首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 44 毫秒
1.
Tom Agnew 《大气与海洋》2013,51(2):259-280
Abstract

This study looks at simultaneous changes in atmospheric circulation and extremes in sea‐ice cover during winter. Thirty‐six years of ice‐cover data and 100‐kPa height and 50–100‐kPa thickness data are used. For the entire Arctic, the study found a general weakening of the Aleutian and Icelandic lows for heavy (i.e. severe) compared with light sea‐ice conditions suggesting reduced surface heating as a possible cause. The weakening of the two lows would also reduce meridional atmospheric circulation and poleward heat transport into the Arctic. The study also looks at three regions of high sea ice and atmospheric variability: the Bering Sea, the Davis Strait/Labrador Sea and the Greenland Sea. For the Bering Sea, heavy sea‐ice conditions were accompanied by weakening and westward displacement of the Aleutian Low again suggesting reduced surface heating and the formation of a secondary low in the Gulf of Alaska. This change in circulation is consistent with increased cold air advection over the Bering Sea and changes in storm tracks and meridional heat transport found in other studies. For the Davis Strait/Labrador Sea, heavy ice‐cover winters were accompanied by intensification of the Icelandic Low suggesting atmospheric temperature and wind advection and associated changes in ocean currents as the main cause of heavy ice. For the Greenland Sea no statistically significant difference was found. It is felt that this may be due to the important role that ice export through Fram Strait and ocean currents play in determining ice extent in this region.  相似文献   

2.
北极海冰的厚度和面积变化对大气环流影响的数值模拟   总被引:13,自引:2,他引:13  
文中利用中国科学院大气物理研究所设计的两层大气环流模式 ,模拟研究了北极海冰厚度和面积变化对大气环流的影响 ,尤其是对东亚区域气候变化的影响。模式中海冰厚度处理趋于合理分布 ,导致东亚冬、夏季风偏强 ,使冬季西伯利亚高压和冰岛低压的模拟结果更趋合理 ;另一方面 ,海冰厚度变化可以激发出跨越欧亚大陆的行星波传播 ,在低纬度地区 ,该行星波由西太平洋向东太平洋地区传播 ;海冰厚度变化对低纬度地区的对流活动也有影响。冬季北极巴伦支海海冰变化对后期大气环流也有显著的影响。数值模拟结果表明 :冬季巴伦支海海冰偏多 (少 )时 ,春季 (4~ 6月 )北太平洋中部海平面气压升高 (降低 ) ,阿留申低压减弱 (加深 ) ,有利于春季白令海海冰偏少 (多 ) ;而夏季 ,亚洲大陆热低压加深 (减弱 ) ,5 0 0 h Pa西太平洋副热带高压位置偏北 (南 )、强度偏强 (弱 ) ,东亚夏季风易偏强 (弱 )。  相似文献   

3.
冬季北极海冰与中国同期气温的关系   总被引:3,自引:0,他引:3  
采用Hadley中心的海冰密集度资料和中国160站气温资料,对冬季北极海冰变化的主要模态进行了分析,定义了5个关键海区,重点讨论了冬季北极海冰异常与中国冬季气温的关系.结果表明,冬季北极海冰变化主要表现为第一模态,即太平洋、大西洋的海冰反位相分布.海冰变化的关键区域为区域Ⅰ巴伦支海、区域Ⅱ格陵兰海、区域Ⅲ戴维斯海峡、区...  相似文献   

4.
采用Hadley中心的海冰密集度资料和中国160站气温资料,对冬季北极海冰变化的主要模态进行了分析,定义了5个关键海区,重点讨论了冬季北极海冰异常与中国冬季气温的关系。结果表明,冬季北极海冰变化主要表现为第一模态,即太平洋、大西洋的海冰反位相分布。海冰变化的关键区域为区域Ⅰ巴伦支海、区域Ⅱ格陵兰海、区域Ⅲ戴维斯海峡、区域Ⅳ白令海以及区域Ⅴ鄂霍次克海。中国冬季平均气温、冬季最低气温、冬季最高气温均与北极关键海区的海冰异常有显著相关,但是与其对应的海区有所不同。  相似文献   

5.
太平洋年代际振荡与中国气候变率的联系   总被引:77,自引:6,他引:77  
朱益民  杨修群 《气象学报》2003,61(6):641-654
利用 195 1~ 1998年的太平洋年代际振荡 (PDO)指数、全球海洋和大气分析资料及中国降水和气温站点观测资料 ,分析了太平洋年代际振荡在海洋中的特征及其与东亚大气环流和中国气候变率的联系。结果表明 ,PDO与东亚大气环流及中国气候年代际变化关系密切。对应于PDO暖位相期 (即中纬度北太平洋异常冷、热带中东太平洋异常暖 ) ,冬季 ,阿留申低压增强 ,蒙古高压也增强 (但东西伯利亚高压减弱 ) ,中国东北、华北、江淮以及长江流域大部分地区降水偏少 ,东北、华北和西北地区气温异常显著偏高 ,而西南和华南地区气温偏低 ;夏季 ,海平面气压在北太平洋的负异常较弱 ,而在东亚大陆的正异常较强 ,东亚夏季风偏弱 ,西太平洋副热带高压偏南 ,热带太平洋信风减弱 ,赤道西风增强 ,此时华北地区降水异常偏少而长江中下游、华南南部、东北和西北地区降水异常偏多 ,东北、华北及华南地区气温异常偏高 ,而西北、西南和长江中下游地区气温异常偏低。对应于PDO冷位相期 ,上述形势相反。结果还表明 ,处于不同阶段的ENSO事件对中国夏季气候异常的影响明显受到PDO的调制。在PDO冷位相期 ,当ENSO事件处于发展阶段 ,华南地区夏季降水偏少 ,东北地区夏季多低温 ,在其衰减阶段 ,华北地区和长江流域降水偏多 ,淮河地区降水偏少 ;  相似文献   

6.
By using a 2-layer AGCM designed by Institute of Atmospheric Physics,Chinese Academy of Sciences.this paper investigates influences of thickness and extent variations in Arctic sea ice on the atmosphere circulation,particularly on climate variations in East Asia.The simulation results have indicated that sea ice thickness variation in the Arctic exhibits significant influences on simulation results,particularly on East Asian monsoon.A nearly reasonable distribution of sea ice thickness in the model leads directly to stronger winter and summer monsoon over East Asia.and improves the model's simulation results for Siberia high and Icelandic low in winter.On the other hand,sea ice thickness variation can excite a teleconnection wave train across Asian Continent,and in low latitudes,the wave propagates from the western Pacific across the equator to the eastern Pacific.In addition,the variation of sea ice thickness also influences summer convective activitiesover the low latitudes including South China Sea and around the Philippines.Effects of winter sea ice extents in the Barents Sea on atmospheric circulation in the following spring and summer are also significant.The simulation result shows that when winter sea ice extent in the target region is larger (smaller) than normal.(1)in the following spring (averaged from April to June).positive (negative) SLP anomalies occupy the northern central Pacific.which leads directly to weakened (deepened)Aleutian low.and further favors the light (heavy) sea ice condition in the Bering Sea:(2)in the following summer,thermal depression in Asian Continent is deepened (weakened).and the subtropical high in the northwestern Pacific shifts northward(southward) from its normal position and to be strengthened (weakened).  相似文献   

7.
By using a 2-layer AGCM designed by Institute of Atmospheric Physics,Chinese Academy ofSciences.this paper investigates influences of thickness and extent variations in Arctic sea ice onthe atmosphere circulation,particularly on climate variations in East Asia.The simulation resuhshave indicated that sea ice thickness variation in the Arctic exhibits significant influences onsimulation results,particularly on East Asian monsoon.A nearly reasonable distribution of sea icethickness in the model leads directly to stronger winter and summer monsoon over East Asia.andimproves the model's simulation results for Siberia high and Icelandic low in winter.On the otherhand,sea ice thickness variation can excite a teleconnection wave train across Asian Continent,andin low latitudes,the wave propagates from the western Pacific across the equator to the easternPacific.In addition,the variation of sea ice thickness also influences summer convective activitiesover the low latitudes including South China Sea and around the Philippines.Effects of winter sea ice extents in the Barents Sea on atmospheric circulation in the followingspring and summer are also significant.The simulation result shows that when winter sea iceextent in the target region is larger (smaller) than normal.(1)in the following spring (averagedfrom April to June).positive (negative) SLP anomalies occupy the northern central Pacific.whichleads directly to weakened (deepened)Aleutian low.and further favors the light (heavy) sea icecondition in the Bering Sea:(2)in the following summer,thermal depression in Asian Continent isdeepened (weakened).and the subtropical high in the northwestern Pacific shifts northward(southward) from its normal position and to be strengthened (weakened).  相似文献   

8.
Marine proxy evidence linking decadal North Pacific and Atlantic climate   总被引:1,自引:1,他引:0  
Decadal- to multidecadal variability in the extra-tropical North Pacific is evident in 20th century instrumental records and has significant impacts on Northern Hemisphere climate and marine ecosystems. Several studies have discussed a potential linkage between North Pacific and Atlantic climate on various time scales. On decadal time scales no relationship could be confirmed, potentially due to sparse instrumental observations before 1950. Proxy data are limited and no multi-centennial high-resolution marine geochemical proxy records are available from the subarctic North Pacific. Here we present an annually-resolved record (1818–1967) of Mg/Ca variations from a North Pacific/Bering Sea coralline alga that extends our knowledge in this region beyond available data. It shows for the first time a statistically significant link between decadal fluctuations in sea-level pressure in the North Pacific and North Atlantic. The record is a lagged proxy for decadal-scale variations of the Aleutian Low. It is significantly related to regional sea surface temperature and the North Atlantic Oscillation (NAO) index in late boreal winter on these time scales. Our data show that on decadal time scales a weaker Aleutian Low precedes a negative NAO by several years. This atmospheric link can explain the coherence of decadal North Pacific and Atlantic Multidecadal Variability, as suggested by earlier studies using climate models and limited instrumental data.  相似文献   

9.
使用多种长期观测和再分析资料,分析了北半球冬季阿留申低压和冰岛低压相关关系的年代际变化。结果表明,两低压存在显著的负相关关系,使北太平洋和北大西洋海平面气压形成跷跷板式的变化(Aleutian Low-Icelandic Low Seesaw,AIS)。此外,AIS还存在显著的年代际变化,在1935~1949年和1980年后较为显著,其余时期并不显著。对1980年代的年代际转变分析表明,太平洋年代际振荡(Pacific Decadal Oscillation,PDO)在1970年代末的位相转变是AIS这次年代际转变的主要原因。PDO由负位相转变为正位相,使全球大部分大洋海表温度升高,而北太平洋海表温度降低,两低压显著变深,低压南部西风增强,从而通过Rossby波的频散效应使两低压强度形成显著负相关。1930年代中期的年代际转变与此类似,但强度较弱。同时,年代际背景的变化也影响到两低压的年际变化。在给定海表温度和海冰分布的驱动下,大气环流模式IAP AGCM4能基本模拟出AIS年代际转变的过程和机理,但仍存在一些偏差。  相似文献   

10.
Abstract

The spatial and temporal relationships between subarctic Canadian sea‐ice cover and atmospheric forcing are investigated by analysing sea‐ice concentration, sea‐level pressure and surface air temperature data from 1953 to 1988. The sea‐ice anomalies in Hudson Bay, Baffin Bay and the Labrador Sea are found to be related to the North Atlantic Oscillation (NAO) and the Southern Oscillation (SO). Through a spatial Student's i‐test and a Monte Carlo simulation, it is found that sea‐ice cover in both Hudson Bay and the Baffin Bay‐Labrador Sea region responds to a Low/Wet episode of the SO (defined as the period when the SO index becomes negative) mainly in summer. In this case, the sea‐ice cover has a large positive anomaly that starts in summer and continues through to autumn. The ice anomaly is attributed to the negative anomalies in the regional surface air temperature record during the summer and autumn when the Low/Wet episode is developing. During strong winter westerly wind events of the NAO, the Baffin Bay‐Labrador Sea ice cover in winter and spring has a positive anomaly due to the associated negative anomaly in surface air temperature. During the years in which strong westerly NAO and Low/Wet SO events occur simultaneously (as in 1972/73 and 1982/83), the sea ice is found to have large positive anomalies in the study region; in particular, such anomalies occurred for a major portion of one of the two years. A spectral analysis shows that sea‐ice fluctuations in the Baffin Bay‐Labrador Sea region respond to the SO and surface air temperature at about 1.7‐, 5‐ and 10‐year periods. In addition, a noticeable sea‐ice change was found (i.e. more polynyas occurred) around the time of the so‐called “climate jump” during the early 1960s. Data on ice thickness and on ice‐melt dates from Hudson Bay are also used to verify some of the above findings.  相似文献   

11.
Independent datasets consistently indicate a significant correlation between the sea ice variability in the Bering Sea during melt season and the summer rainfall variability in the Lake Baikal area and Northeastern China. In this study, four sea ice datasets(Had ISST1, Had ISST2.2, ERA-Interim and NOAA/NSIDC) and two global precipitation datasets(CRU V4.01 and GPCP V2.3) are used to investigate co-variations between melt season(March-April-May-June, MAMJ)Bering Sea ice cover(BSIC) and summer(June-July-August, JJA) East Asian precipitation. All datasets demonstrate a significant correlation between the MAMJ BSIC and the JJA rainfall in Lake Baikal-Northeastern China(Baikal-NEC).Based on the reanalysis datasets and the numerical sensitivity experiments performed in this study using Community Atmospheric Model version 5(CAM5), a mechanism to understand how the MAMJ BSIC influences the JJA Baikal-NEC rainfall is suggested. More MAMJ BSIC triggers a wave train and causes a positive sea level pressure(SLP) anomaly over the North Atlantic during MAMJ. The high SLP anomaly, associated with an anti-cyclonic wind stress circulation anomaly,favors the appearance of sea surface temperature(SST) anomalies in a zonal dipole-pattern in the North Atlantic during summer. The dipole SST anomaly drives a zonally orientated wave train, which causes a high anomaly geopotential height at 500 h Pa over the Sea of Japan. As a result, the mean East Asian trough moves westward and a low geopotential height anomaly occurs over Baikal-NEC. This prevailing regional low pressure anomaly together with enhanced moisture transport from the western North Pacific and convergence over Baikal-NEC, positively influences the increased rainfall in summer.  相似文献   

12.
南极海冰首要模态呈现偶极子型异常,正负异常中心分别位于别林斯高晋海/阿蒙森海和威德尔海。过去研究表明冬春季节南极海冰涛动异常对后期南极涛动(Antarctic Oscillation,AAO)型大气环流有显著影响,而AAO可以通过经向遥相关等机制影响北半球大气环流和东亚气候。本文中我们利用观测分析发现南极海冰涛动从5~7月(May–July,MJJ)到8~10月(August–October, ASO)有很好的持续性,并进一步分析其对北半球夏季大气环流的可能影响及其物理过程。结果表明,MJJ南极海冰涛动首先通过冰气相互作用在南半球激发持续性的AAO型大气环流异常,使得南半球中纬度和极地及热带之间的气压梯度加大,在MJJ至JAS,纬向平均纬向风呈现显著的正负相间的从南极到北极的经向遥相关型分布。对流层中层位势高度场上,在澳大利亚北部到海洋性大陆区域,出现显著的负异常,在东亚沿岸从低纬到高纬呈现南北走向的“? + ?”太平洋—日本(Pacific–Japan,PJ)遥相关波列,其对应赤道中部太平洋及赤道印度洋存在显著的降水和海温负异常,西北太平洋至我国东部沿海地区存在显著降水正异常和温度负异常;低纬度北美洲到大西洋一带存在的负位势高度异常和北大西洋附近存在的正位势高度异常中心,构成一个类似于西大西洋型遥相关(Western Atlantic,WA)的结构,对应赤道南大西洋降水增加和南撒哈拉地区降水减少。从物理过程来看,南极海冰涛动首先通过局地效应影响Ferrel环流,进而通过经圈环流调整使得海洋性大陆区域和热带大西洋上方的Hadley环流上升支得到增强,海洋性大陆区域特别是菲律宾附近的热带对流活动偏强,激发类似于负位相的PJ波列,影响东亚北太平洋地区的大气环流,而热带大西洋对流增强和北传特征,则通过激发WA遥相关影响大西洋和欧洲地区的大气环流。以上两种通道将持续性MJJ至ASO南极海冰涛动强迫的大气环流信号从南半球中高纬度经热带地区传递到北半球中高纬地区,从而对热带和北半球夏季大气环流产生显著影响。  相似文献   

13.
The thermal state of the Bering Sea exhibits interdecadal variations, with distinct changes occurred in 1997–1998. After the unusual thermal condition of the Bering Sea in 1997–1998, we found that the recent climate variability (1999–2010) in the Bering Sea is closely related to Pacific basin-scale atmospheric and oceanic circulation patterns. Specifically, warming in the Bering and Chukchi Seas in this period involves sea ice reduction and stronger oceanic heat flux to the atmosphere in winter. The atmospheric response to the recent warming in the Bering and Chukchi Seas resembles the North Pacific Oscillation (NPO) pattern. Further analysis reveals that the recent climate variability in the Bering and Chukchi Seas has strong covariability with large-scale climate modes in the Pacific, that is, the North Pacific Gyre Oscillation and the central Pacific El Niño. In this study, physical connections among the recent climate variations in the Bering and Chukchi Seas, the NPO pattern and the Pacific large-scale climate patterns are investigated via cyclostationary empirical orthogonal function analysis. An additional model experiment using the National Center for Atmospheric Research Community Atmospheric Model, version 3, is conducted to support the robustness of the results.  相似文献   

14.
北极海冰变化的时间和空间型   总被引:14,自引:0,他引:14  
汪代维  杨修群 《气象学报》2002,60(2):129-138
利用 4 4a(195 1~ 1994年 )北极海冰密度逐月资料 ,分析提出了一种与北极冰自然季节变化相吻合的分季法 ,并根据这种分季法 ,使用EOF分解 ,揭示了北极各季海冰面积异常的特征空间型及其对应的时间变化尺度。结果表明 :(1)北极冰面积异常变化的关键区 ,冬季 (2~ 4月 )主要位于北大西洋一侧的格陵兰海、巴伦支海和戴维斯海峡以及北太平洋一侧的鄂霍次克海和白令海 ,夏季 (8~ 10月 )则主要限于从喀拉海、东西伯利亚海、楚科奇海到波佛特海的纬向带状区域内 ,格陵兰海和巴伦支海是北极海冰面积异常变化的最重要区域 ;(2 )春 (5~ 7月 )、秋 (11月~次年 1月 )季各主要海区海冰面积异常基本呈同相变化 ,夏季东西伯利亚海、楚科奇海、波佛特海一带海冰面积异常和喀拉海呈反相变化 ,而冬季巴伦支海、格陵兰海海冰面积异常和戴维斯海峡、拉布拉多海、白令海、鄂霍次克海的海冰变化呈反相变化 ;(3)北极冰总面积过去 4 4a来确实经历了一种趋势性的减少 ,并且叠加在这种趋势变化之上的是年代尺度变化 ,其中春季 (5~ 7月 )海冰面积异常变化对年平均北极冰总面积异常变化作出了主要贡献 ;(4)位于北太平洋一侧极冰面积异常型基本具有半年的持续性 ,而位于北大西洋一侧极冰面积异常型具有半年至一年的持续性  相似文献   

15.
张海燕  陶丽  徐川 《大气科学》2022,46(4):859-872
本文利用1958~2018年期间海表面温度(SST)异常和湍流热通量异常变化的关系,探讨了其与北太平洋年代际振荡(PDO)相关的年际和年代际时间尺度上在不同海域的海气相互作用特征。结果表明:在年际尺度上,黑潮—亲潮延伸区(KOE)表现为显著大气强迫海洋,赤道中东太平洋表现为显著海洋强迫大气;在年代际尺度上,PDO北中心表现为大气强迫海洋,加利福尼亚附近则表现为显著海洋强迫大气。进一步分析表明:加利福尼亚附近区域是北太平洋准12年振荡的关键区域之一,与PDO准十年的周期类似,加利福尼亚附近的冷(暖)海温对应其上有反气旋(气旋)型环流,赤道中太平洋海水上翻和北太平洋东部副热带区域经向风应力的变化是北太平洋准12年振荡的另外两个重要环节。  相似文献   

16.
基于高分辨的卫星资料和再分析资料,本文采用合成分析、相关分析和带通滤波等方法研究了季节内时间尺度上东太平洋峡谷风的变化,并首先发现冬季东太平洋峡谷风存在4~16 d的季节内变化周期。进一步分析表明在该时间尺度上峡谷风异常与局地海温异常之间的关系存在由负相关到正相关的明显转变,在峡谷风强度达到最大之前及最大时,峡谷风异常与局地海温异常之间的关系主要表现为大气对海洋的强迫作用,北风分量的加强使中高纬度干冷空气进入峡谷风地区,海表面的净热通量损失使得海温降低。在峡谷风强度达到最大之后其与局地海温异常的关系则转变为海洋对大气的强迫作用,冷海温异常可一直持续到峡谷风强度达到最大后的第六天。冷海温异常的维持使得湍流混合受到抑制,导致其上的海表面风速减小。此外,峡谷风的季节内变化可能与东太平洋至北美上空的大气环流异常及其演变有关。在湾区峡谷风达到最大之前,北太平洋海平面气压正异常逐渐东移南下并在其最大时到达墨西哥湾上空,使得北美高压增强,湾区两侧气压差增大,对应湾区峡谷风达到最大。  相似文献   

17.
Decadal atmosphere-ocean variations in the Pacific   总被引:60,自引:7,他引:60  
Considerable evidence has emerged of a substantial decade-long change in the north Pacific atmosphere and ocean lasting from about 1976 to 1988. Observed significant changes in the atmospheric circulation throughout the troposphere revealed a deeper and eastward shifted Aleutian low pressure system in the winter half year which advected warmer and moister air along the west coast of North America and into Alaska and colder air over the north Pacific. Consequently, there were increases in temperatures and sea surface temperatures (SSTs) along the west coast of North America and Alaska but decreases in SSTs over the central north Pacific, as well as changes in coastal rainfall and streamflow, and decreases in sea ice in the Bering Sea. Associated changes occurred in the surface wind stress, and, by inference, in the Sverdrup transport in the north Pacific Ocean. Changes in the monthly mean flow were accompanied by a southward shift in the storm tracks and associated synoptic eddy activity and in the surface ocean sensible and latent heat fluxes. In addition to the changes in the physical environment, the deeper Aleutian low increased the nutrient supply as seen through increases in total chlorophyll in the water column, phytoplankton and zooplankton. These changes, along with the altered ocean currents and temperatures, changed the migration patterns and increased the stock of many fish species. A north Pacific (NP) index is defined to measure the decadal variations, and the temporal variability of the index is explored on daily, annual, interannual and decadal time scales. The dominant atmosphere-ocean relation in the north Pacific is one where atmospheric changes lead SSTs by one to two months. However, strong ties are revealed with events in the tropical Pacific, with changes in tropical Pacific SSTs leading SSTs in the north Pacific by three months. Changes in the storm tracks in the north Pacific help to reinforce and maintain the anomalous circulation in the upper troposphere. A hypothesis is put forward outlining the tropical and extratropical realtionships which stresses the role of tropical forcing but with important feed-backs in the extratropics that serve to emphasize the decadal relative to interannual time scales. The Pacific decadal timescale variations are linked to recent changes in the frequency and intensity of El Niño versus La Nina events but whether climate change associated with global warming is a factor is an open question.The National Center for Atmospheric Research is sponsored by the National Science Foundation  相似文献   

18.
The autumn and early winter atmospheric response to the record-low Arctic sea ice extent at the end of summer 2007 is examined in ensemble hindcasts with prescribed sea ice extent, made with the European Centre for Medium-Range Weather Forecasts state-of-the-art coupled ocean–atmosphere seasonal forecast model. Robust, warm anomalies over the Pacific and Siberian sectors of the Arctic, as high as 10°C at the surface, are found in October and November. A regime change occurs by December, characterized by weaker temperatures anomalies extending through the troposphere. Geopotential anomalies extend from the surface up to the stratosphere, associated to deeper Aleutian and Icelandic Lows. While the upper-level jet is weakened and shifted southward over the continents, it is intensified over both oceanic sectors, especially over the Pacific Ocean. On the American and Eurasian continents, intensified surface Highs are associated with anomalous advection of cold (warm) polar air on their eastern (western) sides, bringing cooler temperatures along the Pacific coast of Asia and Northeastern North America. Transient eddy activity is reduced over Eurasia, intensified over the entrance and exit regions of the Pacific and Atlantic storm tracks, in broad qualitative agreement with the upper-level wind anomalies. Potential predictability calculations indicate a strong influence of sea ice upon surface temperatures over the Arctic in autumn, but also along the Pacific coast of Asia in December. When the observed sea ice extent from 2007 is prescribed throughout the autumn, a higher correlation of surface temperatures with meteorological re-analyses is found at high latitudes from October until mid-November. This further emphasises the relevance of sea ice for seasonal forecasting in the Arctic region, in the autumn.  相似文献   

19.
利用1951—2012年中国冬季160站降水资料、NCEP/NCAR再分析资料及NOAA海温资料,分析了中国华北地区冬季降水的异常变化特征及其与大气环流和海温的关系。结果表明:华北地区冬季降水主要呈现为全区一致变化的特征,且年际变率较大,具有2~4 a的年际变化周期。降水异常偏多(少)年,西伯利亚高压偏弱(强),阿留申低压偏弱(强),850 h Pa上华北地区盛行的西北风较弱(强),控制该地区的东亚冬季风偏弱(强),该地区有偏南(北)风距平,500 h Pa上东亚槽脊系统偏弱(强)。影响华北地区冬季降水的异常水汽主要来源于南海及其以东的西太平洋。前期夏季日本以东的西风漂流区、同期冬季近海的黄渤海区域的海温均与中国华北地区冬季降水存在显著的正相关关系。  相似文献   

20.
The spatial variation of sea surface temperature anomalies(SSTA) in the North Pacific Ocean during winter is investigated using the EOF decomposition method.The first two main modes of SSTA are associated with Pacific Decadal Oscillation(PDO) mode and North Pacific Gyre Oscillation(NPGO) mode,respectively.Moreover,the first mode(PDO) is switched to the second mode(NPGO),a dominant mode after mid-1980.The mechanism of the modes’ transition is analyzed.As the two oceanic modes are forced by the Aleutian Low(AL) and North Pacific Oscillation(NPO) modes,the AR-1 model is further used to examine the possible effect and mechanism of AL and NPO in generating the PDO and NPGO.The results show that compared to the NPO,the AL plays a more important role in generating the NPGO mode since the 1970s.Likewise,both the AL and NPO affect the PDO mode since the 1980s.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号