首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The microphysical characteristics of wintertime cold clouds in North China were investigated from 22 aircraft observation flights from 2014 to 2017, 2020, and 2021. The clouds were generated by mesoscale weather systems with little orographic component. Over the mixed-phase temperature range (–40°C to 0°C), the average fraction of liquid, mixed-phase, and ice cloud was 4.9%, 23.3%, and 71.8%, respectively, and the probability distribution of ice mass fraction was a half-U-shape, suggesting that ice cloud was the primary cloud type. The wintertime mixed-phase clouds in North China were characterized by large cloud droplet number concentration, small liquid water content (LWC), and small effective diameter of cloud droplets. The main reason for larger cloud droplet number concentration and smaller effective diameter of cloud droplets was the heavy pollution in winter in North China, while for smaller LWC was the lower temperature during flights and the difference in air mass type. With the temperature increasing, cloud droplet number concentration, LWC, and the size of ice particles increased, but ice number concentration and effective diameter of cloud droplets decreased, similar to other mid-latitude regions, indicating the similarity in the temperature dependence of cloud properties of mixed-phase clouds. The variation of the cloud properties and ice habit at different temperatures indicated the operation of the aggregation and riming processes, which were commonly present in the wintertime mixed-phase clouds. This study fills a gap in the aircraft observation of wintertime cold clouds in North China.  相似文献   

2.
利用设在伊宁的激光雨滴谱仪获取的2013年4月的降水资料,对层状云和混合云降水粒子谱的微物理参量平均值和Gamma函数拟合结果以及Z-I关系进行对比分析。计算结果表明,伊宁地区春季降水的微物理参量普遍偏小,小滴对降水浓度的贡献达到92%以上,即降水主要以小滴为主。层状云降水的雨强、雨滴数浓度、雨滴的各类微物理特征参量的平均值均大于混合云降水。函数拟合结果表明,混合云降水的雨滴谱宽大于层状云降水的雨滴谱宽,层状云和混合云降水的雨滴谱都比较符合Gamma分布,在小滴段Gamma分布对实际谱都有一定的低估,在大于1 mm的粒径段,拟合结果有一定的偏差。还讨论了雨滴大小因子Λ和形状因子μ之间的关系以及Z-I关系,Λ-μ关系与粒子尺度有关,根据拟合的二项式得到层状云降水粒子的平均直径大于混合云降水的平均直径。  相似文献   

3.
基于云微物理过程完善的TAU2D分档云模式, 模拟研究了用热泡扰动生成的暖云在不同气溶胶数浓度(Na)背景条件下各演变阶段云微物理量的变化特征。结果表明: 在暖云的发展过程中Na越高, 云滴尺度变小, 云滴间的碰并增长发动较晚, 云滴谱因碰并增长而实现的滴谱拓宽变弱, 云滴谱相对较窄, 云滴谱标准差较小, 因此云体发展越缓慢, 云体生命周期越长, 形成降水就越晚; 反之, 云滴尺度越大, 碰并增长发动越早, 云滴谱拓宽更明显, 云滴谱标准差越大, 云体生命周期相对更短, 降水开始时刻越早。高Na背景下, 碰并阶段云滴谱较凝结阶段更宽, 沉降阶段因云体下沉蒸发导致小尺度云滴减少, 使其滴谱较碰并阶段略有拓宽。在凝结阶段, 低气溶胶背景下云滴数浓度(N)和离散度(ε)间呈现正相关关系, 而高气溶胶背景下两者为负相关关系。在碰并阶段, Nε的相关性关系为负相关, 且随着气溶胶数浓度的增加, 负相关程度降低。在沉降阶段, Nε间为负相关关系。  相似文献   

4.
巨盐核对云滴活化影响的数值模拟研究   总被引:1,自引:1,他引:0  
利用包含云凝结核(CCN)与巨核(GCCN)的核化,云滴凝结和碰并增长的分档气块模式模拟研究了不同的CCN数浓度、上升气流速度、CCN中值半径以及云底温度等情况下GCCN对CCN活化的影响,结果表明,在水汽供应相对充足的情况下GCCN对云滴活化数浓度的影响并不明显;而当水汽供应相对不充足时,增加GCCN至1 cm-3的量级以上可以有效减少CCN的活化数浓度.在水汽供应不充分且其他条件相同的情况下,增大CCN的平均直径或是增加云底温度都可以使GCCN对云滴活化的抑制作用增强.对比分析不同的GCCN数浓度对清洁大气和污染大气云底以上300 m高度处粒子谱型的影响可以看出,在水汽供应不充分的条件下加入GCCN,初始时刻CCN的数浓度对GCCN产生的大云滴数目及云滴谱宽的影响较小.在水汽供应相对充足的情况下,GCCN对CCN活化基本没有抑制作用,但此时在高过饱和度峰值下生成的大量小云滴争食水汽,反而导致云滴群凝结增长速度小于水汽供应相对不充足的情况,此时加入的GCCN可以先活化形成大云滴.  相似文献   

5.
The effect of the introduction of the ice phase in a cloud droplet growth model is examined. The ice particles are introduced by freezing cloud droplets at rates consistent with observations of natural ice nucleus concentrations. In moderate updrafts the production of large particles is retarded owing to the glaciation of the cloud. In stronger updrafts where insufficient time is available for precipitation to form by condensation and coalescence, the production of small precipitation particles is increased.  相似文献   

6.
云滴谱宽度对模式中云的光学厚度的参数化、气溶胶间接效应的评估以及降水形成过程的研究至关重要。本文利用美国POST(Physics of Stratocumulus Top)项目2008年7月19日的飞机观测资料,分析了微物理量和云滴谱的垂直分布及微物理过程。结果表明,该云系云滴谱宽度在云底附近较大,这是由低层核化过程导致的;中层凝结增长过程使得云滴谱宽度随高度增加逐渐减小;云顶附近夹卷混合过程导致云滴谱宽度增大。绝热云中垂直速度的增大会促进云凝结核的活化使云滴数浓度增大,促进凝结增长使云滴尺度增大、云滴谱宽度减小,云滴谱宽度与云滴数浓度、云滴尺度呈现负相关关系;云洞中受夹卷混合过程影响,垂直速度减小,云滴蒸发,云滴数浓度和云滴尺度减小、云滴谱宽度增大,且该效应随绝热程度减小而增强。建议云滴谱宽度的参数化将垂直速度、云滴数浓度、云滴尺度和绝热程度等考虑在内。  相似文献   

7.
Cores of high radar reflectivity (>50 dBZ) and raindrops larger than 4 mm in diameter were occasionally reported in warm clouds, offshore from Hawaii. A kinematic numerical model with detailed microphysics was used to study the formation of these cores and the development of the giant drops. The role of collisional and spontaneous breakup of drops was evaluated. Our results show that spontaneous breakup of raindrops restricts the formation of giant drops (D>4 mm). This could be a result of the poor parameterization of the fragment size distribution, and the probabilities of the spontaneous breakup. The inclusion of only binary breakup mechanism explained the observed radar echoes and the drop spectra. These results corroborate the hypothesis that the updrafts in the Hawaiian clouds sort out different size drops in such a way that millimeter size drops are allowed to fall in an environment deficient of smaller raindrops. In this way, the large raindrops continue to grow by collection of small cloud droplets, but have a smaller chance for collisional breakup (the efficiency for this type of breakup is small for collisions with cloud droplets). The collisional breakup of big raindrops was also found to play a significant role in the formation of giant drops. Such drops are formed following collision–breakup of large raindrops in which one of the fragments is larger than the original drops.  相似文献   

8.
基于一维分档MISTRA边界层云模式,模拟研究了内部混有不可溶核的硫酸铵气溶胶对边界层暖云微物理特征的影响。结果表明:边界层内湍流动能通量是影响暖云发展的重要因素。云中液态水含量、过饱和度以及云滴谱离散度均随云中的高度增加而增大。云滴谱标准差是影响云滴谱离散度变化的主要因子。在暖云发展阶段,不可溶性核会增加云中过饱和度,进而导致云滴谱分别向大尺度和小尺度端拓宽,云滴谱标准差增大,云滴谱离散度随时间增加而增大的程度增强;在暖云减弱阶段,不可溶核会造成云中大尺度端云滴数浓度减少,云滴谱变窄,标准差变小,云滴谱离散度逐渐减小的特征减弱。  相似文献   

9.
Aircraft observations of electrical conductivity and cloud microphsical, dynamical and other electrical parameters were made in warm stratocumulus and cumulus clouds forming during the summer monsoon seasons (June-September) of 1983 and 1985 in the Deccan Plateau region, India. A Gerdien type cylindrical condenser was used for the measurement of electrical conductivity. The variations in the electrical conductivity are observed to be closely associated with the updrafts and downdrafts in the cloud, liquid water content, cloud droplet charge and coro-na discharge current. The value of electrical conductivity in warm clouds is found to be in the order of 10-12 ohm-1 m-1 which is two orders higher than that observed in clear-air at cloud-base levels in some regions by other investigators.Classical static electricity concepts predict reduced conductivity values inside clouds. Cloud electrical conductivi-ty measurements, particularly in warm clouds are few and the results are contradictory. The recently identified mech-anism of vertical mixing in clouds lends support to coovective charge separation mechanism with inherent larger than clear-air values for cloud electrical conductivity and therefore consistent with the measurements reported herein.  相似文献   

10.
爆炸对云滴碰并增长的实验研究   总被引:2,自引:2,他引:2       下载免费PDF全文
在2m3云室中进行了一组研究爆炸对云滴碰并增长影响的试验。用一个模拟爆炸源产生冲击波,通过沉降取样和FSSP观测爆炸前后的滴谱变化。沉降取样结果表明,在爆炸声压级130 dB作用后的2分钟内,滴谱变宽,较大云滴浓度增加。从室内试验看,爆炸冲击波似乎能促进云滴的碰并过程。本文结果为爆炸对暖云影响提供了一种可能的解释。  相似文献   

11.
利用运十二飞机在2012年冬季广西南宁地区开展的12架次层状暖云微物理探测资料进行分析,统计和观测结果表明,层状暖云垂直方向分层显著。存在逆温是典型宏观特征,降水云基本都为多层逆温,逆温位置主要出现在云顶附近。云滴平均浓度为652±607个/cm3;无降水云比降水云云滴平均浓度略大,分别为678±348个/cm3和615±363个/cm3。平均液水含量为1.03±0.73 g/m3,其中降水云远大于无降水云,分别为1.3±0.9 g/m3和0.88±0.6 g/m3。平均有效直径为18.2±5.6 μm,降水云略大于无降水云,分别为19.4±5.0 μm和17.3±6.0 μm。垂直分布上,云滴数浓度在接近地面的下层云中最大,峰值区主要出现在云底,且随高度一般呈现递减趋势。云滴谱分布显示在6.5 μm出现次峰值。降水云中大云滴主要出现在接近地面的下层云中,而无降水云中几乎没有观测到大云滴。   相似文献   

12.
Aerosols affect precipitation by modifying cloud properties such as cloud droplet number concentration (CDNC). Aerosol effects on CDNC depend on aerosol properties such as number concentration, size spectrum, and chemical composition. This study focuses on the effects of aerosol chemical composition on CDNC and, thereby, precipitation in a mesoscale cloud ensemble (MCE) driven by deep convective clouds. The MCE was observed during the 1997 department of energy's Atmospheric Radiation Measurement (ARM) summer experiment. Double-moment microphysics with explicit nucleation parameterization, able to take into account those three properties of aerosols, is used to investigate the effects of aerosol chemical composition on CDNC and precipitation. The effects of aerosol chemical compositions are investigated for both soluble and insoluble substances in aerosol particles. The effects of soluble substances are examined by varying mass fractions of two representative soluble components of aerosols in the continental air mass: sulfate and organics. The increase in organics with decreasing sulfate lowers critical supersaturation (Sc) and leads to higher CDNC. Higher CDNC results in smaller autoconversion of cloud liquid to rain. This provides more abundant cloud liquid as a source of evaporative cooling, leading to more intense downdrafts, low-level convergence, and updrafts. The resultant stronger updrafts produce more condensation and thus precipitation, as compared to the case of 100% sulfate aerosols. The conventional assumption of sulfate aerosol as a surrogate for the whole aerosol mass can be inapplicable for the case with the strong sources of organics. The less precipitation is simulated when an insoluble substance replaces organics as compared to when it replaces sulfate. When the effects of organics on the surface tension of droplet and solution term in the Köhler curve are deactivated by the insoluble substance, Sc is raised more than when the effects of sulfate on the solution term are deactivated by the insoluble substance. This leads to lower CDNC and, thus, larger autoconversion of cloud liquid to rain, providing less abundant cloud liquid as a source of evaporative cooling. The resultant less evaporative cooling produces less intense downdrafts, weaker low-level convergence, updrafts, condensation and, thereby, less precipitation in the case where organics is replaced by the insoluble substance than in the case where sulfate is replaced by the insoluble substance. The variation of precipitation caused by the change in the mass fraction between the soluble and insoluble substances is larger than that caused by the change in the mass fraction between the soluble substances.  相似文献   

13.
海盐气溶胶和硫酸盐气溶胶在云微物理过程中的作用   总被引:14,自引:2,他引:14       下载免费PDF全文
利用大气气溶胶和云分档模式研究海盐气溶胶和硫酸盐气溶胶在云微物理过程中的作用, 计算结果表明:云中液态水含量随高度的分布并不随海盐、硫酸盐的数目以及云团上升速度的变化而变化; 随着云滴数目的增加, 云滴的有效半径会减小; 硫酸盐对云滴数目影响起主导作用, 海盐在水汽相对充足情况下增加了云滴数目, 在水汽相对不足的情况下减少了云滴数目; 硫酸盐粒子浓度特别强的情况下 (人类活动污染比较严重时), 如果水汽相对不足, 云滴数目会明显小于硫酸盐粒子浓度; 而海盐粒子的存在, 加剧了水汽的供应不足, 从而可以在很大程度上进一步降低云滴数目。也就是说, 在有些情况下, 如果不考虑海盐气溶胶的作用, 硫酸盐气溶胶对云特性的影响会被过高估计。  相似文献   

14.
本文利用机载云粒子探测设备对2014年11月6日至12月25日期间在江西地区探测获得的7次暖云飞行个例资料,详细分析降水云和非降水云的微物理结构特征。云雨自动转化阈值函数(T)是描述云内碰并强度的重要微物理参量。我们发现T值在云内分布呈现云底较小,随着云内高度的增加T值逐渐增大,并且在云中部和上部达到最大值;研究还发现降水云的T值在0.6以上的频率远大于非降水云,表明降水云中的碰并过程更强,云滴更易通过凝结和碰并过程形成雨滴,符合暖云降水机制。降水云中云滴谱相对离散度(ε)和云滴数浓度(Nc)的负相关程度较非降水云更为显著,随着T的增大,二者的负相关程度增强;相比于云滴平均半径(ra)的变化,云滴谱标准差(σ)的变化主导ε–Nc负相关程度的增强。  相似文献   

15.
This paper outlines a one-dimensional,heightdependent bin model with detailed microphysical processes in which ice splinters are produced by a riming process.The model is then applied to simulate the shift of particle size distribution effected by the secondary ice production process within clouds with different generating cells and cloud top temperatures.The result of model simulations reveals the general effects of cloud updrafts on increasing ice particle concentration by extending the residence time of ice particles in clouds and providing sufficiently large supercooled water droplets.The rimesplintering mechanism is more effective in clouds with lower ice seeding rates than those with higher rates.Evolutions of hydrometeor size distribution triggered by the rime-splintering mechanism indicate that the interaction between large ice particles and supercooled water drops adds a "second maximum" to the primary ice spectra.  相似文献   

16.
在积云中,大多数云粒子的直径在7到10微米之间,而在层云中,大多数云粒子的直径不超过2微米.云滴有效半径与云中行星边界层(PBL)及PBL上层的气溶胶数浓度(Na)呈负相关.在1500米以上的高液态水含量区域,云滴浓度(Nc)变化不大,Na含量降低.高雷达反射率对应于大的FCDP云粒子浓度和小的气溶胶粒子浓度.积云中的...  相似文献   

17.
During June and July 2003 the Sources and Origins of Atmospheric Cloud Droplets experiment (SOACED) was carried out on a mountain-top site in central Sweden. The main objective of the experiment was to characterise the microphysical and chemical properties of cloud droplet residuals and interstitial aerosol particles in continental clouds and to understand the processes controlling cloud properties at this location.Interstitial and residual aerosol size distributions, cloud liquid water content and species- and size-resolved aerosol mass concentrations are the main variables employed to address questions pertaining to the cloud droplet number concentration and scavenging efficiency during a stratocumulus cloud event observed on July 28, 2003. In this cloud event, about 56% of the aerosol mass was associated with organic species, whilst SO4 accounted for 23% and NH4 for 14%. NO3 and Cl made up about 7% of the total mass.The partitioning of the aerosol particles between cloud droplets and interstitial air has been studied in terms of their microphysical properties. The scavenging efficiency, defined as the fraction of particles activated into cloud elements compared to the total amount of particles, was investigated as a function of size. The scavenging efficiency curves displayed different shapes during the cloud event, from an S-shaped curve, with low scavenging efficiency in the Aitken mode and larger scavenging efficiency in the accumulation mode, to more unusual shapes where Aitken-mode particles were either solely activated or activated in addition to accumulation-mode particles.This study suggests that alterations of the aerosol chemical composition occurred during the measurement period, changing the hygroscopic nature of the CCN and decreasing their activation diameter. It is also hypothesized that entrainment of drier air aloft may have introduced inhomogeneities in the supersaturation field and modified the S-shaped scavenging curves.  相似文献   

18.
The Aerodyne aerosol mass spectrometer (Q-AMS) was coupled with a counterflow virtual impactor (CVI) for the first time to measure cloud droplet residuals of warm tropospheric clouds on Mt. Åreskutan in central Sweden in July 2003. Operating the CVI in different operational modes generated mass concentration and species-resolved mass distribution data for non-refractory species of the ambient, interstitial, and residual aerosol. The ambient aerosol measurements revealed that the aerosol at the site was mainly influenced by long-range transport and regional photochemical generation of nitrate and organic aerosol components. Four different major air masses were identified for the time interval of the experiment. While two air masses that approached the site from northeastern Europe via Finland showed very similar aerosol composition, the other two air masses from polar regions and the British Islands had a significantly different composition. During cloud events the larger aerosol particles were found to be activated into cloud droplets. On a mass basis the activation cut-off diameter was approximately 150 nm for nitrate and organics dominated particles and 200 nm for sulfate dominated particles. Generally nitrate and organics were found to be activated into cloud droplets with higher efficiency than sulfate. While a significant fraction of the nitrate in ambient particles was organic nitrates or nitrogen-containing organic species, the nitrate found in the cloud droplet residuals was mainly ammonium nitrate. After passage of clouds the ambient aerosol size distribution had shifted to smaller particle sizes due to the predominantly activation of larger aerosol particles without a significant change in the relative composition of the ambient aerosol.  相似文献   

19.
《Atmospheric Research》2008,87(3-4):225-240
During June and July 2003 the Sources and Origins of Atmospheric Cloud Droplets experiment (SOACED) was carried out on a mountain-top site in central Sweden. The main objective of the experiment was to characterise the microphysical and chemical properties of cloud droplet residuals and interstitial aerosol particles in continental clouds and to understand the processes controlling cloud properties at this location.Interstitial and residual aerosol size distributions, cloud liquid water content and species- and size-resolved aerosol mass concentrations are the main variables employed to address questions pertaining to the cloud droplet number concentration and scavenging efficiency during a stratocumulus cloud event observed on July 28, 2003. In this cloud event, about 56% of the aerosol mass was associated with organic species, whilst SO4 accounted for 23% and NH4 for 14%. NO3 and Cl made up about 7% of the total mass.The partitioning of the aerosol particles between cloud droplets and interstitial air has been studied in terms of their microphysical properties. The scavenging efficiency, defined as the fraction of particles activated into cloud elements compared to the total amount of particles, was investigated as a function of size. The scavenging efficiency curves displayed different shapes during the cloud event, from an S-shaped curve, with low scavenging efficiency in the Aitken mode and larger scavenging efficiency in the accumulation mode, to more unusual shapes where Aitken-mode particles were either solely activated or activated in addition to accumulation-mode particles.This study suggests that alterations of the aerosol chemical composition occurred during the measurement period, changing the hygroscopic nature of the CCN and decreasing their activation diameter. It is also hypothesized that entrainment of drier air aloft may have introduced inhomogeneities in the supersaturation field and modified the S-shaped scavenging curves.  相似文献   

20.
During a field measuring campaign at Kleiner Feldberg (Taunus) in 1990, microphysical characteristics of clouds have been measured by Forward Scattering Spectrometer Probes (FSSP). The aim was to study the influence of aerosol and meteorological factors on droplet size and number. The results are: More mass in the accumulation size range of the aerosol leads to more droplets in stratocumulus clouds and to higher soluble masses in droplets of stratus clouds. However, the aerosol distribution was coarser in the stratus clouds compared to the stratocumulus clouds. Within the first 200 m from cloud base, the droplets grow while their number decreases. The growth results in a stable size of about 14 µm diameter over a large distance from cloud base in many stratocumulus clouds. Two types of mixing processes were observed: processes with reductions in the number of droplets (inhomogeneous mixing) and with reductions in the size of the droplets (homogeneous mixing).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号