首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Continuous MF and meteor radar observations allow detailed studies of winds in the mesosphere and lower thermosphere (MLT) as well as temperatures around the mesopause. This height region is characterized by a strong variability in winter due to enhanced planetary wave activity and related stratospheric warming events, which are distinct coupling processes between lower, middle and upper atmosphere. Here the variability of mesospheric winds and temperatures is discussed in relation with major and minor stratospheric warmings as observed during winter 2005/06 in comparison with results during winter 1998/99.Our studies are based on MF radar wind measurements at Andenes (69°N, 16°E), Poker Flat (65°N, 147°W) and Juliusruh (55°N, 13°E) as well as on meteor radar observations of winds and temperatures at Resolute Bay (75°N, 95°W), Andenes (69°N, 16°E) and Kühlungsborn (54°N, 12°E). Additionally, energy dissipation rates have been estimated from spectral width measurements using a 3 MHz Doppler radar near Andenes. Particular attention is directed to the changes of winds, turbulence and the gravity wave activity in the mesosphere in relation to the planetary wave activity in the stratosphere.Observations indicate an enhancement of planetary wave 1 activity in the mesosphere at high latitudes during major stratospheric warmings. Daily mean temperatures derived from meteor decay times indicate that strong warming events are connected with a cooling of the 90 km region by about 10–20 K. The onset of these cooling processes and the reversals of the mesospheric circulation to easterly winds occur some days before the changes of the zonal circulation in the stratosphere start indicating a downward propagation of the circulation disturbances from the MLT region to the stratosphere and troposphere during the stratospheric warming events. The short-term reversal of the mesospheric winds is followed by a period of strong westerly winds connected with enhanced turbulence rates and an increase of gravity wave activity in the altitude range 70–85 km.  相似文献   

2.
An updated empirical climatic zonally averaged prevailing wind model for the upper mesosphere/lower thermosphere (70/110 km), extending from 80°N to 80°S is presented. The model is constructed from the fitting of monthly mean winds from meteor radar and MF radar measurements at more than 40 stations, well distributed over the globe. The height-latitude contour plots of monthly mean zonal and meridional winds for all months of the year, and of annual mean wind, amplitudes and phases of annual and semiannual harmonics of wind variations are analyzed to reveal the main features of the seasonal variation of the global wind structures in the Northern and Southern Hemispheres. Some results of comparison between the ground-based wind models and the space-based models are presented. It is shown that, with the exception of annual mean systematic bias between the zonal winds provided by the ground-based and space-based models, a good agreement between the models is observed. The possible origin of this bias is discussed.  相似文献   

3.
A one-dimensional atmospheric photochemical model with an altitude grid of about 1.5 km was used to examine the structure of the global mean vertical ozone profile and its night-time-to-daytime variation in the upper atmosphere. Two distinct ozone layers are predicted, separated by a sharp drop in the ozone concentration near the mesopause. This naturally occurring mesopause ozone deep minimum is primarily produced by the rapid increase in the destruction of water vapour, and hence increase in HOx, at altitudes between 80 and 85 km, a region where water-vapour photodissociation by ultraviolet radiation of the solar Lyman-alpha line is significant, and where the supply of water vapour is maintained by methane oxidation even for very dry conditions at the tropospheric-stratospheric exchange region. The model indicates that the depth of the mesopause ozone minimum is limited by the efficiency with which inactive molecular hydrogen is produced, either by the conversion of atomic hydrogen to molecular hydrogen via one of the reaction channels of H with HO2, or by Lyman-alpha photodissociation of water vapour via the channel that leads to the production of molecular hydrogen. The ozone concentration rapidly recovers above 85 km due to the rapid increase in O produced by the photodissociation of O2 by absorption of ultraviolet solar radiation in the Schumann-Runge bands and continuum. Above 90 km, there is a decrease in ozone due to photolysis as the production of ozone through the three-body recombination of O2 and O becomes slower with decreasing pressure. The model also predicts two peaks in the night-time/daytime ozone ratio, one near 75 km and the other near 110 km, plus a strong peak in the night-time/daytime ratio of OH near 110 km. Recent observational evidence supports the predictions of the model.  相似文献   

4.
The general circulation of the middle atmosphere is simulated by means of a three-dimensional primitive equation model which covers from the south pole to the north pole but is limited to a ten-degree sector in the latitudinal direction; cyclic conditions are imposed at the east—west lateral boundaries. The model is capable of explicitly representing internal gravity waves of zonal wavelength greater than a few hundred kilometers with the use of a one-degree mesh, but planetary-scale waves were excluded. No parameterization is employed for subgrid-scale eddy viscosity (or diffusivity).With the assumption of a simple external-heating function corresponding to solstice conditions, a time integration was performed for about thirty days from the motionless state. During the whole period, random forcings were imposed on each grid of the lowest level in order to generate small-scale upwardly propagating internal gravity waves.The experiment has shown that small-scale waves were indeed excited, propagated upward, broke up near the mesopause, and greatly changed the thermally induced zonal mean motion and temperature fields in the upper mesosphere and lower thermosphere. As a result, important features of the general circulation at those levels, such as reversals of the zonal motion and the latitudinal gradient of zonal mean temperature were reproduced.  相似文献   

5.
Observational studies on the semiannual oscillation in the tropical stratosphere and mesosphere are reviewed. Results of many statistics based on rocket and satellite observations reveal that the long-term behavior of the mean zonal wind exhibits two semiannual cycles which have their maximum amplitudes centered at the stratopause level and the mesopause level, each one being associated with the semiannual temperature variations predominating at levels about 10 km lower.Observational evidence obtained from recent studies of the dynamical properties of upper stratospheric waves strongly supports the theoretical consideration that the stratospheric semiannual oscillation is the manifestation of the wave-zonal flow interaction with alternating accelerations of the westerly flow by Kelvin waves and the easterly flow by planetary Rossby waves.Regarding the semiannual variation in the upper mesosphere, however, very little is known about the possible momentum source. Therefore, emphasis is placed on the need for further observations of the structure and behavior of the tropical middle atmosphere.  相似文献   

6.
Observations of mesospheric winds over a period of four years with the partial reflection radar at Tirunelveli (8.7°N, 77.8°E), India, are presented in this study. The emphasis is on describing seasonal variabilities in mean zonal and meridional winds in the altitude region 70–98 km. The meridional winds exhibit overall transequatorial flow associated with differential heating in the Northern and Southern Hemispheres. At lower altitudes (70–80 km) the mean zonal winds reveal easterly flow during summer and westerly flow during winter, as expected from a circulation driven by solar forcing. In the higher altitude regime (80–98 km) and at all altitudes during equinox periods, the mean zonal flow is subjected to the semi-annual oscillation (SAO). The interannual variability detected in the occurrence of SAO over Tirunelveli has also been observed in the data sets obtained from the recent UARS satellite mission. Harmonic analysis results over a period of two years indicate the presence of long-period oscillations in the mean zonal wind at specific harmonic periods near 240, 150 and 120 days. Results presented in this study are discussed in the context of current understanding of equatorial wave propagation.  相似文献   

7.
We present time series of January–May mean mesosphere/lower thermosphere (MLT) mean winds and planetary wave (PW) proxies over Europe together with stratospheric stationary planetary waves (SPW) at 50°N and time series of European ozone laminae occurrence. The MLT winds are connected with stratospheric PW and laminae at time scales of several years to decades. There is a tendency for increased wave activity after 1990, together with more ozone laminae and stronger MLT zonal winds. However, possible coupling processes are not straightforward. While mean MLT winds before the 1990s show similar interannual variations than stratospheric PW at 100 hPa, later a tendency towards a connection of the MLT with the middle stratosphere SPW is registered. There is also a tendency for a change in the correlation between lower and middle stratosphere SPW, indicating that coupling processes involving the European middle atmosphere from the lower stratosphere to the mesopause region have changed.  相似文献   

8.
The rotational temperatures of hydroxyl molecules with different vibrational excitation, which were used to determine the seasonal variations in the vertical temperature distribution near the mesopause at altitudes of 85–90 km, have been obtained based on the spectral measurements of the atmospheric nightglow at IFA RAN observatory in Zvenigorod. The obtained characteristics of the annual and semiannual harmonics have been compared with their lidar and satellite measurements and model representations.  相似文献   

9.
在北京东北方向的兴隆天文台,自主搭建的大气辐射观测仪器对OH夜气辉从2011年12月开始进行观测.利用高分辨率的OH(8-3)带的振转光谱计算了转动温度,并与TIMED/SABER探测的温度进行了比较.观测表明,两年(2012—2013)的OH(8-3)带转动温度平均值为203.0±11.2K,有明显的季节变化,冬季高,夏季低,温差可达60K.与SABER观测温度的季节变化一致.对日平均的转动温度进行年振荡和半年振荡分量的拟合分析表明,年振荡强度(10.8K)远大于半年振荡(2.7K).研究还发现,不同夜晚转动温度变化形态差别很大,既有很强的潮汐控制的波动,又有相对短周期的波动.  相似文献   

10.
利用2002~2006年期间SABER/TIMED温度数据综合考察了中心位于120°E,宽度为30°子午圈(东经120°子午圈)内中间层和低热层(MLT)大气的平均热力状态. 季节平均温度的分析结果说明该子午圈中平均温度与用相同数据集建立的纬圈平均温度之间表现出相当好的一致性,但是与国际参考大气CIRA-86温度之间则表现出显著的差异,而对MLT典型温度结构描述不同是导致70 km高度以上出现这种显著差异(20 K以上)的主要原因. 进一步利用逐日数据开展温度梯度诊断确定了中间层顶的位置和温度,在此基础开展考察的结果显示,在夏季,与极区中间层顶高度一致(83 km)的中间层顶稳定地伸展到中纬度(48°N),而热带和赤道地区中间层顶稳定地维持在97 km高度,形成了“两台阶”中间层顶结构. 逐日分析结果还揭示了中纬度地区夏季中间层顶异常复杂的表现,结果表明在这里可以看到两种位于不同高度的中间层顶,第一种位于83 km并且伴随异常低温,而另一种位于约100 km高度. 虽然基于当前分析结果并利用过去用于解释极区中间层顶“两模态”的理论对有关问题进行了探讨,但是全面理解夏季中纬度中间层顶的复杂表现还有待更深入的研究.  相似文献   

11.
Observations of wave-driven fluctuations in emissions from the OH Meinel (OHM) and O2 Atmospheric band were made with a narrow-band airglow imager located at Adelaide, Australia (35S, 138E) during the period April 1995 to January 1996. Simultaneous wind measurements in the 80–100 km region were made with a co-located MF radar. The directionality of quasi-monochromatic (QM) waves in the mesopause region is found to be highly anisotropic, especially during the solstices. During the summer, small-scale QM waves in the airglow are predominately poleward propagating, while during winter they are predominately equatorward. The directionality inferred from a Stokes analysis applied to the radar data also indicates a strong N–S anisotropy in summer and winter, but whether propagation is from the north or south cannot be determined from the analysis. The directionality of the total wave field (which contains incoherent as well as coherent features) derived from a spectral analysis of the images shows a strong E–W component, whereas, an E–W component is essentially absent for QM waves. The prevalence of QM waves is also strongly seasonally dependent. The prevalence is greatest in the summer and the least in winter and correlates with the height of the mesopause; whether it is above or below the airglow layers. The height of the mesopause is significant because for nominal thermal structures it is associated with a steep gradient in the Brunt-Väisälä frequency that causes the base of a lower thermospheric thermal duct to be located in the vicinity of the mesopause. We interpret the QM waves as waves trapped in the lower thermosphere thermal duct or between the ground and the layer of evanescence above the duct. Zonal winds can deplete the thermal duct by limiting access to the duct or by negating the thermal trapping. Radar measurements of the prevailing zonal wind are consistent with depletion of zonally propagating waves. During winter, meridional winds in the upper mesophere and lower thermosphere are weak and have no significant effect on meridionally propagating waves. However, during summer the winds in the duct region can significantly enhance ducting of southward propagating waves. The observed directionality of the waves can be explained in terms of the prevailing wind at mesopause altitudes and the seasonal variation of distant sources.  相似文献   

12.
本文利用1991年11月至1997年8月期间美国WINDII/UARS获得的风场测量数据对东亚上空纬向风进行考察. 研究结果给出了位于120°E 子午圈中90~120 km之间平均纬向风的典型结构及其季节特征,与在武汉开展流星雷达探测结果进行比较的结果说明卫星测量分析结果在对季节特征的描述方面与地基测量有相当好的一致性;较好的一致性还表现在与过去从HRDI/UARS数据中得到的月平均纬向风. 这些说明卫星探测结果有相当好的代表性. 与国际标准大气CIRA-86月平均纬向风开展比较的结果显示,从100 km高度开始这两种卫星数据分析结果都与CIRA-86结果表现出严重偏离,例如在赤道和低纬度地区某些高度,CIRA-86纬向风在全年的大部分时段中表现出与卫星数据分析结果风向不一致. 分析结果还显示WINDII纬向风和HRDI纬向风分析结果之间表现出一个幅度约20 m·s-1的系统偏差,考虑到本文分析过程中采用了通过归并36天测量数据来消除周日变化影响的方案,同时参考其他研究工作中对MLT纬向风周日潮幅度的描述,两种卫星数据分析结果之间的系统偏差可能部分来自大气潮汐的影响.  相似文献   

13.
In this paper we present an extension for the 2D (zonal mean) version of our numerical spectral mode (NSM) that incorporates Hines’ Doppler spread parameterization (DSP) for small-scale gravity waves (GW). This model is applied to describe the seasonal variations and the semi-annual and quasi-biennial oscillations (SAO and QBO). Our earlier model reproduced the salient features of the mean zonal circulation in the middle atmosphere, including the QBO extension into the upper mesosphere inferred from UARS measurements. The model is extended to reproduce the upwelling at equatorial latitudes that is associated with the Brewer–Dobson circulation — which affects significantly the dynamics of the stratosphere as Dunkerton had pointed out. In the presence of GW, this upwelling is produced in our model with tropospheric heating, which generates also zonal jets outside the tropics similar to those observed. The resulting upward vertical winds increase the period of the QBO. To compensate for that, one needs to increase the eddy diffusivity and the GW momentum flux, bringing the latter closer to values recommended in the DSP. The QBO period in the model is 30 months (mo), which is conducive to synchronize this oscillation with the seasonal cycle of solar forcing. Associated with this QBO are interannual and interseasonal variations that become increasingly more important at higher altitudes — and this variability is interpreted in terms of GW filtering that effectively couples the dynamical components of the mesosphere. The computed temperature amplitudes for the SAO and QBO are in substantial agreement with observations at equatorial and extra-tropical latitudes. At high latitudes, however, the observed QBO amplitudes are significantly larger, which may be a signature of propagating planetary waves not included in the present model. The assumption of hydrostatic equilibrium not being imposed, we find that the effects from the vertical Coriolis force associated with the equatorial oscillations are large for the vertical winds and significant for the temperature variations even outside the tropics, but the effects are small for the zonal winds.  相似文献   

14.
Latitudinal variations in the nighttime plasma temperatures of the equatorial topside ionosphere during northern winter at solar maximum have been examined by using values modelled by SUPIM (Sheffield University Plasmasphere Ionosphere Model) and observations made by the DMSP F10 satellite at 21.00 LT near 800 km altitude. The modelled values confirm that the crests observed near 15° latitude in the winter hemisphere are due to adiabatic heating and the troughs observed near the magnetic equator are due to adiabatic cooling as plasma is transported along the magnetic field lines from the summer hemisphere to the winter hemisphere. The modelled values also confirm that the interhemispheric plasma transport needed to produce the required adiabatic heating/cooling can be induced by F-region neutral winds. It is shown that the longitudinal variations in the observed troughs and crests arise mainly from the longitudinal variations in the magnetic meridional wind. At longitudes where the magnetic declination angle is positive the eastward geographic zonal wind combines with the northward (summer hemisphere to winter hemisphere) geographic meridional wind to enhance the northward magnetic meridional wind. This leads to deeper troughs and enhanced crests. At longitudes where the magnetic declination angle is negative the eastward geographic zonal wind opposes the northward geographic meridional wind and the trough depth and crest values are reduced. The characteristic features of the troughs and crests depend, in a complicated manner, on the field-aligned flow of plasma, thermal conduction, and inter-gas heat transfer. At the latitudes of the troughs/crests, the low/high plasma temperatures lead to increased/decreased plasma concentrations.  相似文献   

15.
Continuous MF radar measurements of mesospheric mean winds are in progress at the observatories in Yamagawa (31.2°N, 130.6°E) and Wakkanai (45.4°N, 141.7°E). The observations at Yamagawa and Wakkanai were started in August 1994 and September 1996, respectively. The real-time wind data are used for the study of major large scale dynamic features of the middle atmosphere such as mean winds, tides, planetary waves, and gravity waves, etc. In the present study of mean winds, we have utilized the data collected until June 1999, which include the simultaneous observation period of little more than two and a half years, for the two sites. The database permits us to draw conclusions on the characteristics of mean winds and to compare the mean wind structure over these sites. The mean prevailing zonal winds at both sites are dominated by westward/eastward motions in summer/winter seasons below 90 km. Meridional circulation at meteor heights is generally southward during most times of the year and it extends to lower mesospheric heights during summer also. The summer westward jet at Wakkanai is consistently stronger than those at Yamagawa. However, the winter eastward winds have identical strength at both locations. Meridional winds also show larger values at Wakkanai. The mean wind climatology has been examined and compared with the MU radar observations over Shigaraki (34.9°N, 136.1°E). The paper also presents the results of the comparison between the MF radar winds and the latest empirical model values (HWM93 model) proposed by Hedin et al. (1996. Journal of Atmospheric and Terrestrial Physics 58, 1421–1447). Hodograph analyses of mean winds conducted for the summer and winter seasons show interesting similarities and discrepancies.  相似文献   

16.
A three-level, -plane, filtered model is used to simulate the Northern Hemisphere summer monsoon. A time-averaged initial state, devoid of sub-planetary scale waves, is integrated through 30 days on a 5° latitude-longitude grid. Day 25 through day 30 integrations are then repeated on a 2.5° grid. The planetary-scale waves are forced by time-independent, spatially varying diabatic heating. Energy is extracted via internal and surface frictional processes. Orography is excluded to simplify synoptic-scale energy sources.During integration the model energy first increases, but stabilizes near day 10. Subsequent flow patterns closely resemble the hemisphere summer monsoon. Climatological features remain quasi-stationary. At 200 mb high pressure dominates the land area, large-scale troughs are found over the Atlantic and Pacific Oceans, the easterly jet forms south of Asia, and subtropical jets develop in the westerlies. At 800 mb subtropical highs dominate the oceans and the monsoon trough develops over the Asian land mass. The planetary scales at all levels develop a realistic cellular structure from the passage of transient synoptic-scale features, e.g., a baroclinic cyclone track develops near 55°N and westward propagating waves form in the easterlies.Barotropic redistribution of kinetic energy is examined over a low-latitude zonal strip using a Fourier wave-space. In contrast to higher latitudes where the zonal flow and both longer and shorter waves are fed by barotropic energy redistribution from the baroclinically unstable wavelengths, the low-latitude waves have a planetary-scale kinetic energy source. Wave numbers 1 and 2 maintain both the zonal flow and all shorter scales via barotropic transfers. Transient and standing wave processes are examined individually and in combination.Wave energy accumulates at wave numbers 7 and 8 at 200 mb and at wave number 11 in the lower troposphere. The 800-mb waves are thermally indirect and in the mean they give energy to the zonal flow. These characteristics agree with atmospheric observation. The energy source for these waves is the three wave barotropic transfer. The implications of examining barotropic processes in a Fourier wave-space, vice the more common approach of separating the flow into a mean plus a deviation are discussed.  相似文献   

17.
We present results from the Numerical Spectral Model (NSM), which focus on the temperature environment of the mesopause region where polar mesospheric clouds (PMC) form. The PMC occur in summer and are observed varying on time scales from months to years, and the NSM describes the dynamical processes that can generate the temperature variations involved. The NSM simulates the quasi-biennial oscillation (QBO), which dominates the zonal circulation of the lower stratosphere at equatorial latitudes. The modeled QBO extends into the upper mesosphere, due to gravity wave (GW) filtering, consistent with UARS zonal wind and TIMED temperature measurements. While the QBO zonal winds are confined to equatorial latitudes, the associated temperature variations extend to high latitudes. The meridional circulation redistributes the QBO energy—and the resulting temperature oscillations away from the equator produce inter-annual variations that can exceed 5 K in the polar mesopause region, with considerable differences between the two hemispheres. The NSM shows that the 30-month QBO produces a 5-year or semi-decadal (SD) oscillation, and stratospheric NCEP data provide observational evidence for that. This SD oscillation extends in the temperature to the upper mesosphere, where it could contribute to the long-term variations of the region.  相似文献   

18.

By using 2-D chemical model, the trend of total column ozone over the Tibetan Plateau is simulated. The results show that from 1980 to 1993, the total column ozone over the Tibetan Plateau decreases; after 1995, it starts to recover. But until 2050, it will not still reach the level of 1980 total column ozone. Under Tibetan special circulation, its total column ozone recovers more rapidly than zonal mean. Therefore, the Tibetan special meridional circulation is not a main reason why the total column ozone over the Tibetan Plateau decreases more strongly than zonal mean.

  相似文献   

19.
The seasonal and interannual behaviour of monthly mean winds at a height of 90 km recorded at Grahamstown (33.3°S, 26.5°E) and Adelaide (34.5°S, 138.5°E) between 1987 and 1994 are compared. The zonal wind is found to be consistently stronger at Grahamstown and is always eastward, whereas at Adelaide it sometimes reverses. Maxima tend to occur near the solstices, the primary maximum during summer at Grahamstown, in agreement with satellite results, and during winter at Adelaide. The meridional wind also tends to be stronger at Grahamstown, but at both stations is predominantly northward with a maximum in summer and generally not as strong as the zonal component. This seasonal behaviour is reasonably well understood in terms of the interaction of the mean flow with gravity waves propagating up from below, with coriolis forces also playing an important role in the case of the meridional wind. Satellite observations do not generally support the idea that longitudinal differences between the stations could be attributed to the presence of a tropospheric/stratospheric stationary wave. It is suggested that these differences are more probably associated with local effects. Interannual zonal wind patterns at the two sites are similar over the summer months but are less well correlated during the rest of the year. The underlying causes of this variability are not well understood but are most probably global in nature, at least during the summer.  相似文献   

20.
北极地区低平流层惯性重力波的观测研究   总被引:1,自引:0,他引:1       下载免费PDF全文
南极地区重力波活动有大量报道,相对而言,北极地区重力波的研究还很少.本文利用极区Ny-Alesund站点(78.9°N,11.9°E)无线电探空仪从2012年4月1日到2017年3月31日共5年的观测数据,统计分析了北极地区低平流层惯性重力波的特征.观测显示,月平均纬向风在20 km以下盛行东向风,再随着高度增加,逐渐呈现出半年振荡现象.对流层顶高度在5~13 km范围内变化,其月平均高度显示出年循环,最高出现在夏季,约为10 km,最低出现在冬季,约为8.5 km.对流层和低平流层月平均温度都显示出明显的年周期变化,这与中低纬度观测结果有所不同.结合Lomb-Scargle谱分析和矢端曲线方法,估算了准单色惯性重力波参数.个例研究表明,低平流层惯性重力波呈现出远离源区的自由传播性质.统计结果显示,惯性重力波的水平和垂直波长分别集中在50~450 km和1~4 km范围内,本征频率集中在1~2.5倍惯性频率间,这些值都比中低纬度观测值稍小.垂直方向本征相速度主要集中在-0.3~0 m·s-1,而纬向和经向本征相速度集中在-40~40 m·s-1之间.在5年的观测中,大约91.5%的惯性重力波向上传播.在冬季和早春,由于极地平流层极涡活动,激发出向下传播的惯性重力波,因此,向下传播的比例上升到相应月份的20%左右.由于低层大气盛行的东向风的滤波效应,低平流层大部分惯性重力波向西传播.波能量呈现出明显的年周期变化,最大值在冬季、最小值在夏季,与北半球中低纬度观测结果一致,表明北半球重力波活动普遍冬季强、夏季弱.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号