首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Water temperature influences the distribution, abundance, and health of aquatic organisms in stream ecosystems, so understanding the impacts of climate warming on stream temperature will help guide management and restoration. This study assesses climate warming impacts on stream temperatures in California’s west-slope Sierra Nevada watersheds, and explores stream temperature modeling at the mesoscale. We used natural flow hydrology to isolate climate induced changes from those of water operations and land use changes. A 21 year time series of weekly streamflow estimates from WEAP21, a spatially explicit rainfall-runoff model were passed to RTEMP, an equilibrium temperature model, to estimate stream temperatures. Air temperature was uniformly increased by 2°C, 4°C, and 6°C as a sensitivity analysis to bracket the range of likely outcomes for stream temperatures. Other meteorological conditions, including precipitation, were unchanged from historical values. Raising air temperature affects precipitation partitioning into snowpack, runoff, and snowmelt in WEAP21, which change runoff volume and timing as well as stream temperatures. Overall, stream temperatures increased by an average of 1.6°C for each 2°C rise in air temperature, and increased most during spring and at middle elevations. Viable coldwater habitat shifted to higher elevations and will likely be reduced in California. Thermal heterogeneity existed within and between basins, with the high elevations of the southern Sierra Nevada and the Feather River watershed most resilient to climate warming. The regional equilibrium temperature modeling approach used here is well suited for climate change analysis because it incorporates mechanistic heat exchange, is not overly data or computationally intensive, and can highlight which watersheds are less vulnerable to climate warming. Understanding potential changes to stream temperatures from climate warming will affect how fish and wildlife are managed, and should be incorporated into modeling studies, restoration assessments, and licensing operations of hydropower facilities to best estimate future conditions and achieve desired outcomes.  相似文献   

2.
The effect of projected global climate change due to a doubling of atmospheric CO2 on water temperatures in five streams in Minnesota was estimated using a deterministic heat transport model. The model calculates heat exchange between the atmosphere and the water and is driven by climate parameters and stream hydrologic parameters. The model is most sensitive to air temperature and solar radiation. The model was calibrated against detailed measurements to account for seasonally variable shading and wind sheltering. Using climate projections from the GISS, GFDL and OSU GCMs as input; stream temperature simulations predict a warming of freely flowing river reaches by 2.4 °C to 4.7 °C when atmospheric CO2 doubles. In small shaded streams water temperatures are predicted to rise by an additional 6 °C in summer if trees along stream banks should be lost due to climate change or other human activities (e.g. logging). These projected water temperature changes have significant consequences for survival and growth of fishes. Simulation with the complete heat budget equations were also used to examine simplified water temperature/air temperature correlations.  相似文献   

3.
Freshwater ecosystems are warming globally from the direct effects of climate change on air temperature and hydrology and the indirect effects on near-stream vegetation. In fire-prone landscapes, vegetative change may be especially rapid and cause significant local stream temperature increases but the importance of these increases relative to broader changes associated with air temperature and hydrology are not well understood. We linked a spatially explicit landscape fire and vegetation model (FireBGCv2) to an empirical regression equation that predicted daily stream temperatures to explore how climate change and its impacts on fire might affect stream thermal conditions across a partially forested, mountainous landscape in the western U.S. We used the model to understand the roles that wildfire and management actions such as fuel reduction and fire suppression could play in mitigating stream thermal responses to climate change. Results indicate that air temperature increases associated with future climates could account for a much larger proportion of stream temperature increases (as much as 90 % at a basin scale) than wildfire. Similarly, land management scenarios that limited wildfire prevalence had negligible effects on future stream temperature increases. These patterns emerged at broader spatial scales because wildfires typically affected only a subset of a stream’s network. However, at finer spatial and temporal scales stream temperatures were sensitive to wildfire. Although wildfires will continue to cause local, short-term effects on stream temperatures, managers of aquatic systems may need to find other solutions to cope with the larger impact from climate change on future stream warming that involves adapting to the increases while developing broad strategies for riparian vegetation restoration.  相似文献   

4.
A numerical stream temperature model that accounts for kinematic wave flow routing, and heat exchange fluxes between stream water and the atmosphere, and stream water and the stream bed is developed and calibrated to a data-set from the Lower Madison River, Montana, USA. Future climate scenarios were applied to the model through changes to the atmospheric input data based on air temperature and solar radiation output from four General Circulation Models (GCM) for the region under atmospheric CO2 concentration doubling. The purpose of this study was to quantify potential climate change impacts on water temperature for the Lower Madison River, and to assess possible impacts to aquatic ecosystems. Because water temperature is a critical component of fish habitat, this information could be of use in future planning operations of current reservoirs. We applied air temperature changes to diurnal temperatures, daytime temperatures only, and nighttime temperatures only, to assess the impacts of variable potential warming trends. The results suggest that, given the potential climatic changes, the aquatic ecosystem downstream of Ennis Lake will experience higher water temperatures, possibly leading to increased stress on fish populations.Daytime warming produced the largest increases in downstream water temperature.  相似文献   

5.
Stakeholders within the Yakima River Basin expressed concern over impacts of climate change on mid-Columbia River steelhead (Oncorhynchus mykiss), listed under the Endangered Species Act. We used a bioenergetics model to assess the impacts of changing stream temperatures—resulting from different climate change scenarios—on growth of juvenile steelhead in the Yakima River Basin. We used diet and fish size data from fieldwork in a bioenergetics model and integrated baseline and projected stream temperatures from down-scaled air temperature climate modeling into our analysis. The stream temperature models predicted that daily mean temperatures of salmonid-rearing streams in the basin could increase by 1–2 °C and our bioenergetics simulations indicated that such increases could enhance the growth of steelhead in the spring, but reduce it during the summer. However, differences in growth rates of fish living under different climate change scenarios were minor, ranging from about 1–5 %. Because our analysis focused mostly on the growth responses of steelhead to changes in stream temperatures, further work is needed to fully understand the potential impacts of climate change. Studies should include evaluating changing stream flows on fish activity and energy budgets, responses of aquatic insects to climate change, and integration of bioenergetics, population dynamics, and habitat responses to climate change.  相似文献   

6.
We examine summer temperature patterns in the Wenatchee River and two of its major tributaries Icicle and Nason Creeks, located in the Pacific Northwest region of the United States. Through model simulations we evaluate the cooling effects of mature riparian vegetation corridors along the streams and potential increases due to global warming for the 2020s–2080s time horizons. Site potential shade influences are smaller in the mainstream due to its relatively large size and reduced canopy density in the lower reaches, proving a modest reduction of about 0.3°C of the stream length average daily maximum temperature, compared with 1.5°C and 2.8°C in Icicle and Nason Creeks. Assuming no changes in riparian vegetation shade, stream length-average daily maximum temperature could increase in the Wenatchee River from 1–1.2°C by the 2020s to 2°C in the 2040s and 2.5–3.6°C in the 2080s, reaching 27–30°C in the warmest reaches. The cooling effects from the site potential riparian vegetation are likely to be offset by the climate change effects in the Wenatchee River by the 2020s. Buffers of mature riparian vegetation along the banks of the tributaries could prevent additional water temperature increases associated with climate change. By the end of the century, assuming site potential shade, the tributaries could have a thermal condition similar to today’s condition which has less shade. In the absence of riparian vegetation restoration, at typical summer low flows, stream length average daily mean temperatures could reach about 16.4–17°C by the 2040s with stream length average daily maxima around 19.5–20.6°C, values that can impair or eliminate salmonid rearing and spawning. Modeled increases in stream temperature due to global warming are determined primarily by the projected reductions in summer streamflows, and to a lesser extent by the increases in air temperature. The findings emphasize the importance of riparian vegetation restoration along the smaller tributaries, to prevent future temperature increases and preserve aquatic habitat.  相似文献   

7.
The spatiotemporal distribution characteristics of soil temperature are a significant, but seldom described signal of climate warming. This study examines the spatiotemporal trends in soil temperature at depths of 10, 20, and 50 cm in the conterminous US during 1948–2008. We find a warming trend of between 0.2 and 0.4 °C at all depths from 1948 to 2008. The lowest soil temperatures are in Colorado and the area where Wyoming, Idaho, and Montana meet. The coastal areas, such as Texas, Florida, and California, experienced the highest soil temperature. In addition, areas that experienced weak cooling in summer soil temperature include Texas, Oklahoma, and Arkansas. Warming was recorded in Arizona, Nevada, and Oregon. In winter, Mississippi, Alabama, and Georgia show a cooling trend, and Montana, North Dakota, and South Dakota have been warming over the 61-year period. Additionally, mix-forest areas experience slightly cooler soil temperature in comparison with air temperature. Shrubland areas experience slightly warmer soil temperature in comparison with air temperature. This study is among the first to analyze the spatiotemporal distribution characteristics of soil temperature in the conterminous US by using multiple site observational data. Improved understanding of the spatially complex responses of soil temperature shall have significant implications for future studies in climate change over the region.  相似文献   

8.
European temperatures and their projected changes under the 8.5 W/m2 Representative Concentration Pathway scenario are evaluated in an ensemble of 33 global climate models participating in the fifth phase of the Coupled Model Intercomparison Project (CMIP5). Respective contributions of large-scale dynamics and local processes to both biases and changes in temperatures, and to the inter-model spread, are then investigated from a recently proposed methodology based on weather regimes. On average, CMIP5 models exhibit a cold bias in winter, especially in Northern Europe. They overestimate summer temperatures in Central Europe, in association with a greater diurnal range than observed. The projected temperature increase is stronger in summer than in winter, with the highest summer warming occurring over Mediterranean regions. Links between biases and sensitivities are evidenced in winter, suggesting a potential influence of snow cover biases on the projected surface warming. A brief analysis of daily temperature extremes suggests that the intra-seasonal variability is projected to decrease (slightly increase) in winter (summer). Then, in order to understand model discrepancies in both present-day and future climates, we disentangle effects of large-scale atmospheric dynamics and regional physical processes. In particular, in winter, CMIP5 models simulate a stronger North-Atlantic jet stream than observed and, in contrast with CMIP3 results, the majority of them suggests an increased frequency of the negative phase of the North-Atlantic Oscillation under future warming. While large-scale circulation only has a minor contribution to ensemble-mean biases or changes, which are primarily dominated by non-dynamical processes, it substantially affects the inter-model spread. Finally, other sources of uncertainties, including the North-Atlantic warming and local radiative feedbacks related to snow cover and clouds, are briefly discussed.  相似文献   

9.
Records of hydrologic parameters, especially those parameters that are directly linked to air temperature, were analyzed to find indicators of recent climate warming in Minnesota, USA. Minnesota is projected to be vulnerable to climate change because of its location in the northern temperate zone of the globe. Ice-out and ice-in dates on lakes, spring (snowmelt) runoff timing, spring discharge values in streams, and stream water temperatures recorded up to the year 2002 were selected for study. The analysis was conducted by inspection of 10-year moving averages, linear regression on complete and on partial records, and by ranking and sorting of events. Moving averages were used for illustrative purposes only. All statistics were computed on annual data. All parameters examined show trends, and sometimes quite variable trends, over different periods of the record. With the exception of spring stream flow rates the trends of all parameters examined point toward a warming climate in Minnesota over the last two or three decades. Although hidden among strong variability from year to year, ice-out dates on 73 lakes have been shifting to an earlier date at a rate of −0.13 days/year from 1965 to 2002, while ice-in dates on 34 lakes have been delayed by 0.75 days/year from 1979 to 2002. From 1990 to 2002 the rates of change increased to −0.25 days/year for ice-out and 1.44 days/year for ice-in. Trend analyses also show that spring runoff at 21 stream gaging sites examined occurs earlier. From 1964 to 2002 the first spring runoff (due to snowmelt) has occurred −0.30 days/year earlier and the first spring peak runoff −0.23 days/year earlier. The stream water temperature records from 15 sites in the Minneapolis/St Paul metropolitan area shows warming by 0.11C/year, on the average, from 1977 to 2002. Urban development may have had a strong influence. The analysis of spring stream flow rates was inconclusive, probably because runoff is linked as much to precipitation and land use as to air temperature. Ranking and sorting of annual data shows that a disproportionately large number of early lake ice-out dates has occurred after 1985, but also between 1940 and 1950; similarly late lake ice-in has occurred more frequently since about 1990. Ranking and sorting of first spring runoff dates also gave evidence of earlier occurrences, i.e. climate warming in late winter. A relationship of changes in hydrologic parameters with trends in air temperature records was demonstrated. Ice-out dates were shown to correlate most strongly with average March air temperatures shifting by −2.0 days for a 1°C increase in March air temperature. Spring runoff dates also show a relationship with March air temperatures; spring runoff dates shift at a rate of −2.5 days/1°C minimum March air temperature change. Water temperatures at seven river sites in the Minneapolis/St Paul metropolitan area show an average rise of 0.46°C in river temperature/1°C mean annual air temperature change, but this rate of change probably includes effects of urban development. In conclusion, records of five hydrologic parameters that are closely linked to air temperature show a trend that suggests recent climate warming in Minnesota, and especially from 1990 to 2002. The recent rates of change calculated from the records are very noteworthy, but must not be used to project future parameter values, since trends cannot continue indefinitely, and trend reversals can be seen in some of the long-term records.  相似文献   

10.
基于RegCM4区域气候模式、CMIP5全球气候模式数据集和中国东北地区162个气象站气温观测资料,采用偏差分析和相关分析评估了RegCM4和CMIP5对东北地区气温的模拟能力,预估了RCP2.6、RCP4.5和RCP8.5排放情景下东北地区未来气温的变化.结果表明:区域模式和全球模式均能较好地再现气温时空变化特征,模...  相似文献   

11.
Probability distributions of daily maximum and minimum temperatures in a suite of ten RCMs are investigated for (1) biases compared to observations in the present day climate and (2) climate change signals compared to the simulated present day climate. The simulated inter-model differences and climate changes are also compared to the observed natural variability as reflected in some very long instrumental records. All models have been forced with driving conditions from the same global model and run for both a control period and a future scenario period following the A2 emission scenario from IPCC. We find that the bias in the fifth percentile of daily minimum temperatures in winter and at the 95th percentile of daily maximum temperature during summer is smaller than 3 (±5°C) when averaged over most (all) European sub-regions. The simulated changes in extreme temperatures both in summer and winter are larger than changes in the median for large areas. Differences between models are larger for the extremes than for mean temperatures. A comparison with historical data shows that the spread in model predicted changes in extreme temperatures is larger than the natural variability during the last centuries.  相似文献   

12.
Probable climate changes in Russia in the 21st century are considered based on the results of global climate simulations with an ensemble of coupled atmosphere-ocean CMIP3 models. The future changes in the surface air temperature, atmospheric pressure, cloud amount, atmospheric precipitation, snow cover, soil water content, and annual runoff in Russia and some of its regions in the early, middle, and late 21st century are analyzed using the A2 scenario of the greenhouse gas and aerosol emission. Future changes in the yearly highest and lowest surface air temperatures and in summer precipitation of high intensity are estimated for Russia. Possible oscillations of the Caspian Sea level associated with the expected global climate warming are estimated. In addition to the estimates of the ensemble mean changes in climatic characteristics, the information about standard deviations and statistical significance of the corresponding climate changes is given.  相似文献   

13.
This research investigates the effect of climate change on the thermal structure of lakes in response to watershed hydrology. We applied a hydrodynamic water quality model coupled to a hydrological model with a future climate scenario projected by a GCM A2 emission scenario to the Yongdam Reservoir, South Korea. In the climate change scenario, the temperature will increase by 2.1°C and 4.2°C and the precipitation will increase by 178.4?mm and 464.4?mm by the 2050 and 2090, respectively, based on 2010. The pattern changes of precipitation and temperature increase due to climate change modify the hydrology of the watershed. The hydrological model results indicate that they increase both surface runoff itself and temperature. The reservoir model simulation with the hydrological model results showed that increasing air temperature is related to higher surface water temperature. Surface water temperature is expected to increase by about 1.2°C and 2.2°C from the 2050 and 2090, respectively, based on the 2010 results. The simulation results of the effects of climate warming on the thermal structure of the Asian Monsoon Area Lake showed consistent results with those of previous studies in terms of greater temperature increases in the epilimnion than in the hypolimnion, increased thermal stratification, and decreasing thermocline depths during the summer and fall. From this study, it was concluded that the hydrodynamic water quality model coupled to the hydrological model could successfully simulate the variability of the epilimnetic temperature, changed depth and magnitude of the thermocline and the changed duration of summer stratification.  相似文献   

14.
California mountain streams provide critical water resources for human supplies and aquatic ecosystems, and have been affected by climatic changes to varying degrees, often within close proximity. The objective of this study is to examine stream flow timing changes and their climatic drivers through 2009, identify sub-regional patterns in response and sensitivity, and explore whether the differences in the sensitivity of a stream to climatic changes can be partially explained through the physical characteristics of a watershed. To this end, changes in streamflow timing for each watershed were assessed through several runoff timing measures, and overall sensitivity to historic climatic changes through a composite sensitivity index. Elevation, aspect, slope, geology, and landcover distributions, as well as climate information were assembled for each watershed; and were analyzed in conjunction with the sensitivity index. Results showed that the basins most sensitive to climatic changes are on the western Sierra Nevada slopes, while eastern and southern Sierra Nevada, as well as Klamath mountain watersheds exhibit little or no response to climatic shifts to date. Basin sensitivity was not found to be connected to any individual physical watershed characteristic other than elevation. However, it is suggested that basin-to-basin differences in sensitivity, observed in spite of regional-scale warming and similar watershed elevations, can be explained by differences in elevation ranges and combinations of physical watershed characteristics. Results about stream differences in climate sensitivity could aid in prioritizing stream preservation efforts.  相似文献   

15.
吴昊旻  黄安宁  何清  赵勇 《气象学报》2013,71(2):261-274
利用IPCC AR5中BCC-CSM1.1(Beijing Climate Center Climate System Model version 1.1)的历史试验和4类典型 排放路径情景下未来预估试验结果, 在使用CRU(Climatic Research Unit)资料验证BCC-CSM1.1性能的基础上, 采用趋势分 析、滑动平均以及经验正交函数(EOF)等方法, 研究2011-2060年中亚地区年平均气温的时空演变特征。与CRU 资料的对 比分析发现BCC-CSM1.1能较好地模拟过去109a(1901-2009年)中亚地区气温的显着上升趋势及气候态的空间分布特征。 预估试验结果表明, 中亚地区在未来50a整体呈现变暖趋势, 并且, 随着温室气体排放浓度的升高, 气温的升高趋势愈加明 显, 同时增温显着区域也明显增大。经验正交函数分解主要模态还是延续过去的分布特征:经验正交函数分解第1模态及其 所对应的时间系数显示中亚地区年平均地面气温在未来50a(2011-2060年)呈现出全场一致的升高趋势, 升高强度随着温 室气体排放浓度的增加而增强, 进一步的分析表明, 不同典型排放路径下预估的未来50a中亚地区年平均地面气温的经验正 交函数分解第1模态在中亚上空850hPa等压面上均对应有一个反气旋(气旋)性异常环流, 在这个异常环流控制下, 中亚地 区年平均地面气温变化表现为全场一致的特征。经验正交函数分解第2模态呈现出中亚地区地面气温变化南北反位相的基 本特征, 相应的时间系数主要表现为小幅度波动, 变化趋势特征不明显。  相似文献   

16.
Analysis of daily variability of temperature in climate model experiments is important as a model diagnostic and for determination of how such variability may change under perturbed climate conditions. The latter could be important from a climate impacts perspective. We analyze daily mean, diurnal range and variability of surface air temperature in two continuous 3 1/2 year long climate simulations over the continental USA, one for present day conditions and one for conditions under doubled carbon dioxide concentration, conducted with a regional climate model (RegCM), on a 60 km grid, nested in a general circulation model (GCM). Model output is compared with a 30-year daily observational data set for various regions of the USA. In comparison with observations the diurnal range in the model control run is somewhat too low although the daily temperature mean is often well reproduced. The daily variability of temperature is underestimated by the model in all areas, but particularly when and where the observed variability is relatively high. Causes for these underestimations are traced to deficiencies in the general circulation of the driving GCM. With doubled CO2, both maximum and minimum temperatures increase, but the change in the diurnal temperature range (DTR) varies spatially and seasonally. On an annual average over the land domain, the DTR decreases by 0.25'C. Changes in DTR are most strongly correlated with changes in absorbed shortwave radiation at the surface, which explains 72% of the variance in DTR on an annual basis. Change in evaporation was a factor affecting DTR only in the summer when it explained 52% of the variance. The most significant findings with CO2 doubling are substantial decreases in daily variability in winter over large portions of the domain, and localized increases in summer. Causes for these changes are traced to fluctuations in the intensity and position of the jet stream.  相似文献   

17.
Climate change is predicted to be a major threat to river ecosystems in the 21st century, but long-term records of water temperature in streams and rivers are rare. This study uses long-term water temperature series from the Elbe and the Danube River Basin to quantify the variability, magnitude, and extent of temperature alterations at different time scales. The observed patterns in monthly and daily water temperatures have been successfully described through statistical models based on air temperature, river discharge and the North Atlantic Oscillation Index. These models reveal that air temperature variability describes more than 80 % of the total water-temperature variability, linking anticipated changes in water temperature mainly to those in air temperature. The North Atlantic Oscillation effect deteriorates with decreasing latitude, while the discharge effect becomes more important and increases with the increase in discharge amount. The detected water temperature alterations include a phase shift in spring warming of almost 2 weeks, an increase in the number of days with temperatures above 25 °C and an increase in the duration of summer heat stress. These findings underline a significant risk for fundamental changes in river ecosystems, specifically in disruption of established patterns in food-web synchrony, and may lead to significant distortions in community structure and composition.  相似文献   

18.
Releases of halocarbons into the atmosphere over the last 50 years are among the factors that have contributed to changes in the Earth’s climate since pre-industrial times. Their individual and collective potential to contribute directly to surface climate change is usually gauged through calculation of their radiative efficiency, radiative forcing, and/or Global Warming Potential (GWP). For those halocarbons that contain chlorine and bromine, indirect effects on temperature via ozone layer depletion represent another way in which these gases affect climate. Further, halocarbons can also affect the temperature in the stratosphere. In this paper, we use a narrow-band radiative transfer model together with a range of climate models to examine the role of these gases on atmospheric temperatures in the stratosphere and troposphere. We evaluate in detail the halocarbon contributions to temperature changes at the tropical tropopause, and find that they have contributed a significant warming of ~0.4 K over the last 50 years, dominating the effect of the other well-mixed greenhouse gases at these levels. The fact that observed tropical temperatures have not warmed strongly suggests that other mechanisms may be countering this effect. In a climate model this warming of the tropopause layer is found to lead to a 6% smaller climate sensitivity for halocarbons on a globally averaged basis, compared to that for carbon dioxide changes. Using recent observations together with scenarios we also assess their past and predicted future direct and indirect roles on the evolution of surface temperature. We find that the indirect effect of stratospheric ozone depletion could have offset up to approximately half of the predicted past increases in surface temperature that would otherwise have occurred as a result of the direct effect of halocarbons. However, as ozone will likely recover in the next few decades, a slightly faster rate of warming should be expected from the net effect of halocarbons, and we find that together halocarbons could bring forward next century’s expected warming by ~20 years if future emissions projections are realized. In both the troposphere and stratosphere CFC-12 contributes most to the past temperature changes and the emissions projection considered suggest that HFC-134a could contribute most of the warming over the coming century.  相似文献   

19.
Recent temperature projections for urban areas have only been able to reflect the expected change due to greenhouse-induced warming, with little attempt to predict urbanisation effects. This research examines temperature changes due to both global warming and urbanisation independently and applies them differentially to urban and rural areas over a sub-tropical city, Hong Kong. The effect of global warming on temperature is estimated by regressing IPCC data from eight Global Climate Models against the background temperature recorded at a rural climate station. Results suggest a mean background temperature increase of 0.67 °C by 2039. To model temperature changes for different degrees of urbanization, long-term temperature records along with a measureable urbanisation parameter, plot ratio surrounding different automatic weather stations (AWS) were used. Models representing daytime and nighttime respectively were developed, and a logarithmic relationship between the rate of temperature change and plot ratio (degree of urbanisation) is observed. Baseline air temperature patterns over Hong Kong for 2009 were derived from two ASTER thermal satellite images, for summer daytime and nighttime respectively. Dynamic raster modeling was employed to project temperatures to 2039 in 10-year intervals on a per-pixel basis according to the degree of urbanization predicted. Daytime and nighttime temperatures in the highly urbanized areas are expected to rise by ca. 2 °C by 2039. Validation by projecting observed temperature trends at AWS, gave low average RMS errors of 0.19 °C for daytime and 0.14 °C for nighttime, and suggests the reliability of the method.  相似文献   

20.
This paper presents probable effects of climate change on soil moisture availability in the Southeast Anatolia Development Project (GAP) region of Turkey. A series of hypothetical climate change scenarios and GCM-generated IPCC Business-as-Usual scenario estimates of temperature and precipitation changes were used to examine implications of climate change for seasonal changes in actual evapotranspiration, soil moisture deficit, and soil moisture surplus in 13 subregions of the GAP. Of particular importance are predicted patterns of enhancement in summer soil moisture deficit that are consistent across the region in all scenarios. Least effect of the projected warming on the soil moisture deficit enhancement is observed with the IPCC estimates. The projected temperature changes would be responsible for a great portion of the enhancement in summer deficits in the GAP region. The increase in precipitation had less effect on depletion rate of soil moisture when the temperatures increase. Particularly southern and southeastern parts of the region will suffer severe moisture shortages during summer. Winter surplus decreased in scenarios with increased temperature and decreased precipitation in most cases. Even when precipitation was not changed, total annual surplus decreased by 4 percent to 43 percent for a 2°C warming and by 8 percent to 91 percent for a 4°C warming. These hydrologic results may have significant implications for water availability in the GAP as the present project evaluations lack climate change analysis. Adaptation strategies – such as changes in crop varieties, applying more advanced dry farming methods, improved water management, developing more efficient irrigation systems, and changes in planting – will be important in limiting adverse effects and taking advantage of beneficial changes in climate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号