首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
鹿林彗星在2009年2月4日(UT)发生了一次断尾事件,通过对2月4日前后的观测数据进行分析,发现在2月3日鹿林彗星就已发生过一次断尾事件.对2月3日发生的断尾事件进行研究可得出断尾移动的速度为68 km·s-1,断尾事件发生的时间为2009年2月3日(15.24土5.16)时.结合断尾事件发生前后鹿林彗星的轨道特征和STEREO-A飞船所测量到的太阳风数据,鹿林彗星2月3日发生的断尾事件可能是由于日冕物质抛射和彗星相互作用导致的磁重联引起的.  相似文献   

2.
The disk-resolved flyby images of the nucleus of Comet 81P/Wild 2 collected by Stardust are used to perform a detailed study of the photometric properties of this cometary nucleus. A disk-integrated phase function from phase angle 11° to about 100° is measured and modeled. A phase slope of 0.0513 ± 0.0002 mag/deg is found, with a V-band absolute magnitude of 16.29 ± 0.02. Hapke’s photometric model yields a single-scattering albedo of 0.034, an asymmetry factor of phase function −0.53, a geometric albedo 0.059, and a V-band absolute magnitude of 16.03 ± 0.07. Disk-resolved photometric modeling from both the Hapke model and the Minnaert model results in 11% model RMS, indicating small photometric variations. The roughness parameter is modeled to be 27 ± 5° from limb-darkening profile. The modeled single-scattering albedo and asymmetry factor of the phase function are 0.038 ± 0.004 and −0.52 ± 0.04, respectively, consistent with those from disk-integrated phase function. The bulk photometric properties of the nucleus of Wild 2 are comparable with those of other cometary nuclei. The photometric variations on the surface of the nucleus of Wild 2 are at a level of or smaller than 15%, much smaller than those on the nucleus of Comet 19P/Borrelly and comparable or smaller than those on the nucleus of Comet 9P/Tempel 1. The similar photometric parameters of the nuclei of Wild 2, Tempel 1, and the non-source areas of fan jets on Borrelly may reflect the typical photometric properties of the weakly active surfaces on cometary nuclei.  相似文献   

3.
Comet C/1999 S4 was observed with the 2m-telescopes of the Bulgarian National Observatory and Pik Terskol Observatory, Northern Caucasus, Russia, at the time of its disintegration. Maps of the dust brightness and color were constructed from images obtained in red and blue continuum windows, free from cometary molecular emissions. We analyze the dust environment of Comet C/1999 S4 (LINEAR) taking into account the observed changes apparent in the brightness images and in plots of Afρ profiles as function of the projected distance ρ from the nucleus. We also make use of the syndyne-synchrone formalism and of a Monte Carlo model based on the Finson-Probstein theory of dusty comets. The brightness and color of individual dust particles, which is needed to derive theoretical brightness and color maps of the cometary dust coma from the Monte Carlo model, is determined from calculations of the light scattering properties of randomly oriented oblate spheroids. In general, the dust of Comet C/1999 S4 (LINEAR) is strongly reddened, with reddening values up to 30%/1000 Å in some locations. Often the reddening is higher in envelopes further away from the nucleus. We observed two outbursts of the comet with brightness peaks on July 14 and just before July 24, 2000, when the final disintegration of the comet started. During both outbursts an excess of small particles was released. Shortly after both outbursts the dust coma “turns blue.” After the first outburst, the whole coma was affected; after the second one only a narrow band of reduced color close to the tail axis was formed. This difference is explained by different terminal ejection speeds, which were much lower than normal in case of the second outburst. In particular in the second, final outburst the excess small particles could originate from fragmentation of “fresh” larger particles.  相似文献   

4.
D. Laufer 《Icarus》2005,178(1):248-252
Following the tracing of jets emanating from Comet Wild-2 to depressions in the ice by Brownlee et al. [2004. The Stardust—A successful encounter with the remarkable Comet Wild 2. Lunar Planet. Sci. 35. Abstract 1981], we demonstrated experimentally the formation of depressions and chaotic terrain on comet analogs when gas is released from underlying ice pockets. We also demonstrated experimentally the ejection of ice grains into the experimental cometary “coma.”  相似文献   

5.
R. Vasundhara 《Icarus》2009,204(1):194-208
The pre-Deep Impact images of Comet Tempel-1 obtained at the Indian Astronomical Observatory are used to investigate the morphology of the dust coma of the comet. We show that the trajectory of a cometary grain under the influence of solar radiation pressure is a reliable diagnostic to estimate its initial velocity. Four main active regions at mean latitudes +45° ± 5°(D), 0° ± 5° (E),−30° ± 5°(A) and−60° ± 5°(F) are found to explain the morphology of the dust coma in the ground-based and published images obtained by the High Resolution Instrument(HRI) cameras aboard the Deep Impact flyby spacecraft. From a χ2 fit of the intensity distribution in the observed and the simulated images, we derive the fraction of the productivity of the active vents to the total dust emission of the comet to be 27%. Of this the southern source alone accounts for 19.8%. The grains are found to be ejected with a velocity distribution with an upper limit of 70 ± 7 m s−1. However, the broad region ‘A’ appears to eject slower grains with an upper limit of 24 ± 2.5 m s−1. This source, that is active throughout the cycle is likely to be driven by CO2 sublimation. We compute the dependence of the percentage contribution of the southern source on the heliocentric distance and show that this ratio varies over the apparition and reaches a maximum at around 260 days before perihelion. The published images of the nucleus of Comet Tempel-1 show significant departure from sphericity. Therefore, the torque exerted by the enhanced activity of the southern region may be significant enough to produce changes in the rotational state of the nucleus before each perihelion passage.  相似文献   

6.
The NASA's Deep Impact mission was the first impact experiment to a cometary nucleus. The target of the mission was Comet 9P/Tempel, one of the Jupiter family comets. The impact was performed on July 4th, 2005. Imaging polarimetric observations were carried out by Polarimetric Imager for COmets (PICO) mounted on the Lulin One-meter Telescope (LOT) at Lulin Observatory, Taiwan. Intensity and linear polarization degree maps were obtained on July 3-5, 2005. Impact ejecta plume was clearly recognized in the enhanced intensity map. Furthermore, arc-shaped region of high polarization was recognized in the polarization map. Dust grains in this region had larger expansion velocity than the grains which provided the brightest area in the intensity map. comparing our results with the MIR spectroscopy obtained by Subaru Telescope we conclude that very small carbonaceous grains might be responsible for the region of high polarization.  相似文献   

7.
Modeling results of the water vapor plume produced by a comet impact on the Moon and of the resulting water ice deposits in the lunar cold traps are presented. The water vapor plume is simulated near the point of impact by the SOVA hydrocode and in the far field by the Direct Simulation Monte Carlo (DSMC) method using as input the SOVA hydrocode solution at a fixed hemispherical interface. The SOVA hydrocode models the physics of the impact event such as the surface deformation and material phase changes during the impact. The further transport and retention processes, including gravity, photodestruction processes, and variable surface temperature with local polar cold traps, are modeled by the DSMC method for months after impact. In order to follow the water from the near field of the impact to the full planetary induced atmosphere, the 3D parallel DSMC code used a collision limiting scheme and an unsteady multi-domain approach. 3D results for the 45° oblique impact of a 2 km in diameter comet on the surface of the Moon at 30 km/s are presented. Most of the cometary water is lost due to escape just after impact and only ∼3% of the cometary water is initially retained on the Moon. Early downrange focusing of the water vapor plume is observed but the later material that is moving more slowly takes on a more symmetric shape with time. Several locations for the point of impact were investigated and final retention rates of ∼0.1% of the comet mass were observed. Based on the surface area of the cold traps used in the present simulations, ∼1 mm of ice would have accumulated in the cold traps after such an impact. Estimates for the total mass of water accumulated in the polar cold traps over 1 byr are consistent with recent observations.  相似文献   

8.
Destruction mechanisms connected with thermodynamical behaviour of cometary material are reviewed with a special consideration of their effects on activity of comets. Consequences of thermal stresses which occur in the interior of a comet are discussed with reference to changes in the cometary brightness. Moreover, thermal destruction of grains placed in the head of the comet as well as on the surface of the nucleus is considered. It has been shown that the destruction of the cometary material can lead to an essential increase in the activity of the comet. Calculations have been carried out for a large assumed range of cometary parameters. The obtained simulated changes in the brightness of comets are consistent with the ones observed during the real variations and outbursts of brightness. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
We report on observations of the dust trail of Comet 67P/Churyumov-Gerasimenko (CG) in visible light with the Wide Field Imager at the ESO/MPG 2.2 m telescope at 4.7 AU before aphelion, and at with the MIPS instrument on board the Spitzer Space Telescope at 5.7 AU both before and after aphelion. The comet did not appear to be active during our observations. Our images probe large dust grains emitted from the comet that have a radiation pressure parameter β<0.01. We compare our observations with simulated images generated with a dynamical model of the cometary dust environment and constrain the emission speeds, size distribution, production rate and geometric albedo of the dust. We achieve the best fit to our data with a differential size distribution exponent of −4.1, and emission speeds for a β=0.01 particle of 25 m/s at perihelion and 2 m/s at 3 AU. The dust production rate in our model is on the order of 1000 kg/s at perihelion and 1 kg/s at 3 AU, and we require a dust geometric albedo between 0.022 and 0.044. The production rates of large (>) particles required to reproduce the brightness of the trail are sufficient to also account for the coma brightness observed while the comet was inside 3 AU, and we infer that the cross-section in the coma of CG may be dominated by grains of the order of .  相似文献   

10.
We have carried out an analysis of the (0, 0) vibrational band of the CN molecule in Comet Mrkos 1957d, including the effect of collisions. We found that the sum of the squares of the residuals can be reduced by a factor of ten, if collisions account for 46±3% of the population of the lower level. A rotational temperature can be assigned to the cometary gas. The best value found was 410±40 K. The best fit for the constantR 1 was (1.07±0.10)×10–4. The velocity of the comet was left as a free parameter. We found for it a value of 34.38±0.10 km s–1. This result is in disagreement with the nuclear orbital velocity of 34.74 km s–1. The discrepancy can be explained, if the CN molecules are ejected from the cometary nucleus preferentially in the sunward direction, with a mean velocity that corresponds to the above temperature.  相似文献   

11.
J. Lasue  R. Botet  E. Hadamcik 《Icarus》2011,213(1):369-381
A model for the aggregation of size distribution of cometesimals (Gaussian or power law) into cometary nuclei is developed. Upon disruption induced by collisions, sticking and evolution of the tensile strength and density of the cometesimals by sintering processes are taken into account. The resulting cometary nuclei present specific internal structures that have been quantified to allow the comparison with observational constraints and future in situ observations and cometary nucleus sounding with the CONSERT radar on-board the Rosetta mission. A parameter called the homogeneity exponent, μ, determines different aggregation regimes. Fractal aggregates are formed for μ < 0.4. Radial variations in tensile strength appear for 0.4 < μ < 0.6 and vanish for larger values of μ. The initial size distribution (following a Gaussian or power law) of aggregating cometesimals does not influence strongly these values but can change the extent of corresponding layers. If the layering observed on the surface of some cometary nuclei occurs often and originates from primordial structures, this constrains the velocity distribution of aggregating bodies to follow vm-0.25, while a differential size distribution following a power law with exponent between −2 and −3 should result for large bodies, in agreement with current estimations of the size distributions. Such a layered structure would lead to more cohesive, dense and less porous material located near the center of mass of the nucleus predicting an increase of bulk density of comet nuclei with their erosion state.  相似文献   

12.
1986年3—4月间,哈雷彗星的日心距为1和1.5 A.U.附近。我们使用云南天文台1米RCC望远镜和卡焦摄谱仪,取得了7张长狭缝光谱。这是我国唯一的一组哈雷彗星长狭缝光谱。光谱色散度为165(?)/mm,分辨率不小于7(?)。本文主要给出6张Kodak 103_a-O底片上3000—5100(?)波段的谱线证认结果。光谱片上主要出现了CN、C_2、C_3、CH、NH、OH等分子发射线,还可能存在NH_2、CH~+、N、H_2CO等发射线。光谱中连续辐射、吸收线较强,离子谱线少而弱,表明哈雷彗星是富尘的。OH(3090)发射线的出现既证实了卫星观测结果,又说明云南天文台的紫外观测条件是优越的。  相似文献   

13.
Akiva Bar-Nun  Diana Laufer 《Icarus》2003,161(1):157-163
In a unique machine, the first of its kind, large (200 cm2 × 10 cm) samples of gas-laden amorphous ice were prepared at 80 K and 10−5 Torr. The sample consisted of a fluffy agglomerate of 200-μm ice grains, similar to what is presumed to be the structure of comet nuclei. The sample was heated from above by IR radiation. The properties studied were gas content in the ice and its emanation from the ice upon warming and bearing on the gas/water vapor ratio observed in cometary comae vs this ratio in cometary nuclei and the effect of internal trapped gas on the thermal conductivity of the ice and the density and mechanical properties of pure ice vs gas-laden ice. These findings might have significance for the interpretation of comet observations, the forthcoming ESA’s Rosetta space mission to Comet 46P/Wirtanen in 2012, and to other comet missions.  相似文献   

14.
C.S. Wright  G.J. Nelson 《Icarus》1979,38(1):123-135
Eighty MHz observations of the occultation of the radio source Culgoora-1 0300 + 16 by the plasma tail of Comet Kohoutek (1973f) were made in February/March 1974 with the Culgoora radioheliograph. No detectable source broadening or change in flux density was observed, but the results showed a 2' arc anomaly in the observed position. This is greater than can be attributed to ionospheric refraction or experimental error. We suggest that it arose from refraction in the plasma tail of the comet. Similar observations of the occulation of the radio source Culgoora-1 2313-14 by the plasma tail of Comet West (1975n) were made at Culgoora in February 1976. These results were inconclusive but did suggest that the cometary plasma may have had some influence on the observed source position. The results are used to derive, from simple models, the distribution of electron density in comet tails. Peak electron densities of approximately 2 to 5 × 104 cm?3 and density gradients of ~0.05 cm?3 km?1 are indicated.  相似文献   

15.
Orbits are calculated for Comet C/1845 L1 (the Great June Comet) and C/1846 D1 (de Vico), the former based on 157 observations in right ascension and 152 in declination and the latter on 10 and 9, respectively. Both orbits are hyperbolic and statistically distinguishable from parabolas. Statistical tests indicate that the residuals are random and thus the orbits satisfactory. The Great June Comet is in no way associated with the comet Tycho Brahe observed in 1596 (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
《Planetary and Space Science》1999,47(3-4):301-304
The recent developments in cometary studies suggest rather low mean densities and weak structures for the nuclei. They appear to be accumulations of fairly discrete units loosely bound together, as deduced from the observations of Comet Shoemaker–Levy 9 during its encounter with Jupiter. The compressive strengths deduced from comet splitting by Öpik and Sekanina are extremely low. These values are confirmed by theory developed here, assuming that Comet P/Holmes had a companion that collided with it in 1892. There follows a short discussion that suggests that the mean densities of comets should increase with comet dimensions. The place of origin of short-period comets may relate to these properties.  相似文献   

17.
Triple F—a comet nucleus sample return mission   总被引:1,自引:0,他引:1  
《Experimental Astronomy》2009,23(3):809-847
The Triple F (Fresh From the Fridge) mission, a Comet Nucleus Sample Return, has been proposed to ESA’s Cosmic Vision program. A sample return from a comet enables us to reach the ultimate goal of cometary research. Since comets are the least processed bodies in the solar system, the proposal goes far beyond cometary science topics (like the explanation of cometary activity) and delivers invaluable information about the formation of the solar system and the interstellar molecular cloud from which it formed. The proposed mission would extract three sample cores of the upper 50 cm from three locations on a cometary nucleus and return them cooled to Earth for analysis in the laboratory. The simple mission concept with a touch-and-go sampling by a single spacecraft was proposed as an M-class mission in collaboration with the Russian space agency ROSCOSMOS.  相似文献   

18.
Near-infrared and mid-infrared observations of the site of the 2009 July 19 impact of an unknown object with Jupiter were obtained within days of the event. The observations were used to assess the properties of a particulate debris field, elevated temperatures, and the extent of ammonia gas redistributed from the troposphere into Jupiter’s stratosphere. The impact strongly influenced the atmosphere in a central region, as well as having weaker effects in a separate field to its west, similar to the Comet Shoemaker-Levy 9 (SL9) impact sites in 1994. Temperatures were elevated by as much as 6 K at pressures of about 50-70 mbar in Jupiter’s lower stratosphere near the center of the impact site, but no changes above the noise level (1 K) were observed in the upper stratosphere at atmospheric pressures less than ∼1 mbar. The impact transported at least ∼2 × 1015 g of gas from the troposphere to the stratosphere, an amount less than derived for the SL9 C fragment impact. From thermal heating and mass-transport considerations, the diameter of the impactor was roughly in the range of 200-500 m, assuming a mean density of 2.5 g/cm3. Models with temperature perturbations and ammonia redistribution alone are unable to fit the observed thermal emission; non-gray emission from particulate emission is needed. Mid-infrared spectroscopy of material delivered by the impacting body implies that, in addition to a silicate component, it contains a strong signature that is consistent with silica, distinguishing it from SL9, which contained no evidence for silica. Because no comet has a significant abundance of silica, this result is more consistent with a “rocky” or “asteroidal” origin for the impactor than an “icy” or “cometary” one. This is surprising because the only objects generally considered likely to collide with Jupiter and its satellites are Jupiter-Family Comets, whose populations appear to be orders of magnitude larger than the Jupiter-encountering asteroids. Nonetheless, our conclusion that there is good evidence for at least a major asteroidal component of the impactor composition is also consistent both with constraints on the geometry of the impactor and with results of contemporaneous Hubble Space Telescope observations. If the impact was not simply a statistical fluke, then our conclusion that the impactor contained more rocky material than was the case for the desiccated Comet SL9 implies a larger population of Jupiter-crossing asteroidal bodies than previously estimated, an asteroidal component within the Jupiter-Family Comet population, or compositional differentiation within these bodies.  相似文献   

19.
The HELIOS A and B zodiacal light photometers can be used to view comets as they pass the spacecraft. Because the HELIOS spacecraft orbit the Sun on their own, and are generally far from Earth, the spacecraft allow us to view comets from a different perspective than normally available. Comet West (1976VI) passed through perihelion on February 25, 1976. The comet crossed the HELIOS A and B spacecraft zodiacal light photometer fields of view, allowing them to record the brightness, polarization and color of the comet. Data from the U, B and V photometers showed a distinct blueing followed by a slight reddening corresponding to the ion and dust tails, respectively, entering the field of view of each photometer sector. The extent of the tail of Comet West was far greater seen from the HELIOS spacecraft than seen from Earth, even taking into account their generally closer viewing perspective. As Comet West traveled away from the Sun, it was observed in the zodiacal light photometer fields of view at a solar distance of more than 1.4 AU. The zodiacal light photometers also viewed Comet Meier (1978XXI). Comet Meier is far more compact than Comet West, extremely blue and unlike Comet West showed no significant dust tail. The interplanetary medium is observed to a level of the variations in the brightness of the electron-scattering component near Comet West. A brightness bump present in the data before the comet reached some photometer positions can be shown to approximately form a parabolic shape sunward and ahead of the orbital motion of the Comet West nucleus. We presume that this bump is evidence of the position of the cometary atmosphere or an enhancement of the ambient interplanetary medium ahead of the comet motion. The brightness bump in terms of density generally corresponds to a density enhancement of the ambient medium by a few times in the vicinity of the comet. When compared with Comet Halley and couched in terms of the shock stand-off distance, the distance of this brightness increase from the nucleus implies a neutral gas production rate of approximately 2.5 times that of Halley. This is in agreement with the neutral gas production rate measured from Comet West using more direct techniques.Now at Scientific Applications Inc., La Jolla, California, U.S.A.  相似文献   

20.
Deep Space 1 at comet 19P/Borrelly: Magnetic field and plasma observations   总被引:1,自引:0,他引:1  
On September 22, 2001 the Deep Space 1 spacecraft performed a flyby at comet 19P/Borrelly at a solar distance of 1.36 AU leading the Earth by 74° in longitude. The spacecraft-comet distance at closest approach was 2171 km. The bow shock had a magnetic compression ratio of 2.5 at a distance of 147 100 km from the nucleus. Deep Space 1 first entered the sheath region essentially from the north polar region. Fluctuations from the cometary ion pickup were present throughout the sheath region and even well upstream of the shock, as expected. The magnetic field pileup region had a peak field strength of 83 nT and was shown to be consistent with a pressure equal to the solar wind ram pressure. The peak field location was offset from the time of closest approach. It is uncertain whether this is a spatial or temporal variation. Draping of magnetic fields around the nucleus was sought, but evidence for this was not apparent in the data. A possible explanation is that the interplanetary solar wind was composed of turbulent short-scale fields, and thus the fields were not symmetric about the point of closest approach. During the flyby phase there were in general few intervals of ACE data where there were large scale Parker spiral fields. With the addition of plasma data, the shock properties are investigated. The characteristics of magnetic draping, pileup and fluctuations are explored. These comet 19P/Borrelly results are contrasted with other cometary flyby results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号