重要作用。  相似文献   

16.
As reported in former studies, temperature observations obtained by expendable bathythermographs (XBTs) and mechanical bathythermographs (MBTs) appear to have positive biases as much as they affect major climate signals. These biases have not been fully taken into account in previous ocean temperature analyses, which have been widely used to detect global warming signals in the oceans. This report proposes a methodology for directly eliminating the biases from the XBT and MBT observations. In the case of XBT observation, assuming that the positive temperature biases mainly originate from greater depths given by conventional XBT fall-rate equations than the truth, a depth bias equation is constructed by fitting depth differences between XBT data and more accurate oceanographic observations to a linear equation of elapsed time. Such depth bias equations are introduced separately for each year and for each probe type. Uncertainty in the gradient of the linear equation is evaluated using a non-parametric test. The typical depth bias is +10 m at 700 m depth on average, which is probably caused by various indeterminable sources of error in the XBT observations as well as a lack of representativeness in the fall-rate equations adopted so far. Depth biases in MBT are fitted to quadratic equations of depth in a similar manner to the XBT method. Correcting the historical XBT and MBT depth biases by these equations allows a historical ocean temperature analysis to be conducted. In comparison with the previous temperature analysis, large differences are found in the present analysis as follows: the duration of large ocean heat content in the 1970s shortens dramatically, and recent ocean cooling becomes insignificant. The result is also in better agreement with tide gauge observations. On leave from the Meteorological Research Institute of the Japan Meteorological Agency.  相似文献   

17.
Understanding of the temporal variation of oceanic heat content(OHC) is of fundamental importance to the prediction of climate change and associated global meteorological phenomena. However, OHC characteristics in the Pacific and Indian oceans are not well understood. Based on in situ ocean temperature and salinity profiles mainly from the Argo program, we estimated the upper layer(0–750 m) OHC in the Indo-Pacific Ocean(40°S–40°N, 30°E–80°W). Spatial and temporal variability of OHC and its likely physical mechanisms are also analyzed. Climatic distributions of upper-layer OHC in the Indian and Pacific oceans have a similar saddle pattern in the subtropics, and the highest OHC value was in the northern Arabian Sea. However, OHC variabilities in the two oceans were different. OHC in the Pacific has an east-west see-saw pattern, which does not appear in the Indian Ocean. In the Indian Ocean, the largest change was around 10°S. The most interesting phenomenon is that, there was a long-term shift of OHC in the Indo-Pacific Ocean during 2001–2012. Such variation coincided with modulation of subsurface temperature/salinity. During 2001–2007, there was subsurface cooling(freshening)nearly the entire upper 400 m layer in the western Pacific and warming(salting) in the eastern Pacific. During2008–2012, the thermocline deepened in the western Pacific but shoaled in the east. In the Indian Ocean, there was only cooling(upper 150 m only) and freshening(almost the entire upper 400 m) during 2001–2007. The thermocline deepened during 2008–2012 in the Indian Ocean. Such change appeared from the equator to off the equator and even to the subtropics(about 20°N/S) in the two oceans. This long-term change of subsurface temperature/salinity may have been caused by change of the wind field over the two oceans during 2001–2012, in turn modifying OHC.  相似文献   

18.
本文采用赤道β平面近似下的线性化正压扰动方程组,引入约化重力加速度后,得到了赤道驻波异常的解析解,给出了此解的计算结果,并与实际热带太平洋和印度洋流场异常复EOF分析的模态做了比较,得到以下主要结论:赤道驻波异常的模态1,其流场异常在整个大洋为半波,呈一致的纬向流;流场异常在热带大洋中部最大,并向赤道南北两侧迅速衰减,其被限制在赤道两侧约2º的范围内。赤道驻波的模态2,其流场异常在整个大洋为1波,在大洋东、西部纬向流的流动方向相反,流场异常向赤道南北两侧衰减的程度同模态1。赤道驻波异常分别满足南北走向的东、西海岸边条件。决定赤道驻波异常在赤道两侧衰减程度的系数,其仅与约化重力加速度和上层海水标准深度之乘积的平方根值成反比;当该值取得相同时该衰减程度也相同。赤道驻波异常的振荡频率与模态序号及上述平方根值成正比,与热带大洋宽度成反比;模态序号越低,该宽度越大,则该频率越低,相应振荡周期也越长;模态1的振荡周期最长。当取各参数为典型值,并取模态序号为1,再分别取热带太平洋和印度洋的宽度时,对赤道驻波异常计算的结果表明,其与实际相应海洋上层流场异常复EOF分析中得到的第一模态空间分布和年际变化相一致;这意味着此复EOF分析第一模态的本质是赤道驻波异常,这也表明该驻波异常在实际大洋中确实存在,并推断该驻波异常是ENSO和印度洋偶极子的形成机制之一。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号