首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
江苏盘石山二辉橄榄岩包体的Nd、Sr、Pb同位素特征   总被引:7,自引:4,他引:7  
陈道公  王银喜 《地球化学》1994,23(3):245-253
对盘石一带的6个二辉橄榄岩包体,3个单斜辉石的Nd、Sr同位素,4个全岩、7个单斜辉石和1个斜方辉石的铅同位素进行了测定。结果表明,它们在亏损的岩石圈中经历了长时间的演化,其Rb-Sr、Sm-Nd、Pb-Pb同位素体系的相关性可能反映了不同时期的地幔过程。位于陆下岩石圈地幔中上部位的包体比下部岩石圈地幔具有相对亏损和不均一的同位素特征。  相似文献   

2.
汉诺坝玄武岩中地幔岩捕掳体REE和Sr,Nd同位素地球化学   总被引:20,自引:3,他引:20  
刘丛强  解广轰 《岩石学报》1996,12(3):382-389
本文报道汉诺坝玄武岩中地幔岩捕掳体的REE丰度和Sr、Nd同位素组成。不同岩石类型的REE配分模式和同位素组成反映地幔部分熔融程度和交代作用过程。二辉橄榄岩亏损轻稀土,是原始地幔经不同程度部分熔融的残留体。方辉橄榄岩具U型REE配分模式,是强烈亏损的地幔岩被熔体非化学平衡交代的结果。二辉岩脉状体富轻、中稀土,它同与脉状体接触的二辉橄榄岩可达化学平衡或近于化学平衡,而二辉岩脉状体的形成与玄武岩岩浆无成因关系。据对二辉岩脉状体和不含脉状体橄榄岩的Sm-Nd同位素定年,这种脉状体形成于300Ma左右。  相似文献   

3.
程哲  孙晶 《世界地质》2023,(4):621-635
利用单矿物溶液法分析了Obnazhennaya金伯利岩中橄榄岩包体单矿物的Sr-Nd-Hf同位素组成,并且与Udachnaya金伯利岩中橄榄岩包体单矿物的Sr-Nd-Hf同位素组成进行了对比。结果显示,Obnazhennaya金伯利岩中橄榄岩包体单斜辉石具有亏损的Sr同位素组成和富集的Nd、Hf同位素组成。橄榄岩包体石榴子石的Sr-Nd-Hf同位素组成表现出原始的特征,没有受到交代作用的影响。通过对比Udachnaya和Obnazhennaya金伯利岩中地幔包体的特征和单斜辉石的二元混合模拟发现,Udachnaya金伯利岩中的地幔包体的Sr-Nd-Hf同位素组成更偏向于金伯利岩的特征,而与之相反,Obnazhennaya金伯利岩中的地幔包体的Sr-Nd-Hf同位素组成则位于金伯利岩和地幔柱溢流玄武岩之间,且更加偏向于溢流玄武岩的同位素特征。因此,地幔柱活动对西伯利亚克拉通岩石圈产生了影响,改变了其岩石圈地幔的同位素组成。  相似文献   

4.
广东麒麟绿钙闪石巨晶的地球化学特征   总被引:1,自引:0,他引:1  
夏群科  张宗清 《地质论评》1997,43(6):638-645
本文对罕见的幔源绿钙闪石巨晶进行了综合的地球化学分析,主要元素,稀土微量元素和Sr,Nd同位素的特征表明;绿钙闪石巨晶是碱性玄武岩浆在地幔条件下的结晶产物;相对于寄主玄武岩,绿钙闪石巨晶均属捕虏晶,它们与共存的橄榄岩包体无成因联系,其形成可能与共存的黑色包体有关。  相似文献   

5.
汉诺坝玄武岩中辉石岩类包体Nd、Sr、Pb同位素及其成因信息   总被引:13,自引:1,他引:13  
对汉诺坝地区的12个辉石岩和1个麻粒岩包体进行了Nd、Sr、Pb同位素测定,发现辉石岩组成有很大变化,143Nd/144Nd比值为0.51160—0.51314,87Sr/86Sr比值为0.7029—0.7086,206Pb/204Pb比值为15.942—18.683,207Pb/204Pb比值为15.264—15.569,208Pb/204Pb比值为36.213—38.744,显示了其复杂成因q推测具有高Sr、低Nd和低Pb同位素组成的辉石岩是地幔早期富集的产物,与麻粒岩、辉长岩包体有类似成因;具有弱至中等亏损的Nd、Sr同位素和高放射成因Pb的辉石岩是亏损地幔近期富集或交代的产物  相似文献   

6.
周琴  吴福元  储著银  葛文春 《岩石学报》2010,26(4):1241-1264
吉林省伊通新生代火山群中大孤山所伴生的东小山火山含有丰富的地幔橄榄岩包体,详细的岩石学和矿物学工作显示,这些包体的主要岩石类型为尖晶石二辉橄榄岩,含有少量的方辉橄榄岩和异剥橄榄岩。包体的结构类型多样,包括粒状变晶结构、碎斑状结构、糜棱结构和筛状变晶结构。主量元素及矿物化学资料表明,这些地幔橄榄岩包体大都比较饱满,说明其所经历的部分熔融程度较低。微量元素显示,包体在形成以后经受过不同程度地幔交代作用的影响。矿物平衡温度计算结果表明包体的平衡温度为989~1142℃,来源深度约为40~70km。Sr-Nd-Hf同位素资料反映二辉橄榄岩包体具有亏损地幔的特征。Re-Os同位素资料显示上述岩石圈地幔的主体形成于显生宙期间,少量具有中元古代Re亏损年龄的样品所代表的古老地幔与本区上覆地壳成因无关,可能是软流圈中固有的较古老的大陆岩石圈地幔。  相似文献   

7.
吉林省蛟河市境内大石河新生代玄武岩中含有丰富的地幔橄榄岩包体,详细的岩石学与矿物学研究显示,这些包体的主要岩石类型为尖晶石二辉橄榄岩-方辉橄榄岩,未发现石榴石橄榄岩。岩相学及地球化学资料显示它们都是经历过熔体抽取而形成的岩石圈地幔残留。矿物平衡温度计算发现,本区的这些地幔橄榄岩包体来自地下40~60km 深度,且下部以二辉橄榄岩为主,而上部以贫单斜辉石的二辉橄榄岩和方辉橄榄岩为主,显示明显的岩石圈地幔分层现象。Sr-Nd-Hf 同位素资料反映这些地幔包体均表现为亏损性质,而 Re-Os 同位素资料确定上述岩石圈地幔形成于中元古代,明显老于上覆地壳的新元古宙时代,反映壳幔年龄上的解耦。因此我们推测,该区曾经历过华北克拉通类似的早期岩石圈地幔的整体丢失事件,然后形成于其它地区的中元古宙岩石圈地幔在本区增生。  相似文献   

8.
新疆西克尔碧玄岩中的地幔橄榄岩包体   总被引:5,自引:4,他引:1  
在新疆西克尔地区发现了尖晶石相橄榄岩包体。这些包体的寄主岩石为碧玄岩,其K-Ar同位素年龄为19.76~21.90 Ma。岩相学和矿物化学研究表明西克尔橄榄岩包体具有典型的岩石圈地幔橄榄岩包体的特征。利用矿物温压计对包体的平衡温压进行估算,发现西克尔地幔橄榄岩包体的平衡温压为736~1017℃和1.7~2.2GPa,与西南天山托云地区晚白垩纪火山岩中尖晶石二辉橄榄岩包体(平衡温压为818~1113℃和1.5~2.0GPa)相比,具有温度明显偏低,而压力明显偏高的特点。这说明西克尔地区的地幔橄榄岩包体没有受到地幔热异常事件的影响,因此可以代表塔里木板块岩石圈地幔的原始性质。这对于研究塔里木盆地岩石圈地幔的热结构和地球化学特征以及塔里木盆地内大量幔源岩浆的成因具有重要意义。  相似文献   

9.
福建明溪石榴石二辉橄榄岩包体的REE 及Pb Sr Nd同位素研究   总被引:1,自引:0,他引:1  
黄婉康  Basu  AR 《地球化学》1992,(2):101-113
本文研究了明溪地区尖晶石二辉橄榄岩、尖晶石-石榴石二辉橄榄岩和金云母-石榴石二辉橄榄岩包体的REE及Pb,Sr,Nd同位素。它们的Pb,Nd同位素成分表明该区上地幔在67—82km深度上是,MORB型亏损地幔。标本中放射性Sr同位素成分高于“地幔系列”可能解释为岛弧区俯冲大洋板块物质的加入。包体的sm-Nd、Rb-Sr年龄可能与十亿年前地幔亏损事件、早古生代H_2O,K_2O等地幔交代作用以及新生代的火山作用过程有关。  相似文献   

10.
位于安徽省境内的女山新生代碱性玄武岩中含有大量而且类型丰富的地幔橄榄岩包体,主要类型有尖晶石相、石榴石相、尖晶石-石榴子石过渡相二辉橄榄岩以及少量的方辉橄榄岩,其中部分尖晶石二辉橄榄岩样品中出现富含挥发分的角闪石、金云母和磷灰石。本文选择该区的尖晶石二辉橄榄岩和方辉橄榄岩包体进行了较为详细的岩石学、矿物学、地球化学研究工作。结果显示,除2个方辉橄榄岩表现难熔特征外,其它25件尖晶石相二辉橄榄岩均具有饱满的主量元素组成。二辉橄榄岩样品的Sr-Nd-Hf同位素均表现为亏损地幔的性质,不同于古老克拉通型难熔、富集的岩石圈地幔。富含挥发份交代矿物的出现以及轻稀土元素不同程度的富集,表明女山岩石圈地幔经历了较为强烈的交代作用,然而Re-Os同位素及PGE分析结果表明交代作用并没有显著改变Os同位素组成。二辉橄榄岩样品均具有较高的Os同位素组成,结合其饱满的主量元素组成,亏损的同位素特征,表明女山地区岩石圈地幔整体为新生岩石圈地幔。但1个方辉橄榄岩样品给出了较低的Os同位素比值0.1184,其Re亏损年龄为1.5Ga,它可能来自于软流圈中残留的古老难熔地幔。  相似文献   

11.
Rare earth element (REE) contents, and Sr and Nd isotopic compositions were measured for three suites of mantle xenoliths from the Kuandian, Hannuoba and Huinan volcanoes in the north of the Sino-Korean Platform. From the correlations of Yb contents with Al/Si and Ca/Si ratios, the peridotites are considered to be the residues of partial melting of the primitive mantle. The chondrite-normalized REE compositions are diverse, varying from strongly LREE-depleted to LREE-enriched, with various types of REE patterns. Metasomatic alteration by small-volume silicate melts, of mantle peridotites previously variably depleted due to fractional melting in the spinel peridotite field, can account for the diversity of REE patterns. The Sr/ Ba versus La/Ba correlation indicates that the metasomatic agent was enriched in Ba over Sr and La, suggestive of its volatile-rich signature and an origin by fluid-triggered melting in an ancient subduction zone. The Sr and Nd isotopic compositions of these xenoliths, even from  相似文献   

12.
Anhydrous and amphibole-bearing peridotite xenoliths occur in roughly equal quantitites in the Bartoy volcanic field about 100 km south of the southern tip of Lake Baikal in Siberia (Russia). Whole-rock samples and pure mineral separates from nine xenoliths have been analyzed for Sr and Nd isotopes in order to characterize the upper mantle beneath the southern Baikal rift zone. In an Sr-Nd isotope diagram both dry and hydrous xenoliths from Bartoy plot at the junction between the fields of MORB and ocean island basalts. This contrasts with data available on two other localities around Lake Baikal (Tariat and Vitim) where peridotites typically have Sr–Nd isotope compositions indicative of strong long-term depletion in incompatible elements. Our data indicate significant chemical and isotopic heterogeneity in the mantle beneath Bartoy that may be attributed to its position close to an ancient suture zone separating the Siberian Platform from the Mongol-Okhotsk mobile belt and occupied now by the Baikal rift. Two peridotites have clinopyroxenes depleted in light rare earth elements (LREE) with Sr and Nd model ages of about 2 Ga and seem to retain the trace element and isotopic signatures of old depleted lithospheric mantle, while all other xenoliths show different degrees of LREE-enrichment. Amphiboles and clinopyroxenes in the hydrous peridotites are in Sr–Nd isotopic disequilibrium. If this reflects in situ decay of 147Sm and 87Rb rather than heterogeneities produced by recent metasomatic formation of amphiboles then 300–400 Ma have passed since the minerals were last in equilibrium. This age range then indicates an old enrichment episode or repeated events during the Paleozoic in the lithospheric mantle initially depleted maybe 2 Ga ago. The Bartoy hydrous and enriched dry peridotites, therefore, are unlikely to represent fragments of a young asthenospheric bulge which, according to seismic reflection studies, reached the Moho at the axis of the Baikal rift zone a few Ma ago. By contrast, hydrous veins in peridotites may be associated with rift formation processes.  相似文献   

13.
皖南浅变质岩和沉积岩的钕同位素特点及其大地构造意义   总被引:2,自引:1,他引:2  
邢凤鸣  陈江峰 《现代地质》1991,5(3):290-299
根据Nd同位素模式年龄通常保留源区大陆地块的平均年龄的原理,作者研究了皖南上溪群千枚岩和震旦系到二叠系沉积岩的Nd同位素组成和模式年龄。发现千枚岩和沉积岩具有不同的Nd同位素组成和模式年龄,它们明显地分成二组。千枚岩的~(147)Sm/~(144)Nd=0.1220~0.1290,T_(DM)~(Nd)=1.63~1.69Ga;沉积岩的~(147)Sm/~144Nd=0.1100~0.1182,T_(DM)~(Nd)=1.92~2.14Ga。这表明,它们来自不同的物源区:上溪群可能来自附近的古岛弧双桥山群;沉积岩可能来自大别古陆和华北地台。  相似文献   

14.
A total of 17 alkali basalts (alkali olivine basalt, limburgite, olivine nephelinite) and quartz tholeiites, and of 10 peridotite xenoliths (or their clinopyroxenes) were analyzed for Nd and Sr isotopes. 143Nd/144Nd ratios and 87Sr/86Sr ratios of all basalts and of the majority of ultramafic xenoliths plot below the mantle array with a large variation in Nd isotopes and a smaller variation in Sr isotopes. The tholeiites were less radiogenic in Nd than the alkali basalts. Volcanics from the Eifel and Massif Central regions contain Nd and Sr, which is more radiogenic than that of the basalts from the Hessian Depression. Nd and Sr isotopic compositions of all rocks from the latter area, with the exception of one tholeiite and one peridotite plot in the same field of isotope ratios as the Ronda ultramafic tectonite (SW Spain), which ranges in composition from garnet to plagioclase peridotite. The alkali basaltic rocks are products of smaller degrees of partial melting of depleted peridotite, which has undergone a larger metasomatic alteration compared with the source rock of tholeiitic magmas. For the peridotite xenoliths such metasomatic alteration is indicated by the correlation of their K contents and isotopic compositions. We assume that the upper mantle locally can acquire isotopic signatures low in radiogenic Nd and Sr from the introduction of delaminated crust. Such granulites low in radiogenic Nd and Sr are products of early REE fractionation and granite (Rb) separation.  相似文献   

15.
Zircon from lower crustal xenoliths erupted in the Navajo volcanic field was analyzed for U–Pb and Lu–Hf isotopic compositions to characterize the lower crust beneath the Colorado Plateau and to determine whether it was affected by ∼1.4 Ga granitic magmatism and metamorphism that profoundly affected the exposed middle crust of southwestern Laurentia. Igneous zircon in felsic xenoliths crystallized at 1.73 and 1.65 Ga, and igneous zircon in mafic xenoliths crystallized at 1.43 Ga. Most igneous zircon has unradiogenic initial Hf isotopic compositions (ɛHf=+4.1–+7.8) and 1.7–1.6 Ga depleted mantle model ages, consistent with 1.7–1.6 Ga felsic protoliths being derived from “juvenile” Proterozoic crust and 1.4 Ga mafic protoliths having interacted with older crust. Metamorphic zircon grew in four pulses between 1.42 and 1.36 Ga, at least one of which was at granulite facies. Significant variability within and between xenoliths in metamorphic zircon initial Hf isotopic compositions (ɛHf=−0.7 to +13.6) indicates growth from different aged sources with diverse time-integrated Lu/Hf ratios. These results show a strong link between 1.4 Ga mafic magmatism and granulite facies metamorphism in the lower crust and granitic magmatism and metamorphism in the exposed middle crust.  相似文献   

16.
High-Mg# peridotite xenoliths in the Cenozoic Hebi basalts from the North China Craton have refractory mineral compositions (Fo > 91.5) and highly heterogeneous Sr–Nd isotopic compositions (87Sr/86Sr = 0.7031–0.7048, 143Nd/144Nd = 0.5130–0.5118) ranging from MORB-like to EM1-type mantle, which are similar to those of peridotites from Archean cratons. Thus, the high-Mg# peridotites may represent relics of the ancient lithospheric mantle. Published Re–Os isotopic data for Cenozoic basalt-borne xenoliths show TRD ages of 3.0–1.5 Ga for the peridotites from Hebi (the center of the craton), 2.2–0 Ga for those from Hannuoba and Jining (north margin of the craton), and 2.6–0 Ga for those from Fanshi and Yangyuan (midway between the center and north margin of the craton). In situ Re–Os data of sulfides in Hannuoba peridotites suggest that whole-rock Re–Os model ages represent mixtures of multiple generations of sulfides with varying Os isotopic compositions. These observations indicate that initial lithospheric mantle beneath the Central Zone of the North China Craton formed during the Archean and was refertilized by multiple melt additions after its formation. The refertilization became more intensive from the interior to the margin of the craton, leading to the high heterogeneity of the lithospheric mantle: more ancient and refractory peridotites with highly variable Sr–Nd isotopic compositions in the interior, and more young and fertile peridotites with depleted Sr–Nd isotopic composition in the margin. Our data, coupled with published petrological and geochemical data of peridotites from the Central Zone of the North China Craton, suggest that the lithospheric mantle beneath this region is highly heterogeneous, likely produced by refertilization of Archean mantle via multiple additions of melts/fluids, which were closely related to the Paleoproterozoic collision between the Eastern and the Western Blocks and subsequent circum-craton subduction events.  相似文献   

17.
Nine pieces of gabbroic xenoliths from Hannuoba were examined for their major and trace elements and Nd,Sr and Pb isotopes.The results show that the gab-broic xenoliths are of more mafic basaltic composition .Their abundances show narrow variations in major elements.The trace element contents are highly variable in contrast with those of host basalts and lherzolite xenoliths.The gabbroic xenoliths are rich in Nd(0.51159-0.51249),Sr(0.70491-0.70768) and low in radiogenic Pb(16.283-17.046, 15.191-15.381 and 36.999-37.476),significantly different from basalts and lherzolites in isotopic space.The calculated Nd and Pb model ages are about 3.0-3.5 Ga.The rocks have relatively low equilibrium T(-850℃) and P(0.8-0.9 Gpa).They could be inter-preted to be the product of upper mantle melting at the boundary between the lower crust and the upper mantle.Their chemical and isotopic variations can be ascribed to different degrees of melting,segregation and long-term evolution.  相似文献   

18.
The covariant behavior of Lu-Hf and Sm-Nd isotopes during most magmatic processes has long been recognized, but the details of this behavior in the depleted mantle reservoir have not been adequately examined. We report new whole-rock Hf and Nd isotope data for 1) juvenile, mantle-derived rocks, mid-Archean to Mesozoic in age, and 2) early Archean gneisses from West Greenland. Hf and Nd isotopic compositions of the juvenile rocks are well correlated, with the best fit corresponding to the equation εHf = 1.40 εNd + 2.1, and is similar to the collective Hf-Nd correlation for terrestrial samples of εHf = 1.36 εNd + 3.0. The early Archean Greenland gneisses, in contrast, have an extreme range in εNd values (4.4 to +4.2; Bennett et al., 1993) that is not mirrored by the Hf isotopic system. The εHf values for these rocks are consistently positive and have much less variation (0 to +3.4) than their εNd counterparts.The information from the Hf isotopic compositions of the West Greenland gneisses portrays an early Archean mantle that is relatively isotopically homogeneous at 3.8 to 3.6 Ga and moderately depleted in incompatible elements. There is no evidence that any of these gneisses have been derived from an enriched reservoir. The Hf isotopic data are in stark contrast to the Nd isotopic record and strongly imply that the picture of extreme initial isotopic heterogeneity indicated by Nd isotopes is not a real feature of the West Greenland gneisses but is rather an artifact produced by disturbances in the Sm-Nd isotope system of these rocks.Although Hf and Nd isotopic data do not uniquely constrain either the nature of the earliest crust or the timing of crustal growth, the most probable candidate for the enriched reservoir complementary to the depleted mantle in the pre-4.0 Ga Earth is a mafic, oceanic-type crust. In order to explain the predominantly positive εHf and εNd values for the early Archean rocks, this crust must have had a short residence time at the surface of the Earth before returning to the mantle where it was isolated from mixing with the depleted mantle for several hundred million years. The following period from 3.5 to 2.7 Ga may mark a transition during which this early formed mafic crust was mixed progressively back into the depleted mantle reservoir. While a present-day volume of continental crust at 4.0 Ga cannot be excluded on isotopic grounds, we find such a scenario unlikely based on the lack of direct isotopic and physical evidence for its existence. An important aspect of crustal growth and evolution, therefore, may be the transformation of the enriched reservoir from being predominantly mafic in the early Earth to becoming progressively more sialic through time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号