首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
The study of the site effects and the microzonation of a part of the metropolitan Sofia, based on the modelling of seismic ground motion along three cross-sections are performed. Realistic synthetic strong motion waveforms are computed for scenario earthquakes (M=7) applying a hybrid modelling method, based on the modal summation technique and finite differences scheme. The synthesized ground motion time histories are source and site specific. The site amplification is determined in terms of response spectra ratio (RSR). A suite of time histories and quantities of earthquake engineering interest are provided. The results of this study constitute a “database” that describes the ground shaking of the urban area. A case study of experiment-based assessment of vulnerability of a cast-in-situ single storey, industrial, reinforced concrete frame, designed according to Eurocodes 2 and 8 is presented. The main characteristics of damage index and storey drift are discussed for the purposes of microzonation.  相似文献   

2.
Algiers city is located in a seismogenic zone. To reduce the impact of seismic risk in this Capital city, a realistic modelling of the seismic ground motion (SGM) is conducted by using the hybrid method that combines the finite differences method and the modal summation. For this purpose, a complete database of geological, geophysical and earthquake data is constructed. A critical re-appraisal of the seismicity of the zone [2.25°E–3.50°E, 36.50°N–37.00°N] is performed and an earthquake list, for the period 1359–2002, is compiled. The analysis of existing and newly retrieved macroseismic information allowed the definition of earthquake parameters of macroseismic events for which a degree of reliability is assigned. Geological cross sections have been built up to model the SGM in the city, caused by the 1989 Mont-Chenoua and the 1924 Douéra earthquakes. Synthetic seismograms and response spectral ratio is produced for Algiers, and they show that the soft sediments in Algiers centre are responsible of the noticed amplification of the SGM.  相似文献   

3.
—?The estimation of realistic seismic input can be obtained from the computation of a wide set of time histories and spectral information, corresponding to possible seismotectonic scenarios for different source and structural models. Such a data set can be very constructively used by civil engineers in the design of new seismo-resistant structures and in the reinforcement of the existing built environment, therefore supplying a particularly powerful tool to the prevention efforts of Civil Defense. The availability of realistic numerical simulations enables us to estimate the amplification effects in complex geological structures exploiting the available geotechnical, lithological, geophysical parameters, topography of the medium, tectonic, historical, paleoseismological data, and seismotectonic models. The realistic modeling of the ground motion is a very important source of knowledge for the preparation of groundshaking scenarios which represent a valid and economical tool in seismic microzonation.  相似文献   

4.
Safety against earthquake hazards presents two aspects: structural safety against potentially destructive dynamic forces and site safety related to geotechnical phenomena, such as amplification, landsliding and soil liquefaction. The correct evaluation of seismic hazard is, therefore, highly affected by risk factors due to geological nature and geotechnical properties of soils. In response to these new developments, several attempts have been made to identify and appraise geotechnical hazards and to represent them in the form of zoning maps, in which locations or zones with different levels of hazard potential are identified. The geotechnical zonation of the subsoil of the city of Catania (Italy) suggests a high vulnerability of the physical environment added to site amplification of the ground motion phenomena. The ground response analysis at the surface, in terms of time history and response spectra, has been obtained by some 1D equivalent linear models and by a 2D linear model, using a design scenario earthquake as input at the conventional bedrock. In particular, the study has regarded the evaluation of site effects in correspondence of the database of about 1200 boreholes and water-wells available in the data-bank of the Catania area. According to the response spectra obtained through the application of the 1D and 2D models, the city of Catania has been divided into some zones with different peak ground acceleration at the surface, to which corresponds a different value of the Seismic Geotechnical Hazard. A seismic microzoning map of the urban area of the city of Catania has been obtained. The map represents an important tool for the seismic improvement of the buildings, indispensable for the mitigation of the seismic risk.  相似文献   

5.
The seismic risk analysis evaluation in the Mediterranean area is one of the main tasks for the preservation of Cultural Heritage and for the sustainable development of Mediterranean cities. The Mediterranean area is characterised by a medium–high level of seismic risk, so that earthquakes are the major cause for the destruction of monuments, residential and industrial buildings. A case history regarding the seismic risk analysis for the city of Catania (Italy) is presented, since the city has been heavy damaged in the past by strong earthquakes such as the 1169 earthquake (XI MCS), the 1542 earthquake (IX MCS), the 1693 earthquake (XI MCS) and the 1818 earthquake (VIII MCS) etc., which caused several thousands of deaths. Fault modelling, attenuation laws, synthetic accelerograms, recorded accelerograms and site effects are considered for the evaluation of the seismic action. Vulnerability of physical environment, related to the presence of cavities and to seismic-induced landslides and liquefaction has been analysed, with special reference to the new modelling of such phenomena and to the application of models to given areas. Soil–structure Interaction has been analysed for some geotechnical works, such as shallow foundation and retaining wall, by means of physical and numerical modelling. The paper deals with the vulnerability of physical environment (landslides, liquefaction, etc.), while the road map continues with the analysis of vulnerability of monuments and buildings, with the aim of the estimation of the seismic resistance required to defend against the seismic action given by the scenario earthquake. For the mitigation of seismic risk, structural improvements of R.C. buildings with different methodology and techniques have been analysed, as well as the guideline for the strengthening of buildings. The work shows that the seismic risk of the city is not a summation of the seismic risk of each building, because the vulnerability of the urban system plays an important role on the seismic risk evaluation of a given city. To this aim the vulnerability of the road infrastructures, lifelines, and urban framework have been also analysed in the project.  相似文献   

6.
Ground Motion Zoning of Santiago de Cuba: An Approach by SH Waves Modelling   总被引:3,自引:0,他引:3  
— The expected ground motion in Santiago de Cuba basin from earthquakes which occurred in the Oriente fault zone is studied. Synthetic SH-waves seismograms have been calculated along four profiles in the basin by the hybrid approach (modal summation for the path source-profile and finite differences for the profile) for a maximum frequency of 1 Hz. The response spectra ratio (RSR) has been determined in 49 sites, distributed along all considered profiles with a spacing of 900 m. The corresponding RSR versus frequency curves have been classified using a logical-combinatorial algorithm. The results of the classification, in combination with the uppermost geological setting (geotechnical information and geological geometry of the subsoil) are used for the seismic zoning of the city. Three different main zones are identified, and a small sector characterized by major resonance effects, due to the particular structural conditions. Each zone is characterized in terms of its expected ground motion parameters for the most probable strong earthquake (MS=7), and for the maximum possible (MS=8).  相似文献   

7.
A methodology for seismic microzonation and earthquake damage scenarios may be considered as composed of two stages. In the first stage, microzonation maps with respect to estimated earthquake characteristics on the ground surface are generated for an investigated urban area. The effects of local geological and geotechnical site conditions are taken into account based on site characterization with respect to representative soil profiles extending down to the engineering bedrock. 1D site response analyses are performed to calculate earthquake characteristics on the ground surface using as many as possible, hazard compatible real acceleration time histories. In the second stage, vulnerability of buildings and pipeline systems are estimated based on site-specific ground motion parameters. A pilot study is carried out to evaluate seismic damage in a district in Istanbul, Turkey. The results demonstrate the significance of site characterization and site response analysis in calculating the earthquake characteristics on the ground surface in comparison to simplified empirical procedures.  相似文献   

8.
A realistic definition of seismic input for the Catania area is obtained using advanced modeling techniques that allow us the computation of synthetic seismograms, containing body and surface waves. With the modal summation technique, extended to laterally heterogeneous anelastic structural models, we create a database of synthetic signals which can be used for the study of the local response in a set of selected sites located within the Catania area. We propose a ground shaking scenario corresponding to a source spectrum of an earthquake that mimics the destructive event that occurred on 11 January 1693. Making use of the simplified geotechnical map for the Catania area, we produce maps which illustrate the spatial variability of the SH waveforms over the entire area. Using the detailed geological and geotechnical information along a selected cross section, we study the site response to the SH and P-SV motion in a very realistic case, adopting and comparing different estimation techniques.  相似文献   

9.
After the 2009 April 6th Mw 6.3 L??Aquila earthquake (Central Italy) the Italian Civil Defense Department promoted the microzoning study in the ten zones in the epicentral area that suffered major damage. In this paper we present the activities and the results concerning a temporary seismic network installed in the historical L??Aquila city center indicated as ??macroarea 1?? in the microzoning project. Seismic data were collected to investigate the amplification effects in the city and to support the microzoning activities in verifying both geological profiles and 1D numerical modeling of the seismic response of the city. The conventional spectral approaches using both microtremor and earthquake data allowed to determine the fundamental resonance frequencies and the amplification factors within the city respectively. The spatial variability of these quantities can be related to the geological and geomorphologic characteristics of the investigated area. A comparison between the network data and the data recorded by the two strong motion instruments installed in the city was also made. This allows verifying the relative response of the accelerometric stations that recorded in the city the major events of the sequence.  相似文献   

10.
The understanding of geotechnical characteristics of near-surface material is of fundamental interest in seismic microzonation. Shear wave velocity (Vs), one of the most important soil properties for soil response modeling, has been evaluated through seismic profiling using the multichannel analysis of surface waves in the city of Dehradun situated along the foothills of northwest Himalaya. Fifty sites in the city have been investigated with survey lines between 72 and 96 m in length. Multiple 1-D and interpolated 2-D profiles have been generated up to a depth of 30–40 m. The Vs were used in the SHAKE2000 software in combination with seismic input motion of the recent Chamoli earthquake to obtain site response and amplification spectra. The estimated Vs are higher in the northern part of the study area (i.e., 200–700 m/s from the surface to a depth of about 30 m) as compared to the south and southwestern parts of the city (i.e., 180–400 m/s for the same depth range). The response spectra suggest that spectral acceleration values for two-story structures are three to eight times higher than peak ground acceleration at bedrock. The analysis also suggests peak amplification at 3–4, 2–2.5, and 1–1.5 Hz in the northern, central, and south-southwestern parts of the city, respectively. The spatial distributions of Vs and spectral accelerations provide valuable information for the seismic microzonation in different parts of the urban area of Dehradun.  相似文献   

11.
Vrancea major intermediate-depth earthquakes produced extreme damage in Bucharest city, located at about 165 km epicenter distance. Our purpose is to investigate the influence of local geological conditions upon the seismic motion in Bucharest in case of large (M>7) Vrancea earthquakes. Two input data sets are used: (a) geological, geotechnical and geophysical information, including in situ measurements, and (b) acceleration recordings of Vrancea earthquakes. Local response evaluation based on first dataset is confirmed by the spectral analysis of the earthquake records. Two main features are outlined: non-stationarity of ground motion dynamic amplification from one event to other and inadequacy of limiting the investigation depth to uppermost 30 m to evaluate ground dynamic characteristics. Consequently (1) we cannot extrapolate the ground motion response determined for moderate and small earthquakes to anticipate the effects of the large Vrancea shocks and (2) the local response is controlled by the entire package of Quaternary deposits which are significantly deeper than 30 m depth beneath Bucharest Area.  相似文献   

12.
简文彬 《地震学刊》2009,(6):709-714
在对5·12汶川地震灾区大量次生地质灾害实地考察调查的基础上,总结了次生地质灾害发育分布的特点,探讨了灾后重建的岩土工程问题。此次地震引发的次生地质灾害主要有崩塌、滑坡、泥石流、堰塞湖等;次生地质灾害的发育分布与地震烈度相一致,与断裂带密切相关,并形成崩塌、滑坡→泥石流或崩塌、滑坡→堰塞湖→泥石流灾害链。灾后重建必须注重建设场地工程地质条件的研究、科学规划选址,合理避让地质灾害高风险地段;对重点高陡边坡灾害须进行必要的岩土工程加固,山区建筑地基基础设计应符合相关要求,要尽量减少对地质环境的扰动,预防工程诱发灾害。研究结果可为灾区岩土工程减灾防灾以及灾后重建提供参考。  相似文献   

13.
A GIS-oriented procedure that may partially illuminate the consequences of a possible earthquake is presented in two main steps (seismic microzonation and vulnerability steps) along with its application in Tabriz (a city in NW Iran). First, the detailed geological, geodetical, geotechnical and geophysical parameters of the region are combined using an Analytic Hierarchy Process (AHP) and a deterministic near-field earthquake of magnitude 7 in the North Tabriz Fault is simulated. This simulation provides differing intensities of ground shaking in the different districts of Tabriz. Second, the vulnerability of buildings, human losses and basic resources for survivors is estimated in district two of the city based on damage functions and relational analyses. The results demonstrate that 69.5% of existing buildings are completely destroyed, and the rate of fatalities is approximately 33% after a nighttime scenario. Finally, the same procedure was applied to an actual earthquake (first event on the 11th of August, 2012 of the Ahar twin earthquakes) to validate the presented model based on two aspects: (1) building damages and (2) seismic intensity.  相似文献   

14.
To realistically assess the seismic risk relating to built infrastructures in Hong Kong and in the neighbouring coastal cities of southern Guangdong province, it is necessary to predict ground shaking induced by different earthquake scenarios with good accuracy. A companion paper has described the modelling of the spatial and temporal distribution of the diffused seismic activities in the region, based on the newly-developed ‘Expanding Circular Disc’ (ECD) method. Representative Magnitude–Distance (M–R) combinations for both near-field and far-field earthquakes (in relation to Hong Kong) have been derived using the ECD method. The present paper describes the modelling of the response spectrum on rock sites associated with the predicted M–R combinations, using the Component Attenuation Model (CAM) that was also developed recently by the authors, based on stochastic simulations of the seismological model. The significant effects of soil resonance on the response spectrum are described in a separate publication.The accuracy of CAM in modelling ground motion properties on rock sites has been tested here by comparisons with (i) strong motions recorded in Taiwan and South China from the 1999 ‘Chi-Chi’ earthquake in Taiwan (M=7.6), (ii) motions recorded in South China from another earthquake occurring in the southern Taiwan Strait in the same year (M=5.1), and (iii) historical seismic intensity data obtained within South China. The overall capability of CAM in modelling both near-field and far-field attenuation has been shown to be unmatched by existing empirical models. Results of the comparison studies confirm the accuracy of CAM, particularly within an epicentral distance of 300–400 km.This study shows that the developed serviceability response spectra (i.e. at short return periods) are controlled mainly by the earthquake recurrence behaviour of major distant seismic sources. In contrast, the ultimate response spectra (i.e. at long return periods) relate to events with magnitudes close to the maximum credible earthquake (MCE) limit, the effect of which may also be represented by the Characteristic Response Spectrum (CRS). Both types of earthquake scenario can be significantly affected by the regional crustal properties. The proposed response spectrum envelopes have been compared with previously developed recommendations, and a critical review has been conducted. The intrinsic advantages of the ECD–CAM modelling approach have been highlighted, emphasising its directness and transparency when compared with the more complex process required to implement traditional Probabilistic Seismic Hazard Assessment (PSHA).  相似文献   

15.
This paper presents an input and system identification technique for a soil–structure interaction system using earthquake response data. Identification is carried out on the Hualien large‐scale seismic test structure, which was built in Taiwan for international joint research. The identified quantities are the input ground acceleration as well as the shear wave velocities of the near‐field soil regions and Young's moduli of the shell sections of the structure. The earthquake response analysis on the soil–structure interaction system is carried out using the finite element method incorporating the infinite element formulation for the unbounded layered soil medium and the substructured wave input technique. The criterion function for the parameter estimation is constructed using the frequency response amplitude ratios of the earthquake responses measured at several points of the structure, so that the information on the input motion may be excluded. The constrained steepest descent method is employed to obtain the revised parameters. The simulated earthquake responses using the identified parameters and input ground motion show excellent agreement with the measured responses. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

16.
Angra do Heroismo, the main town of Terceira Island in the Azores Archipelago, was hit in 1980 by a 7.2 magnitude earthquake that caused great destruction in the central part of the town. Taking into consideration the high seismic hazard of the region and the cultural and social importance of Angra do Heroísmo, the elaboration of damage scenarios is of particular importance to implement measures for preserve and protect the town against future earthquakes. The first step is to perform microzonation studies in order to characterize the soil seismic behaviour. Taking into consideration the available geologic, geotechnical and geophysical information, a detailed soil characterization was performed based on the results from numerical modelling and the analysis of microtremor experimental measurements. Nine different soil profiles were identified, characterized and classified. Discussion on the detailed soil classification and the Eurocode 8 soil classification is presented. This study shows that even with an available code, microzonation studies must be developed in order to identify differences on soil behaviour inside the interested area. It shows also that the use of experimental measurements presents a great help on soil characterization. The obtained detailed classification will be used on the estimation of damage scenarios for Angra do Heroísmo.  相似文献   

17.
Shear wave velocity modelling in crustal rock for seismic hazard analysis   总被引:2,自引:1,他引:2  
P-wave velocity data along with the thickness of sedimentary and crystalline layers within bedrock were collected from all global regions and presented in the Global Crustal Model CRUST2.0, published in 2001. This well-organised database provides invaluable potential contributions towards future seismic hazard modelling, particularly for stable continental regions (SCRs), where there is a scarcity of representative strong motion records for conventional modelling purposes. The P-wave velocity information presented in CRUST2.0 has been converted herein to S-wave velocity information. The latter is especially important for purposes of seismic hazard modelling. The value of the CRUST2.0 model has therefore been greatly enhanced by the important findings presented and further developed in this paper. By making the best use of available information on crustal conditions, the amplification behaviour of seismic waves affecting a region, an area or a site for any given earthquake scenario may be predicted. The developed methodology, which is intended for worldwide applications, has been illustrated by case studies in which model S-wave velocity profiles were developed for different geological regions within North America. The model profiles were found to be in excellent agreement with field measurements reported for each respective region.  相似文献   

18.
何新社  徐钦 《高原地震》2014,26(3):57-61
兰州是中国最典型的唯一河谷型特大城市,市内多次发生或遭受到强地震波及影响。特殊的地质构造和自然地理环境,使兰州市的震害尤其是地震诱发的地质灾害,表现出多样性、多发性、复杂性和严重性;由于城市的政治、经济结构和地位的影响,使灾害的危害表现在整体性和全局性上,因而兰州市在地震灾害面前又显示出脆弱和易损的一面。建立健全全市防震减灾的机制,预防各种次生灾害,尤其是包括滑坡在内的地质灾害,确保生命线工程的安全和正常运转,提高各级政府的管理水平,强化公众的综合应急应变能力,是做好兰州市防震减灾的重要工作。  相似文献   

19.
Seismic Ground Motion in Napoli for the 1980 Irpinia Earthquake   总被引:3,自引:0,他引:3  
— The seismic ground motion in the urban area of Napoli has been computed for the 1980 earthquake (Ms = 6.9) with a hybrid technique based on the mode summation and the finite difference methods. The detailed geological setting of each quarter has been reconstructed from several stratigraphies and six geological zones have been recognized. Shear-wave velocity profiles have been assigned, based on hole tests and inversion of Rayleigh group velocities artificially generated. Realistic SH and P-SV wave seismograms have been computed along the representative cross sections of each zone, by assuming selected velocity profiles. Spectral amplifications of 2–4 have been computed at frequencies roughly corresponding to the eigenfrequencies of the most damaged buildings. Moreover, following the intensity-PGA correlations found for the Italian territory, the predicted peak ground accelerations, 0.04–0.10 g correspond to the intensity range VII-VIII on the MCS scale, in agreement with the observed data.  相似文献   

20.
To evaluate techniques for assessing earthquake-triggeredlandslide hazard in the Southern Apennines (Italy), a GIS-based analysis was used to modelseismically induced slope deformations. Geological, geotechnical, geomorphological and seismologicaldata were integrated into a standard earthquake slope stability model. The model assessed thelandslide potential that existed during the 1980 Irpinian earthquake in the Upper Sele river Valley.The standard Newmark displacement analysis, widely used for predicting the location of shallowunstable slopes, does not take into account errors and/or uncertainties in the input parameters.Therefore, a probabilistic Newmark displacement analysis technique has been used. Probabilistictechniques allow, e.g., an estimation of the probability that a slope will exceed a certain criticalvalue of Newmark displacement. In our probabilistic method, a Monte-Carlo based simulation modelis used in conjunction with a GIS. The random variability of geotechnical data is modelled by probabilitydensity functions (pdfs), while for the seismic input three different regression laws wereconsidered. Input probability distributions are sampled and the resulting values input into empiricalrelations for estimating Newmark displacement. The outcome is a map in which to each siteis related a spatial probability distribution for the expected displacement in response to seismic loading.Results of the experiments show a high grade of uncertainty in the application of the Newmarkanalysis both for the deterministic and probabilistic approach in a complex geological setting suchas the high Sele valley, quite common in the Southern Apennines. They show a strong dependence onthe reliability of the spatial data used in input, so that, when the model is used at basin scale,results are strongly influenced by local environmental condition (e.g., topography, lithology, groundwatercondition) and decrease the model performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号