首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cygnus A     
Cygnus A was the first hyper-active galaxy discovered, and it remains by far the closest of the ultra-luminous radio galaxies. As such, Cygnus A has played a fundamental role in the study of virtually all aspects of extreme activity in galaxies. We present a review of jet theory for powering the double-lobed radio emitting structures in powerful radio galaxies, followed by a review of observations of Cygnus A in the radio, optical, and X-ray relevant to testing various aspects of jet theory. Issues addressed include: jet structure from pc- to kpc-scales, jet stability, confinement, composition, and velocity, the double shock structure for the jet terminus and the origin of multiple radio hotspots, the nature of the filamentary structure in the radio lobes, and the hydrodynamic evolution of the radio lobes within a dense cluster atmosphere, including an analysis of pressure balance between the various gaseous components. Also discussed are relativistic particle acceleration and loss mechanisms in Cygnus A, as well as magnetic field strengths and geometries both within the radio source, and in the intracluster medium. We subsequently review the classification, cluster membership, and the emission components of the Cygnus A galaxy. The origin of the activity is discussed. Concentrating on the nuclear regions of the galaxy, we review the evidence for an obscured QSO, also given the constraints on the orientation of the radio source axis with respect to the sky plane. We present an overview of models of central engines in AGN and observations of Cygnus A which may be relevant to testing such models. We conclude with a brief section concerning the question of whether Cygnus A is representative of powerful high redshift radio galaxies. Received October 10, 1995  相似文献   

2.
Powerful radio galaxies often display enhanced optical/ultraviolet emission regions, elongated and aligned with the radio jet axis. The aim of this series of papers is to investigate separately the effects of radio power and redshift on the alignment effect, together with other radio galaxy properties. In this second paper, we present a deeper analysis of the morphological properties of these systems, including both the host galaxies and their surrounding aligned emission.
The host galaxies of our 6C subsample are well described as de Vaucouleurs ellipticals, with typical scale sizes of  ∼10 kpc  . This is comparable to the host galaxies of low- z radio sources of similar powers, and also the more powerful 3CR sources at the same redshift. The contribution of nuclear point source emission is also comparable, regardless of radio power.
The 6C alignment effect is remarkably similar to that seen around more powerful 3CR sources at the same redshift in terms of extent and degree of alignment with the radio source axis, although it is generally less luminous. The bright, knotty features observed in the case of the z ∼ 1 3CR sources are far less frequent in our 6C subsample; neither do we observe such strong evidence for evolution in the strength of the alignment effect with radio source size/age. However, we do find a very strong link between the most extreme alignment effects and emission-line region properties indicative of shocks, regardless of source size/age or power. In general, the 6C alignment effect is still considerably stronger than that seen around lower redshift galaxies of similar radio powers. Cosmic epoch is clearly just as important a factor as radio power: although aligned emission is observed on smaller scales at lower redshifts, the processes which produce the most extreme features simply no longer occur, suggesting considerable evolution in the properties of the extended haloes surrounding the radio source.  相似文献   

3.
The redshift dependence of spectral index in powerful radio galaxies   总被引:1,自引:0,他引:1  
We present and discuss in this paper the rest frame radio spectra (1–25 GHz) of a sample of fourteen radio galaxies atz >2 from the newly defined MRC/1Jy complete sample of 558 radio sources. These galaxies are among the most powerful radio sources known and range in luminosity from 1028-1028·8 watt Hz-1 at 1 GHz. We find that the median rest frame spectral index of this sample of galaxies atz >2 is significantly steeper than that of a matched luminosity sample of 3CRR galaxies which are at a much lower redshift (0.85 <z < 1.7). This indicates that spectral index correlates primarily with redshift, at least in the luminosity range considered here. The difference between the distributions of rest frame spectral curvatures for the two samples does not appear to be statistically significant. We suggest a new explanation for the steeper spectra of radio galaxies at high redshift involving steeper electron energy spectra at injection. Electron energy spectra are expected to steepen in a first-order Fermi acceleration process, at both non-relativistic and relativistic shock fronts, as the upstream fluid velocity decreases. This may well be the case at high redshifts: the hotter and denser circum-galactic medium at high redshifts could result in slower speeds for the hotspot and the jet material behind it. The smaller sizes of radio sources at higher redshifts provide support to this scenario. Since deceased.  相似文献   

4.
We estimate the intrinsic luminosities and synchrotron peak frequencies using the derived Doppler factor for a sample of 170 BL Lac objects, of which the synchrotron peak frequency is derived by fitting the SED constructed with the collected multi-band data from the literature. We find that the debeamed radio and optical core luminosities follow the same correlation found for FR I radio galaxies, which is in support of the unification of the BL Lac objects and the FR I galaxies based on orientation. For the debeamed luminosity at the synchrotron peak frequency, we find a significant positive correlation between the luminosity and intrinsic synchrotron peak frequency. This implies that the more powerful sources may have the majority of jet emission at higher frequency. At the synchrotron peak frequency, the intrinsic luminosity and black hole mass show strong positive correlation, while mild correlation is found in the case of jet power, indicating that the more powerful sources may have more massive black holes.  相似文献   

5.
We have studied the effects of the interaction between the radio jet and the ambient gas in the powerful radio galaxy PKS2250-41 (z = 0.31). Our results show that the gas has been accelerated, compressed, heated and collisionally ionized by the shock. This study helps us to understand the processes which determine the observed properties of many high redshift radio galaxies. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
Active galactic nuclei (AGNs) form two distinct sequences on the radio-loudness–Eddington ratio plane. The ‘upper’ sequence contains radio selected AGNs, the ‘lower’ sequence is composed mainly of optically selected AGNs. The sequences mark the upper bounds for the radio-loudness of two distinct populations of AGNs, hosted, respectively, by elliptical and disk galaxies. Both sequences show the same dependence of the radio-loudness on the Eddington ratio (an increase with decreasing Eddington ratio), which suggests that another parameter in addition to the accretion rate must play a role in determining the efficiency of jet production in AGNs. We speculate that this additional parameter is the spin of the black hole, assuming that black holes in giant elliptical galaxies have (on average) much larger spins than black holes in disc galaxies. Possible evolutionary scenarios leading to such a spin dichotomy are discussed. The galaxy-morphology related radio dichotomy breaks down at high accretion rates where the dominant fraction of luminous quasars being hosted by giant ellipticals is radio-quiet. This indicates that the production of powerful jets at high accretion rates is in most cases suppressed and, in analogy to X-ray binary systems (XRB) during high and very high states, may be intermittent. Such intermittency can be caused by switches between two different accretion modes, assuming that only during one of them an outflow from the central engine is sufficiently collimated to form a relativistic jet.  相似文献   

7.
《New Astronomy Reviews》2002,46(2-7):365-379
Relationships between jet physics and the evolutionary phases of radio galaxies are discussed. This includes the connection between the properties of relativistic jets and the Fanaroff–Riley classes of radio galaxies and the interaction of jets with the interstellar medium in Gigahertz Peak Spectrum and Compact Steep Spectrum Radio Sources. Jets in Seyfert galaxies are compared with those in classical radio galaxies and recent work suggesting that there are major differences between the two types of jets is summarized. The proposed major differences are principally that Seyfert jets are thermally dominated with subrelativistic speeds whereas Radio Galaxy jets are relativistic electron/positron flows. Hence, the production of jets in Seyferts and radio galaxies are fundamentally different.  相似文献   

8.
We present a sample of 16 radio galaxies, each of which is characterized by a wide, elongated emission gap with fairly sharp and straight edges between the two radio lobes. This particular subset of the “superdisk” radio galaxies is chosen because of a highly asymmetric location of the host elliptical galaxy relative to the gap’s central axis. In addition to posing a considerable challenge to the existing models, such a morphology also means that the two jets traverse highly unequal distances through the superdisk material. One thus has a possibility to directly investigate if the marked asymmetry between the two jets’ interaction with the (much denser) ambient medium, during their propagation, has a significant import for the brightness of the hot spot forming near each jet’s extremity. We also propose a new explanation for the formation of superdisks through the merger of a smaller elliptical galaxy with the massive host, in which the gas attached to the infalling galaxy deposits its angular momentum into the host’s circumgalactic gas, thereby causing it to flatten into a fat pancake, or superdisk. The asymmetric location of the host galaxy can be assisted by the kick imparted to it during the merger. We also suggest a physical link between these radio galaxies and those with X-shaped and Z-symmetric radio lobes, commonly believed to arise from mergers of two galactic nuclei, each harboring a supermassive black hole.  相似文献   

9.
We present a numerical investigation of dead, or relic, radio galaxies and the environmental impact that radio galaxy activity has on the host galaxy or galaxy cluster. We perform axisymmetric hydrodynamical calculations of light, supersonic, back-to-back jets propagating in a β -model galaxy/cluster atmosphere. We then shut down the jet activity and let the resulting structure evolve passively. The dead source undergoes an initial phase of pressure driven expansion until it achieves pressure equilibrium with its surroundings. Thereafter, buoyancy forces drive the evolution and lead to the formation of two oppositely directed plumes that float high into the galaxy/cluster atmosphere. These plumes entrain a significant amount of low entropy material from the galaxy/cluster core and lift it high into the atmosphere. An important result is that a large fraction (at least half) of the energy injected by the jet activity is thermalized in the interstellar medium (ISM)/intracluster medium (ICM) core. The whole ISM/ICM atmosphere inflates in order to regain hydrostatic equilibrium. This inflation is mediated by an approximately spherical disturbance which propagates into the atmosphere at the sound speed. The fact that such a large fraction of the injected energy is thermalized suggests that radio galaxies may have an important role in the overall energy budget of rich ISM/ICM atmospheres. In particular, they may act as a strong and highly time-dependent source of negative feedback for galaxy/cluster cooling flows.  相似文献   

10.
Jet physics is again flourishing as a result of Chandra’s ability to resolve high-energy emission from the radio-emitting structures of active galaxies and separate it from the X-ray-emitting thermal environments of the jets. These enhanced capabilities have coincided with an increasing interest in the link between the growth of super-massive black holes and galaxies, and an appreciation of the likely importance of jets in feedback processes. I review the progress that has been made using Chandra and XMM-Newton observations of jets and the medium in which they propagate, addressing several important questions, including: Are the radio structures in a state of minimum energy? Do powerful large-scale jets have fast spinal speeds? What keeps jets collimated? Where and how does particle acceleration occur? What is jet plasma made of? What does X-ray emission tell us about the dynamics and energetics of radio plasma/gas interactions? Is a jet’s fate determined by the central engine?  相似文献   

11.
We present new XMM–Newton observations of the hot-gas environments of two low-power twin-jet radio galaxies, 3C 66B and 3C 449, showing direct evidence for the interactions between X-ray-emitting gas and radio plasma that are thought to determine the large-scale radio structure of these sources. The temperatures that we measure for the two environments are significantly higher than those predicted by standard luminosity–temperature relations for clusters and groups. We show that luminosity–temperature relations for radio-quiet and radio-loud X-ray groups differ, in the sense that radio-source heating may operate in most groups containing radio galaxies. If the radio lobes are expanding subsonically, we find minimum ages of  3 × 108 yr  for 3C 66B, and  5 × 108 yr  for 3C 449, older than the values obtained from spectral ageing, which would give the radio source sufficient time to heat the groups to the observed temperatures for plausible values of the jet power. The external pressures in the atmospheres of both radio galaxies are an order of magnitude higher than equipartition estimates of their radio-lobe pressures, confirming that the radio lobes either are out of equipartition or require a pressure contribution from non-radiating particles. Constraints from the level of X-ray emission we measure from the radio lobes allow us to conclude that a departure from equipartition must be in the direction of magnetic domination, and that the most plausible candidates for a particle contribution to lobe pressure are relativistic protons, an additional population of low-energy electrons, or entrained and heated thermal material.  相似文献   

12.
We show that the northern middle radio lobe of Cen A, an intriguing and much debated manifestation of radio lobe asymmetry, can be understood in terms of a direct interaction of the northern jet with a gaseous cloud associated with a stellar shell. This same basic mechanism was proposed earlier for the northern inner lobe, but new data allows a more detailed case to be made for the northern middle lobe. Although such an interaction can presently be demonstrated only for Cen A, the nearest radio galaxy, it is likely to be a fairly common occurrence and it provides an alternative to models invoking episodic nuclear activity, possibly accompanied with jet precession, for radio galaxies with multiple lobes and S-shapes. This proposed scenario may also play a key role in the origin of prominent radio galaxy morphological classes, such as the Wide-Angle-Tail sources and the Z-symmetric X-shaped radio sources. The strong tendency for radio lobes to be more distorted in double radio sources with jets that are in closer alignment with the optical major axis of the host elliptical galaxy can likewise be understood in terms of jet–shell interactions. In the frequent cases when jet activity is triggered by mergers of a large elliptical galaxy with a disk galaxy containing cold gas the impact of the gas associated with stellar shells upon the jets is likely to have significant manifestations.  相似文献   

13.
《New Astronomy Reviews》2002,46(2-7):327-334
The tailed radio galaxies that have been called ‘Type I’ are not a uniform set. To study their dynamics, we have used the Ledlow–Owen data set, which provides a new sample of 250 radio galaxies in nearby Abell clusters. These sources divide into two clear categories based on their radio morphology. Type A sources (‘straight’) contain nearly straight jets which are embedded in outer radio lobe. Type B sources (‘tailed’) have a well-collimated jet flow which undergoes a sudden transition, at an inner hot spot, to a less collimated flow which continues on and forms a radio tail. We have not found any separation of these classes in terms of radio power, radio flux size, galaxy power or external gas density. We propose the difference is due to the development, or not, of a disruptive flow instability, such as Kelvin–Helmholtz, and the saturation of the instability when it develops.  相似文献   

14.
Extended inverse-Compton emission from distant, powerful radio galaxies   总被引:1,自引:0,他引:1  
We present Chandra observations of two relatively high redshift FR II radio galaxies, 3C 432 and 3C 191 (   z = 1.785  and 1.956, respectively), both of which show extended X-ray emission along the axis of the radio jet or lobe. This X-ray emission is most likely to be due to inverse-Compton scattering of cosmic microwave background (CMB) photons. Under this assumption, we estimate the minimum energy contained in the particles responsible. This can be extrapolated to determine a rough estimate of the total energy. We also present new, deep radio observations of 3C 294, which confirm some association between radio and X-ray emission along the north-east–south-west radio axis and also that radio emission is not detected over the rest of the extent of the diffuse X-ray emission. This together with the offset between the peaks of the X-ray and radio emissions may indicate that the jet axis in this source is precessing.  相似文献   

15.
We present Chandra and Very Large Array observations of two galaxy clusters, Abell 160 and Abell 2462, whose brightest cluster galaxies (BCGs) host wide angle tailed radio galaxies (WATs). We search for evidence of interactions between the radio emission and the hot, X-ray emitting gas, and we test various jet termination models. We find that both clusters have cool BCGs at the cluster centre, and that the scale of these cores (∼30–40 kpc for both sources) is of approximately the same scale as the length of the radio jets. For both sources, the jet flaring point is coincident with a steepening in the host cluster's temperature gradient, and similar results are found for 3C 465 and Hydra A. However, none of the published models of WAT formation offers a satisfactory explanation as to why this may be the case. Therefore, it is unclear what causes the sudden transition between the jet and the plume. Without accurate modelling, we cannot ascertain whether the steepening of the temperature gradient is the main cause of the transition, or merely a tracer of an underlying process.  相似文献   

16.
Using complete samples of steep-spectrum quasars, we present evidence for a correlation between radio and optical luminosity which is not caused by selection effects, nor caused by an orientation dependence (such as relativistic beaming), nor a by-product of cosmic evolution. We argue that this rules out models of jet formation in which there are no parameters in common with the production of the optical continuum. This is arguably the most direct evidence to date for a close link between accretion on to a black hole and the fuelling of relativistic jets. The correlation also provides a natural explanation for the presence of aligned optical/radio structures in only the most radio-luminous high-redshift galaxies.  相似文献   

17.
In previous papers we have discussed high-resolution observations of a large sample of powerful radio galaxies with z  < 0.3. Jets are detected in up to 80 per cent of the sample, and radio cores in nearly all the objects; in addition, we are able to resolve the hotspots in most sources. In this paper we present measurements of the radio properties of these components.   The prominences of the jets detected do not appear to be a function of radio luminosity, providing the clearest evidence yet that the reported low detection rate of jets in radio galaxies has been an artefact of low-sensitivity observations. We find a positive correlation between the total source length and core prominence in the narrow-line radio galaxies. We have found evidence for a relationship between hotspot size and total source size, but few other significant relationships between hotspot properties and those of the jets or lobes. We compare our measurements with those of Bridle et al., based on observations of a sample of quasars, and argue that the results are consistent with a modification of the unified model in which the broad-line radio galaxies are the low-luminosity counterparts of quasars, although the situation is complicated by contamination with low-excitation radio galaxies which appear to have radio properties different from the high-excitation objects. We discuss the classes of empirical model that can be fitted to the data set.  相似文献   

18.
We present spectropolarimetric observations of seven broad-line radio galaxies. We find significantly polarized broad Hα emission in four objects including two, Arp 102B and 3C 390.3, which have double-peaked line profiles. In these objects the prominent redshifted and blueshifted peaks of the broad Hα line have no clear counterparts in polarized flux. This conflicts with theoretical predictions for a relativistic line-emitting disc with an electron scattering atmosphere, one of the leading models advanced to account for the double-peaked lines. The shapes and widths of the polarized line profiles can be explained if, as expected in unified schemes, the scattering occurs near the poles of an obscuring torus. However, the observed polarization position angles favour geometries in which the scattering plane is perpendicular to the radio jet. A configuration in which Hα photons emitted by a biconical flow are scattered off the inner wall of the torus has this property, and would also produce a single-peaked scattered line profile. With the exception of 3C 227, the sample as a whole conforms to the general trend in powerful radio galaxies for the optical polarization to be aligned with the radio source axis, favouring toroidal rather than polar scattering.  相似文献   

19.
A substantial body of evidence now exists that indicates that there is a connection between the observed activity in galaxies and the apparent involvement of these active galaxies in tidal interactions with other galaxies. To investigate this phenomenon, we are studying the morphologies and environments of various interacting galaxies showing evidence of activity. In particular, we present here some preliminary results from our investigations of the claimed interaction-activity connection for a sample of colliding radio galaxies endowed with a bent radio jet morphology. We find that the timing of the jet activity is consistent with a tidal-triggering hypothesis. Our results therefore lend further support to the idea that the galactic activity observed in some interactive galaxies is in fact collision-induced.  相似文献   

20.
Chandra ACIS observations of PKS 0521−365 find that the X-ray emission of this BL Lac object consists of emission from an unresolved core, a diffuse halo and a 2-arcsec jet feature coincident with the inner radio/optical jet. A comparison with a new ATCA 8.6-GHz map also finds X-ray emission from the bright hotspot south-east of the nucleus. The jet spectrum, from radio to X-ray, is probably synchrotron emission from an electron population with a broken power-law energy distribution, and resembles the spectra seen from the jets of low-power (FR I) radio galaxies. The hotspot X-ray flux is consistent with the expectations of synchrotron self-Compton emission from a plasma close to equipartition, as seen in studies of high-power (FR II) radio galaxies. While the angular structure of the halo is similar to that found by an analysis of the ROSAT High Resolution Imager image, its brightness is seen to be lower with Chandra , and the halo is best interpreted as thermal emission from an atmosphere of similar luminosity to the haloes around FR I radio galaxies. The X-ray properties of PKS 0521−365 are consistent with it being a foreshortened, beamed, radio galaxy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号