首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Numerical simulation of a cut-off low over southern Australia   总被引:2,自引:0,他引:2  
Summary Cut-off low pressure systems over southern Australia are synoptic scale low pressure systems which have a closed circulation at the surface and a deep trough at the 500 hPa level. They usually develop from a deep trough in the westerlies, and often are companied by a Southern Ocean cold front. It is one of the most significant types of weather systems over southern Australia. Moderate or heavy rainfall is often associated with cut-off lows. Few studies so far have been conducted on them. In terms of prediction, the most interesting aspects are the position and intensity of the cut-off low pressure systems, the rainfall amount and distribution and sharp winds, when they are present. In this paper, a numerical model developed at the University of New South Wales, HIRES (HIgh RESolution model), is employed to simulate the cut-off low of August 31 to September 2, 1997. The modeling results are encouraging, showing that HIRES can forecast very well the location and intensity of the cut-off low system and its associated precipitation. The impact of an improved, explicit physics scheme on the simulation is also examined. The explicit scheme further improves the rainfall prediction. Received August 7, 1999 Revised October 23, 1999  相似文献   

2.
South Australian rainfall variability and climate extremes   总被引:1,自引:0,他引:1  
Rainfall extremes over South Australia are connected with broad-scale atmospheric rearrangements associated with strong meridional sea surface temperature (SST) gradients in the eastern Indian Ocean. Thirty-seven years of winter radiosonde data is used to calculate a time series of precipitable water (PW) and convective available potential energy (CAPE) in the atmosphere. Principle component analysis on the parameters of CAPE and PW identify key modes of variability that are spatially and seasonally consistent with tropospheric processes over Australia. The correlation of the leading principle component of winter PW to winter rainfall anomalies reveal the spatial structure of the northwest cloudband and fronts that cross the southern half of the continent during winter. Similarly the second and third principle components, respectively, reveal the structures of the less frequent northern and continental cloudbands with remarkable consistency. 850 hPa-level wind analysis shows that during dry seasons, anomalous offshore flow over the northwest of Australia inhibits advection of moisture into the northwest, while enhanced subsidence from stronger anticyclonic circulation over the southern half of the continent reduces CAPE. This coincides with a southward shift of the subtropical ridge resulting in frontal systems passing well to the south of the continent, thus producing less frequent interaction with moist air advected from the tropics. Wet winters are the reverse, where a weaker meridional pressure gradient to the south of the continent allows rain-bearing fronts to reach lower latitudes. The analysis of SSTs in the Indian Ocean indicate that anomalous warm (cool) waters in the southeast Indian Ocean coincide with a southward (northward) shift in the subtropical ridge during dry (wet) seasons.  相似文献   

3.
Summary The response of the coastal atmosphere in subtropical Western Australia and south-western Africa to easterly flow is considered. Easterly flow, arising from the ridging of a large scale anticyclone near the southern extremity of these land-masses, is a common synoptic pattern, particularly during the summer half of the year. Despite similar synoptic forcing, coastline orientation and latitude, there are significant differences in the response. In Western Australia, the typical response to this easterly flow is a synoptic, non-propagating feature (the West Coast Trough) which may be located on- or offshore. The response in southern Africa is typically a mesoscale, propagating feature (the coastal low) which is trapped against the coastal mountains.It is argued that the steep coastal mountain ranges (about 1 km height) in southern Africa compared to the gentle, low-lying Western Australian topography combined with the mean coastal stratification contribute significantly towards the differences between the coastal low and West Coast Trough. A secondary feature associated with the regional topography is the existence of an oceanic throughflow north of Western Australia from the western equatorial Pacific Ocean with associated flow of the warm Leeuwin Current polewards along the Western Australian coast. It is suggested that this current and the associated lack of coastal upwelling may play a role in the location and intensity of the West Coast Trough.With 6 Figures  相似文献   

4.
A new methodology is proposed that allows patterns of interannual covariability, or teleconnections, between the intraseasonal and slow components of seasonal mean Australian rainfall and the corresponding components in the Southern Hemisphere atmospheric circulation to be estimated. In all seasons, the dominant rainfall–circulation teleconnections in the intraseasonal component are shown to have the characteristic features associated with well-known intraseasonal dynamical and statistical atmospheric modes and their relationship with rainfall. Thus, for example, there are patterns of interannual covariability that reflect rainfall relationships with the intraseasonal Southern Annular Mode, the Madden-Julian Oscillation and wavenumber 3 and 4 intraseasonal modes of variability. The predictive characteristics of the atmospheric circulation–rainfall relationship are shown to reside with the slow components. In all seasons, we find rainfall–circulation teleconnections in the slow components related to the El Niño-Southern Oscillation. Each season also has a coupled mode, with a statistically significant trend in the time series of the atmospheric component that appears to be related to recent observed trends in rainfall. The slow Southern Annular Mode also features in association with southern Australian rainfall, especially during austral winter and spring. There is also evidence of an influence of Indian Ocean sea surface temperature variability on rainfall in southeast Australia during austral winter and spring.  相似文献   

5.
Shifts in the synoptic systems influencing southwest Western Australia   总被引:1,自引:1,他引:1  
A self-organising map is used to classify the winter circulation affecting southwest Western Australia (SWWA) into 20 different synoptic types. The changes in the frequency of these types and their links to observed rainfall are analysed to further understand the significant, prolonged, rainfall drop observed in this region since 1975. The temporal variability of the different synoptic types link well with the observed rainfall changes. The frequency of the troughs associated with wet conditions across SWWA has declined markedly since 1975 while the frequency of the synoptic types with high pressure over the continent, associated with dry conditions, has increased. Combining the frequency of the synoptic systems with the amount of observed rainfall allows a quantitative analysis of the rainfall decline. The decreased frequency of the troughs associated with very wet conditions accounts for half of the decline. Reductions in the amount of rainfall precipitating from each system also contribute to the decline. Large-scale circulation changes, including increases in the mean sea-level pressure and a decrease in the general baroclinicity of the region have been associated with the rainfall decline. These changes are suggested to be linked to increasing levels of greenhouse gases. Due to the strong link between the number of trough types and the rainfall over SWWA, the shifts in the frequency of these synoptic types could be used as a tool to assess simulated rainfall changes, particularly into the future.  相似文献   

6.
This study examines the relationships among the monsoon-like southwest Australian circulation (SWAC), the Southern Annular Mode (SAM), and southwest Western Australia winter rainfall (SWR), based on observed rainfall, reanalysis datasets, and the results of numerical modeling. By decomposing the SWAC into two components using a linear model, i.e. the component related to SAM (RSAM) and the component unrelated to SAM (SWACI*), we find it is the SWACI* that shows a significant influence on SWR. Similarly, it is the component of SAM associated with SWAC that exhibits an impact on SWR, whereas the component unrelated to SAM. A similar result is obtained in terms of the circulation associated with SWAC and the SAM. These facts suggest the SAM plays an indirect role in influencing SWR, and raise the possibility that SWAC acts as a bridge between the SAM and SWR, by which the SAM passes its influences onto SWR. This is due to the fact that the variations of SWAC are closely linked to the thermal contrast between land and sea across the southern Indian Ocean and southwest Australia. By contrast, the SAM does not significantly relate to this thermal structure, particularly for the component unrelated to SWAC. The variations of surface sea temperature over the southern Indian Ocean contribute to the favored rainfall circulation patterns. This finding is supported by the numerical modeling results. The strong coupling between SWAC and SWR may be instrumental for understanding the interactions between SWR and the southern Indian Ocean, and provides another perspective in examining the variations in SWR.  相似文献   

7.
The south-west of Western Australia has experienced significant land-cover change as well as a decline in rainfall. Given that most precipitation in the region results from frontal passages, the impact of land-cover change on the dynamics of cold fronts is explored using the Regional Atmospheric Modeling System version 6.0. Frontal simulations are evaluated against high resolution atmospheric soundings, station observations, and gridded rainfall analyses and shown to reproduce the qualitative features of cold fronts. Land-cover change results in a decrease in total frontal precipitation through a decrease in boundary-layer turbulent kinetic energy and vertically integrated moisture convergence, and an increase in wind speed within the lower boundary layer. Such processes contribute to reduced convective rainfall under current vegetation cover.  相似文献   

8.
Over the past 40 years there have been significant changes in Australian rainfall with increases in the north-west and decreases in the east. Tropical cyclones (TCs) and other closed low pressure systems are important synoptic systems that provide a large proportion of Australia’s annual rainfall. This study examines the proportion of rainfall that can be attributed to TCs over the 1970–2009 period, and to TCs combined with other closed lows over the 1989–2009 period. The contribution of these systems to Australian rainfall trends is also analysed. Tropical cyclones are found to have little influence on rainfall trends over the full time period. However, when the more recent 21-year period is considered, TCs and other closed low pressure systems can partially explain the positive rainfall trend in the north-west. Similarly, other closed low pressure systems, such as cut-off lows and east coast lows, can explain some of the negative rainfall trend in the south-east. The contribution of TCs and other closed low pressure systems to rainfall trends in the north and south-east is found to be predominantly due to respective increases and decreases in the rainfall producing efficiency of the systems. An understanding of the influence of these synoptic systems on Australian rainfall in the current climate is vital for evaluating how Australia's water budget may change in future climates.  相似文献   

9.
李建平  李艳杰  冯娟 《大气科学》2011,35(5):801-817
西澳大利亚州西南部(SWWA)是西澳大利亚州首府Perth的所在地,也是西澳州政治、经济、文化、教育和旅游的中心.自20世纪中期以来,SWWA地区雨季降水持续减少.本文利用近60年的观测及再分析数据,分析了已知的影响澳大利亚降水的热带海洋模态:厄尔尼诺—南方涛动(ENSO)、印度洋偶极子(IOD)和ENSOModoki...  相似文献   

10.
Summary The Southwestern Cape (SWC) region of South Africa is characterized by winter rainfall mainly via cold fronts and by substantial interannual variability. Evidence is presented that interannual variability in SWC winter rainfall is related to sea-surface temperature (SST) and sea-ice anomalies in the central South Atlantic and adjoining Southern Ocean and to large scale ocean–atmosphere interaction in this region. During wet winters, the jet is strengthened just upstream of the SWC and significant cyclonic anomalies extend from the SW Atlantic over the region. SST tends to be anomalously warm (cool) in the SW Atlantic and SE Atlantic (central South Atlantic) and sea-ice extent increased in the central South Atlantic sector of the Southern Ocean. These patterns favor increased cyclogenesis upstream, a more northward track of midlatitude depressions, local intensification near the SWC and enhanced rainfall. Roughly the reverse patterns occur during dry winters. Some preliminary results from atmospheric GCM experiments are presented which help support these findings. Received November 9, 2001 Revised December 28, 2001  相似文献   

11.
Rainfall in the southwest of Western Australia (SWWA) is sensitive to shifts in the hemispheric scale circulation due to its location at the northward extent of the influence of mid-latitude fronts. A step-drop in the 1970s to a new winter rainfall regime has caused great concern for water users in the region. The synoptic systems at the height of winter in the latter half of the 20th century over this region have been described in Hope et al. (Clim Dyn, 2006) using a self-organising map, and in this study the projected future shifts in those systems has been examined. Bounds are placed on the possible responses by examining a number of different models and, into the future, two scenarios at the upper (SRES A2) and lower (SRES B1) limits of plausible human induced emissions. Rainfall taken directly from the models captures the rainfall decline in the 1970s, and, although it is not as large as observed in any one model, all the models express a decline, which is a very strong result. Into the future the rainfall decline is dramatic. The scenario at the upper bound of emissions, where atmospheric concentrations of greenhouse gases continue to rise strongly, shows a rainfall decline right through to the end of the century. The shift in synoptic systems for most models is to far fewer troughs and more high pressure systems across the region. One model exhibits a different signature, with a shift to more systems with a zonal structure. The fact that there is a rainfall decline shown by all models, yet the synoptic changes are different, highlights how sensitive SWWA rainfall is to the different responses of climate models to increasing greenhouse gases. In the B1 scenario, the concentrations rise only slowly in the second half of the century and the shift is still to drier conditions, but it is not as striking. These results show that increasing concentrations of greenhouse gases lead to increasingly dry conditions in SWWA, and as the atmospheric concentrations rise, the synoptic response intensifies.  相似文献   

12.
Interannual variations of subsurface influence on SST in the Indian Ocean show strong seasonality. The subsurface influence on SST confines to the southern Indian Ocean (SIO) in boreal winter and spring; it is observed on both sides of the equator in boreal summer and fall. Interannual long Rossby waves are at the heart of this influence, and contribute significantly to the coupled climate variability in the tropical Indian Ocean (TIO). Principal forcing mechanism for the generation of these interannual waves in the Indian Ocean and the relative influence of two dominant interannual signals in the tropics, namely El Niño and Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD), are also discussed. Two distinct regions dominated by either of the above climate signals are identified. IOD dominates the forcing of the off-equatorial Rossby waves, north of 10°S, and the forcing comes mainly from the anomalous Ekman pumping associated with the IOD. However, after the demise of IOD activity by December, Rossby waves are dominantly forced by ENSO, particularly south of 10°S.It is found that the subsurface feedback in the northern flank of the southern Indian Ocean ridge region (north of 10°S) significantly influences the central east African rainfall in boreal fall. The Indian Ocean coupled process further holds considerable capability of predicting the east African rainfall by one season ahead. Decadal modulation of the subsurface influence is also noticed during the study period. The subsurface influence north of 10°S coherently varies with the IOD, while it varies coherently with the ENSO south of this latitude.  相似文献   

13.
Changes in growing seasons for 2041–2060 across Africa are projected using a regional climate model at 90-km resolution, and confidence in the predictions is evaluated. The response is highly regional over West Africa, with decreases in growing season days up to 20% in the western Guinean coast and some regions to the east experiencing 5–10% increases. A longer growing season up to 30% in the central and eastern Sahel is predicted, with shorter seasons in parts of the western Sahel. In East Africa, the short rains (boreal fall) growing season is extended as the Indian Ocean warms, but anomalous mid-tropospheric moisture divergence and a northward shift of Sahel rainfall severely curtails the long rains (boreal spring) season. Enhanced rainfall in January and February increases the growing season in the Congo basin by 5–15% in association with enhanced southwesterly moisture transport from the tropical Atlantic. In Angola and the southern Congo basin, 40–80% reductions in austral spring growing season days are associated with reduced precipitation and increased evapotranspiration. Large simulated reductions in growing season over southeastern Africa are judged to be inaccurate because they occur due to a reduction in rainfall in winter which is over-produced in the model. Only small decreases in the actual growing season are simulated when evapotranspiration increases in the warmer climate. The continent-wide changes in growing season are primarily the result of increased evapotranspiration over the warmed land, changes in the intensity and seasonal cycle of the thermal low, and warming of the Indian Ocean.  相似文献   

14.
Abstract

The Meighen Ice Cap synoptic climate classification system, developed from the study of six years of summer meteorological and glaciological observations, appears to account for significant variations in the energy‐ and mass‐balance climates of the ice cap. In relating the summer frequency of the three synoptic types to fourteen years of mass‐balance measurements, it was found that variations in surface conditions, solar angle and type of precipitation could be accounted for by the relative sequence of synoptic types. Further it was shown that the types could be represented by the position of the dominant 500‐mb cold Low influencing Meighen Island, thus providing a link between the mass balance and the general circulation.

Dominance of the winter pattern of a 500‐mb Low in the Hudson Bay –Baffin Island region throughout the summer season is capable of maintaining Meighen Ice Cap at its present size. A shift of the 500‐mb Low from the winter position directly to the Beaufort Sea or adjoining Polar Ocean area is capable of increasing the size of the ice cap. On the other hand, a shift of the 500‐mb vortex to the Asiatic side of the Polar Ocean before taking up position in the Beaufort Sea – Polar Ocean area produces negative mass‐balance conditions. When the 500‐mb Low remains on the Asiatic side of the Polar Ocean during most of the summer season the slow accumulation of two decades of Polar Ocean years is destroyed.  相似文献   

15.
Upper-level cut-off lows in southern South America   总被引:2,自引:0,他引:2  
Summary This paper presents a statistical study of the spatial and seasonal distribution and duration of cut-off low systems over the southern South American region based on the NCEP- NCAR reanalysis data for the period 1979–1988. Cut-off lows were first objectively determined as minimum geopotential values at the 250 hPa level and then subjectively imposing a cut-off circulation and a cold core. A total of 171 cut-off low events were detected, being more frequent in austral autumn followed by winter, spring and summer. There is a preferential region of occurrence in spring and autumn located between 68°–80° W and 30°–45° S. The Pacific area showed the greatest frequency of occurrence followed by the Atlantic and the continental areas. Most of the cut-off lows last 2 or 3 days (around 90% of the cases) though there is a tendency of the continental events to be longer. The cut-off low event developed upwind the Andes on 22–28 September 1986 was selected as a case study. Low-level cold air advection was the main forcing of the deepening of the upper level low system.  相似文献   

16.
Much of southeast Australia has experienced rainfall substantially below the long-term average since 1997. This protracted drought is particularly noticeable in those parts of South Australia and Victoria which experience a winter (May through October) rainfall peak. For the most part, the recent meteorological drought has affected the first half of the rainfall season May–June–July (MJJ), while rainfall during the second half August–September–October (ASO) has been much closer to the long term average. The recent multi-year drought is without precedent in the instrumental record, and is qualitatively similar to the abrupt decline in rainfall which was observed in the southwest of Western Australia in the 1960 and 1970s. Using a statistical downscaling technique, the rainfall decline is linked to observed changes in large-scale atmospheric fields (mean sea level pressure and precipitable water). This technique is able to reproduce the statistical properties of rainfall in southeast Australia, including the interannual variability and longer time-scale changes. This has revealed that the rainfall recent decline may be explained by a shift to higher pressures and lower atmospheric precipitable water in the region. To explore the likely future evolution of rainfall in southeast Australia under human induced climate change, the same statistical downscaling technique is applied to five climate models forced with increasing greenhouse gas concentrations. This reveals that average rainfall in the region is likely to decline in the future as greenhouse gas concentrations increase, with the greatest decline occurring during the first half of winter. Projected declines vary amongst models but are generally smaller than the recent early winter rainfall deficits. In contrast, the rainfall decline in late winter–spring is larger in future projections than the recent rainfall deficits have been. We illustrate the consequences of the observed and projected rainfall declines on water supply to the major city of Melbourne, using a simple rainfall run-off relationship. This suggests that the water resources may be dramatically affected by future climate change, with percentage reductions approximately twice as large as corresponding changes in rainfall.  相似文献   

17.
This study presents the first consolidation of palaeoclimate proxy records from multiple archives to develop statistical rainfall reconstructions for southern Africa covering the last two centuries. State-of-the-art ensemble reconstructions reveal multi-decadal rainfall variability in the summer and winter rainfall zones. A decrease in precipitation amount over time is identified in the summer rainfall zone. No significant change in precipitation amount occurred in the winter rainfall zone, but rainfall variability has increased over time. Generally synchronous rainfall fluctuations between the two zones are identified on decadal scales, with common wet (dry) periods reconstructed around 1890 (1930). A strong relationship between seasonal rainfall and sea surface temperatures (SSTs) in the surrounding oceans is confirmed. Coherence among decadal-scale fluctuations of southern African rainfall, regional SST, SSTs in the Pacific Ocean and rainfall in south-eastern Australia suggest SST-rainfall teleconnections across the southern hemisphere. Temporal breakdowns of the SST-rainfall relationship in the southern African regions and the connection between the two rainfall zones are observed, for example during the 1950s. Our results confirm the complex interplay between large-scale teleconnections, regional SSTs and local effects in modulating multi-decadal southern African rainfall variability over long timescales.  相似文献   

18.
OLR与长江中游夏季降水的关联   总被引:9,自引:0,他引:9       下载免费PDF全文
用SVD方法分析了1、4、7月全球OLR与夏季(6—8月)中国华中区域降水场的关系,结果表明:若1月南非东部沿岸至西印度洋、北美北部OLR(Outgoing Longwave Radiation)偏低(偏高),或北非、美国西南沿岸及近海OLR偏高(偏低),则夏季长江中游降水将偏多(偏少)。若4月澳大利亚至东印度洋、日界线以东热带太平洋OLR偏低(偏高),或西北太平洋偏高(偏低),则夏季长江中游降水将偏多(偏少)。若7月东印度洋—澳大利亚大陆、东亚OLR偏低(偏高),则夏季华中区域长江及其以北降水将偏多(偏少),湖南和江西南部降水将偏少(偏多)。夏季长江中游旱、涝年前期OLR明显的区别在于热带太平洋:涝年1月东、西太平洋为明显负、正异常,4月这种异常进一步加剧;旱年1月正好相反,东、西太平洋为微弱的正、负异常,4月转为东、西太平洋为微弱的负、正异常。太平洋暖池OLR低值区(强对流区)4、7月持续偏南,是夏季长江中游降水偏多的另一重要信号。冬、春季OLR与夏季长江中游降水大尺度关联的可能机制为:若1月热带东、西太平洋OLR为明显负、正异常,4月这种异常进一步加剧,也即冬、春季热带太平洋Walker环流持续减弱,从而使夏季暖池对流活动减弱,热带辐合带偏南,Hadley环流偏弱,使夏季西太平洋副热带高压主体位置偏南,导致中国夏季主雨带不能北推至黄河流域,而长期滞留长江中下游,最后造成长江中游降水异常。  相似文献   

19.
Analysis of 149 raingauge series (1946–1988) shows a weak positive correlation between late summer rainfalls (January–March) in tropical southern Africa and the Southern Oscillation Index (SOI). The correlation coefficients have been unstable since World War II. They were close to zero before 1970 and significant thereafter. Before 1970, southern African late summer rainfalls were more specifically correlated with regional patterns of sea surface temperature (SST), mainly over the southwestern Indian Ocean. After 1970, teleconnections with near global SST anomaly patterns, i.e. over the central Pacific and Indian oceans, dominate the regional connections. The increase in the sensitivity of the southern African rainfall to the global SO-related circulation anomalies is simultaneous with the correlation between SOI and more extensive SST anomalies, particularly over the southern Indian Ocean. This feature is part of longer term (decadal), global SST variability, as inferred from statistical analyses. Numerical experiments, using the Météo-France general circulation model ARPEGE-Climat, are performed to test the impact of the observed SST warming in the southern Indian and extratropical oceans during El Niño Southern Oscillation (ENSO) events on southern African rainfall. Simulated results show that ENSO events, which occurred in the relatively cold background of the pre-1970 period in the southern oceans, had a little effect on southern Africa climatic conditions and atmospheric circulation. By contrast, more recent ENSO events, with warmer SST over the southern oceans, lead to a climatic bipolar pattern between continental southern African and the western Indian Ocean, which is characterized by reduced (enhanced) deep convection and rainfall over the subcontinent (the western Indian Ocean). A weaker subtropical high-pressure belt in the southwestern Indian Ocean is also simulated, along with a reduced penetration of the moist southern Indian Ocean trade winds over the southern African plateau. These results are consistent with the strong droughts observed over all southern Africa during ENSO events since 1970.  相似文献   

20.
Summary The climatology and variability of summer convection and circulation over the tropical southwest Indian Ocean is investigated using satellite imagery, routine synoptic observations, outgoing longwave radiation (OLR) data, sea surface temperatures (SST) and areal averaged rainfall departures. OLR has a –0.90 correlation with rainfall departures and the OLR minimum (ITCZ) in January and February lies across the 10°S latitude, extending further south near Madagascar. The intensity of ITCZ convection is greatest in the longitudes 20–35°E over northern Zambia and is considerably reduced over the SW Indian Ocean. Spatial correlations are analyzed for standardized departures of OLR, rainfall and SST. The correlations change sign in a coherent fashion, creating a climatic dipole between southern Africa and the SW Indian Ocean. Interannual trends are examined through analysis of January–February zonal and meridional wind indices constructed from significantly correlated variables at Zimbabwe, Madagascar and Mauritius. Circulation variability is dominated by quasi-decadal cycles and a trend of inereasing westerly winds. Zonal wind shear alternates from easterly (barotropic) to westerly and together with SST appears to regulate the frequency and intensity of tropical cyclogenesis. Areally averaged rainfall departures exhibit 6.25 year cycles in NE Madagascar and 12.5 and 18.75 year cycles in SW Madagascar and Zimbabwe, respectively. Summer rainfall and meridional winds in NE Madagascar and Zimbabwe are out of phase and negatively correlated in most summers. The presence of synoptic weather systems is assessed using daily Hovmoller-type satellite imagery composites. Convective structure is dominated by transient waves in the 10°–20°S latitude band, with periods of 15–20 days common. The waves are more prominent in summers with increased easterly shear and contribute to fluctuations in rainfall over SE Africa.With 8 Figures  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号