首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Here Rydberg matter is proposed as a candidate for the missing dark matter or dark baryonic matter in the Universe. Spectroscopic and other experimental studies give valuable information on the properties of Rydberg matter, especially its very weak interaction with light caused by the very small overlap with low states, and because of the necessary two-electron transitions even for disturbed matter. Recently, the unidentified infrared (UIR) bands have been shown to agree well with calculations and experiments on Rydberg matter. This is the reason for the present, somewhat speculative, proposal that dark matter has, at least partially, the form of Rydberg matter. The UIR bands have also been observed directly in emission from Rydberg matter in the laboratory. The unique space-filling properties of Rydberg matter are described: a hydrogen atom in this matter occupies a volume  5×1012  times larger than in its ground state or in a hydrogen molecule.  相似文献   

2.
3.
The theoretical expectation of the high mass of >400 eV for the particles constituting the dark matter in dwarf-spheroidals as an artifact of the implicit assumption that the density of particles vanishes at the visible edge. On the contrary if our Galaxy and the dwarf-spheroidals are embedded in a neutrino condensation of the dimensions of the cluster thenm - 10 eV can accommodate all the observations.  相似文献   

4.
We derive constraints on the parameters of the radiatively decaying dark matter (DM) particle, using the XMM–Newton EPIC spectra of the Andromeda galaxy (M31). Using the observations of the outer (5–13 arcmin) parts of M31, we improve the existing constraints. For the case of sterile neutrino DM, combining our constraints with the latest computation of abundances of sterile neutrinos in the Dodelson–Widrow (DW) scenario, we obtain the lower mass limit   m s < 4 keV  , which is stronger than the previous one   m s < 6 keV  , obtained recently by Asaka, Laine & Shaposhnikov. Comparing this limit with the most recent results on Lyman α forest analysis of Viel et al.  ( m s > 5.6 keV  ), we argue that the scenario in which all the DM is produced via the DW mechanism is ruled out. We discuss, however, other production mechanisms and note that the sterile neutrino remains a viable candidate for DM, either warm or cold.  相似文献   

5.
6.
Taking into account that a hierarchical pattern of clustering appears in cold dark matter scenarios, the existence of cold dark matter substructure in galactic haloes is explored. For this purpose, well-known dynamical constraints are imposed on non-baryonic objects, at solar Galactocentric distance. In this paper, aggregates of axions, aggregates of fermions and clusters of these aggregates have been considered, and ranges for their masses and radii have been estimated. Non-baryonic objects with radii and masses different from those allowed must have been disrupted by dynamical effects, so that their components must be orbiting freely within the Galactic halo. Upper limits for the ratio between the mass (per volume unit) that remains bound to dark objects and the cold dark matter total mass (per volume unit) in the Galactic halo have also been estimated.  相似文献   

7.
The hierarchical clustering inherent in Λcold dark matter cosmology seems to produce many of the observed characteristics of large-scale structure. But some glaring problems still remain, including the overprediction (by a factor of 10) of the number of dwarf galaxies within the virialized population of the local group. Several secondary effects have already been proposed to resolve this problem. It is still not clear, however, whether the principal solution rests with astrophysical processes, such as early feedback from supernovae, or possibly with as yet undetermined properties of the dark matter itself. In this paper, we carry out a detailed calculation of the dwarf halo evolution incorporating the effects of a hypothesized dark matter decay, D → D'+ l , where D is the unstable particle, D ' is the more massive daughter particle and l is the other, lighter (or possibly massless) daughter particle. This process preferentially heats the smaller haloes, expanding them during their evolution and reducing their present-day circular velocity. We find that this mechanism can account very well for the factor of 4 deficit in the observed number of systems with velocity  10–20 km s−1  compared to those predicted by the numerical simulations, if     , where Δ m is the mass difference between the initial and final states. The corresponding lifetime τ cannot be longer than ∼30 Gyr, but may be as short as just a few Gyr.  相似文献   

8.
9.
We present 21-cm H  i line observations of the blue compact dwarf galaxy NGC 1705. Previous optical observations show a strong outflow powered by an ongoing starburst dominating the H  ii morphology and kinematics. In contrast, most of the H  i lies in a rotating disc. An extraplanar H  i spur accounts for ∼8 per cent of the total H  i mass, and is possibly associated with the H  ii outflow. The inferred mass loss rate out of the core of the galaxy is significant, ∼0.2 − 2 M yr−1, but does not dominate the H  i dynamics. Mass model fits to the rotation curve show that the dark matter (DM) halo is dominant at nearly all radii and has a central density ρ0 ≈ 0.1 M pc−3: ten times higher than typically found in dwarf irregular galaxies, but similar to the only other mass-modelled blue compact dwarf, NGC 2915. This large difference strongly indicates that there is little evolution between dwarf irregular and blue compact dwarf types. Instead, dominant DM haloes may regulate the morphology of dwarf galaxies by setting the critical surface density for disc star formation. Neither our data nor catalogue searches reveal any likely external trigger to the starburst in NGC 1705.  相似文献   

10.
We use high-quality optical rotation curves of nine low-luminosity disc galaxies to obtain the velocity profiles of the surrounding dark matter haloes. We find that they increase linearly with radius at least out to the edge of the stellar disc, implying that, over the entire stellar region, the density of the dark halo is about constant.
The properties of the mass structure of these haloes are similar to those found for a number of dwarf and low surface brightness galaxies, but provide a more substantial evidence of the discrepancy between the halo mass distribution predicted in the cold dark matter scenario and those actually detected around galaxies. We find that the density law proposed by Burkert reproduces the halo rotation curves, with halo central densities ( ρ 0∼1–4×10−24 g cm−3) and core radii ( r 0∼5–15 kpc) scaling as ρ 0∝ r 0−2/3.  相似文献   

11.
12.
The attempt to understand the temperature dependence of the HNC/HCN abundance ratio in interstellar clouds has been long standing and indecisive. In this paper we report quantum chemical and dynamical studies of two neutral–neutral reactions thought to be important in the formation of HNC and HCN, respectively – C+NH2→HNC+H, and N+CH2→HCN+H. We find that although these reactions do lead initially to the products suggested by astronomers, there is so much excess energy available in both reactions that the HCN and HNC products are able to undergo efficient isomerization reactions after production. The isomerization leads to near equal production rates of the two isomers, with HNC slightly favoured if there is sufficient rotational excitation. This result has been incorporated into our latest chemical model network of dense interstellar clouds.  相似文献   

13.
14.
We present the 21-cm rotation curve of the nearby galaxy M33 out to a galactocentric distance of 16 kpc (13 disc scalelengths). The rotation curve keeps rising out to the last measured point and implies a dark halo mass ≳5×1010 M. The stellar and gaseous discs provide virtually equal contributions to the galaxy gravitational potential at large galactocentric radii, but no obvious correlation is found between the radial distribution of dark matter and the distribution of stars or gas.
Results of the best fit to the mass distribution in M33 picture a dark halo which controls the gravitational potential from 3 kpc outward, with a matter density which decreases radially as R −1.3. The density profile is consistent with the theoretical predictions for structure formation in hierarchical clustering cold dark matter (CDM) models, and favours lower mass concentrations than those expected in the standard cosmogony.  相似文献   

15.
朱留斌  杨戟  王敏 《天文学报》2007,48(2):153-164
利用中国科学院紫金山天文台德令哈观测站13.7米望远镜在IRAS 02232 6138方向进行了13CO,C18O,HCO 和N2H 的观测.随着探针分子的激发密度从13CO到N2H 逐渐增加, IRAS02232 6138云核的尺度从13CO的2.40 pc减小到N2H 的0.54pc,云核的维里质量从13CO的2.2×103M⊙减小到N2H 的5.1×102M⊙.研究发现,该方向区域内存在双极分子外流.对云核的空间密度结构用幂函数n(r)αr-α的形式进行拟合分析,得到α=2.3-1.2;随着探测密度的增加,该指数逐渐变平.分析得到, 13CO/C18O分子丰度比值为12.4±6.9,与暗云的11.8±5.9及大质量核的9.0-15.6值一致;N2H 丰度是3.5±2.5×10-10,与暗云核的1.0-5.0×10-10和大质量核的1.2-12.8×10-10值一致;HCO 丰度为0.9±0.5×10-9,接近大质量核的1.6-2.4×10-9值,没有发现HCO 丰度增长.结合IRAS数据,得到云核的光度质量比范围为37-163(L/M)⊙,由IRAS光度估计, IRAS 02232 6138方向云核内嵌埋的大约是一颗主序O7.5星.  相似文献   

16.
We explore some basic observational consequences of assuming that the dark matter in the Milky Way consists mainly of molecular clouds, and that cosmic rays can penetrate these clouds. In a favoured model of the clouds, this penetration would have the following consequences, all of which agree with observation.
(i) Cosmic ray nuclei would be fragmented when they enter a cloud, giving them a lifetime in the Galaxy of ∼1015 s (for relativistic nuclei).
(ii) Pionic γ -rays emitted by the clouds, after proton–proton (pp) collisions, would have a diffuse flux in the Galactic plane comparable to the flux from known sources for photon energies ≳1 GeV .
(iii) The heat input into the clouds from cosmic rays would be re-radiated mainly in the far-infrared. The resulting radiation background agrees, in both intensity and spectrum in different directions, with a known excess in the far‐infrared background of the galaxy over emission by warm dust.  相似文献   

17.
We have used the Mopra Telescope to search for glycine and the simple chiral molecule propylene oxide in the Sgr B2 (LMH) and Orion KL, in the 3-mm band. We have not detected either species, but have been able to put sensitive upper limits on the abundances of both molecules. The 3σ upper limits derived for glycine conformer I are  3.7 × 1014 cm−2  in both Orion-KL and Sgr B2 (LMH), comparable to the reported detections of conformer I by Kuan et al. However, as our values are 3σ upper limits rather than detections we conclude that this weighs against confirming the detection of Kuan et al. We find upper limits for the glycine II column density of  7.7 × 1012 cm−2  in both Orion-KL and Sgr B2 (LMH), in agreement with the results of Combes et al. The results presented here show that glycine conformer II is not present in the extended gas at the levels detected by Kuan et al. for conformer I. Our ATCA results have ruled out the detection of glycine (both conformers I and II) in the compact hot core of the LMH at the levels reported, so we conclude that it is unlikely that Kuan et al. have detected glycine in either Sgr B2 or Orion-KL. We find upper limits for propylene oxide abundance of  3.0 × 1014 cm−2  in Orion-KL and  6.7 × 1014 cm−2  in Sgr B2 (LMH). We have detected fourteen features in Sgr B2 and four features in Orion-KL which have not previously been reported in the interstellar medium, but have not been able to plausibly assign these transitions to any carrier.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号