首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper reports a comparative study of digital enhancement techniques using spatial filtering to improve the geologic interpretation of side-scan sonar GLORIA images. Seven algorithms for speckle reduction with window sizes of 3×3-7×7 pixel and various numbers of iterations were tested for cosmetic purposes, and also to improve subsequent image processing. The filtered images were evaluated using both quantitative and qualitative techniques. It was determined that a normalized inverse gradient weighted smoothing scheme, with a 3×3 pixel filter and five iterations, allows a significant speckle reduction without blurring the edges in the GLORIA image which correspond to geological structures. Three local contrast enhancement techniques were also tested and evaluated to increase the perception of these geologic structures. Subtracting the gradient magnitude twice, calculated with spatial filters of a 5×5 pixel on smoothed images, was found to enhance most GLORIA images. Texture analysis methods developed for GLORIA images of mid-oceanic ridges and based on edge detection and orientation determination by spatial filtering are also presented. It enables the GLORIA mosaic of the Rodriguez triple junction (Indian Ocean) to be partitioned into regions of preferred orientation corresponding to the different seafloor fabrics generated at each arm of the triple junction  相似文献   

2.
We have replaced the usual band of poor-quality data in the near-nadir region of our GLORIA long-range sidescan-sonar imagery with a shaded-relief image constructed from swath bathymetry data (collected simultaneously with GLORIA) which completely cover the nadir area. We have developed a technique to enhance these pseudo-sidescan images in order to mimic the neighbouring GLORIA backscatter intensities. As a result, the enhanced images greatly facilitate the geologic interpretation of the adjacent GLORIA data, and geologic features evident in the GLORIA data may be correlated with greater confidence across track. Features interpreted from the pseudo-sidescan may be extrapolated from the near-nadir region out into the GLORIA range where they may nt have been recognized otherwise, and therefore the pseudo-sidescan can be used to ground-truth GLORIA interpretations. Creation of digital sidescan mosaics utilized an approach not previously used for GLORIA data. Pixels were correctly placed in cartographic space and the time required to complete a final mosaic was significantly reduced. Computer software for digital mapping and mosaic creation is incorporated into the newly-developed Woods Hole Image Processing System (WHIPS) which can process both low- and high-frequency sidescan, and can interchange data with the Mini Image Processing System (MIPS) most commonly used for GLORIA processing. These techniques are tested by creating digital mosaics of merged GLORIA sidescan and Hydrosweep pseudo-sidescan data from the vicinity of the Juan Fernandez microplate along the East Pacific Rise (EPR).  相似文献   

3.
The relative height of the seafloor can be estimated by using two vertically displaced receivers. In this paper, we propose techniques to improve the accuracy of the estimated height. Our results are based on the use of synthetic aperture sonar (SAS) imaging, which implies coherent addition of complex images acquired from a moving platform. The SAS processing improves the along-track (or azimuth) resolution, as well as the signal-to-noise ratio (SNR), which in turn improves the estimated height accuracy. We show that the shift of the effective center frequency induced by coherent, frequency-dependent scattering affect the time-delay estimates from complex cross correlations, and we propose a correction technique for broadband signals with uneven magnitude spectra. To reduce the effect of geometrical decorrelation and increase the coherence between the images, we beamform the sonar images onto an a priori estimate of the seafloor height before correlating. We develop a mathematical model for the imaging geometry. Finally, we demonstrate our proposed estimators by providing relative seafloor height estimates from real aperture and SAS images, obtained during the InSAS-2000 experiment at Elba Island in Italy. In particular, we demonstrate that the SAS image quality is significantly improved by inclusion of the height estimates as a priori information.  相似文献   

4.
This chapter presents a summary of the image-processing techniques being used at present in the Institute of Oceanographic Sciences Deacon Laboratory's GLORIA long-range sidescan sonar system. It begins with a brief review of the development of GLORIA, and then describes in outline the present shipboard data acquisition, recording and replay system, including simple image-processing techniques that can be used on-board ship. Next, a detailed form of the sonar equation is developed, and this is evaluated factor-by-factor, to demonstrate the effects of beam directivity, refraction and water depth on the form of intensity variation to be expected in the final image. Finally, we discuss recent developments in shore-based image-processing. These include the development of improved radiometric corrections to normalize range-dependent intensity variations, recovery of true backscattering levels and estimation of backscattering coefficients, and combination of GLORIA with other data sets into single, colour digital images. As an example of the last process we show a digital mosaic of sonar data from the Southwest Indian Ridge, coloured as a function of depth derived from Sea Beam data in the same area.  相似文献   

5.
该文将海水中图象传输特性的研究与用此传输特性进行水下模糊图象恢复结合起来 ,得到一套测量水体传递函数及进行水下图象处理的方法。采用维纳 (Wiener)滤波和卡尔曼 (Kalman)滤波算法 ,对模糊图象进了恢复。结果表明 ,利用计算机采用一定的算法对散射性质已知的水体造成的图象模糊可以进行有效的复原 ,且良好效果。  相似文献   

6.
TOBI (Towed Ocean Bottom Instrument) is a deep-tow sidescan sonar vehicle from which sidescan sonar data are now routinely collected and archived. This paper describes the algorithms developed for detailed processing of TOBI data. Sonar imagery has a characteristic set of processing challenges and these are addressed. TOBI provides a very large sonar dataset, and to limit the difficulties of handling and processing these data, the raw data are subjected to a data reduction technique prior to further processing. Slant-range correction is improved by editing vehicle altitude data using a median filter. Noise on TOBI imagery can appear in two main forms; speckle noise and line dropouts. Speckle noise is removed by a small median difference kernel and line dropouts are removed using a ratio of two box-car filters, each with appropriate thresholding techniques. Precise geocoding of the imagery requires an accurate estimate of vehicle location, and a method of calculation is presented. Two optional processing algorithms are also; presented; deblurring of imagery to improve along-track resolution at far range, and the suppression of a surface reflection return which may occur when TOBI is operated in relatively shallow water. Several of the techniques presented can be transcribed and modified to suit other datasets  相似文献   

7.
For many years, GLORIA has been producing sonar images of the deep ocean floor. In the mid-1980's, the SeaMARC II system came to prominence producing depth values as well as sonar images. The basic method compares the phases of the signals returning from the seafloor to two rows of transducers. The phase differences are converted into angles of arrival and together with the arrival times converted into range and depth values. This capability has now been added to the GLORIA system. The fact that GLORIA uses a 2s FM pulse means the backscattered reverberation can come from a strip of seafloor up to 1.5 km wide. To accommodate this, overlapping complex FFT's are used to produce a time-frequency matrix for the returning signals. In this matrix, a constant range feature appears as a diagonal. Phases are then calculated using a least-mean-squares estimate along diagonals. The main source of error and bias is due to surface reflection, and this is taken into account. The GLORIA swath bathymetry system was tested on two cruises and it was possible to produce depth contours with a good level of confidence. The total swath width was over eight water depths and would have been greater with a more favorable velocity profile. Comparison with other bathymetry data (such as multibeam systems) showed excellent correlation, having a standard deviation of only 4% of total water depth  相似文献   

8.
Images collected by any sidescan sonar system represent the convolution of the acoustic beam pattern of the instrument with the true echo amplitude distribution over the seafloor. At typical low speeds, the 1.7° beam width of SeaMARC I (seafloor mapping and remote characterization) results in multiple insonification of individual targets, particularly at the outside of the swath. A nonlinearly constrained iterative deconvolution technique developed for radar applications can be applied to SeaMARC I imagery to reduce the effect of the beam pattern and equalize the spectral content of the image across the swath. Since the deconvolution is implemented in the along-track direction, the registration of individual scan lines must be precisely corrected before the operator is applied. The deconvolution operator must be modeled to account for beam shape, vehicle speed, swath width, slant range, and ping rate. The method is numerically stable and increases the effective resolution of the image, but results in some loss of dynamic range. The technique is applied to target recognition and imagery from volcanic terrains of the central Juan de Fuca Ridge  相似文献   

9.
A process of synthetic aperture radar imaging of ocean surface waves is considered on the basis of the two-scale model of microwave scattering by a disturbed sea surface. Analytical expressions are obtained to relate characteristics of a large-scale wave image, averaged over an ensemble of realizations of the small-scale ripple, with the wave, radar, and viewing scheme as parameters. It is shown that the wave image would be defocused as an image of a target moving in the along-track direction with a speed equal to a half of the wave phase speed projection on the line of flight. The defocusing magnitude was measured experimentally for the ocean swells images, obtained with an airborneS-band radar, and the results are found to be in satisfactory agreement with the model prediction.  相似文献   

10.
GLORIA side-scan sonographs from the Bering Sea Basin show a complex pattern of interference fringes sub-parallel to the ship's track. Surveys along the same trackline made in 1986 and 1987 show nearly identical patterns. It is concluded from this that the interference patterns are caused by features in the shallow subsurface rather than in the water column. The fringes are interpreted as a thin-layer interference effect that occurs when some of the sound reaching the seafloor passes through it and is reflected off a subsurface layer. The backscattered sound interferes (constructively or desctructively) with the reflected sound. Constructive/destructive interference occurs when the difference in the length of the two soundpaths is a whole/half multiple of GLORIA's 25 cm wavelength. Thus as range from the ship increases, sound moves in and out of phase causing bands of greater and lesser intensity on the GLORIA sonograph. Fluctuations (or wiggles) of the fringes on the GLORIA sonographs relate to changes in layer thickness. In principle, a simple three dimensional image of the subsurface layer may be obtained using GLORIA and bathymetric data from adjacent (parallel) ship's tracks. These patterns have also been identified in images from two other systems; SeaMARC II (12 kHz) long-range sonar, and TOBI (30 kHz) deep-towed sonar. In these, and other cases world-wide, the fringes do not appear with the same persistence as those seen in the Bering Sea.  相似文献   

11.
While the average seafloor backscatter strength within a narrow range of grazing angles can be used as a first-order classification tool, this technique often fails to distinguish seafloors of known differing geological character. In order to resolve such ambiguities, it is necessary to examine the variation in backscatter strength as a function of grazing angle. For this purpose, a series of multiply overlapping GLORIA sidescan sonar images (6.5 kHz) have been obtained in water depths ranging from 1000 to 2500 m. To constrain the placement of acoustic backscatter measurements and to measure the true impinging angle of the incident wave, the corresponding seafloor was simultaneously surveyed using the Seabeam multibeam system. As a result of the multiple overlap, the angular response of seafloor backscatter strength may be derived for regions much smaller than the swath width. By using the derived angular response of seafloor backscatter strength in regions for which sediment samples exist, an empirical seafloor classification scheme is proposed based on the shape, variance, and magnitude of the angular response. Because of the observed variability in the shape of the angular response with differing seafloor types, routine normalization of single-pass swath data to an equivalent single grazing angle image cannot be achieved. As a result, for the case of single-pass surveys, confident seafloor classification may only be possible for regions approaching the scale of the swath width  相似文献   

12.
Chirp sonar systems can be used to obtain high resolution seismic reflection images of the sub-seafloor during marine surveys. The exact knowledge of the Chirp signature allows the use of deterministic algorithms to process the data, similarly to that applied to Vibroseis data on land. Here, it is described an innovative processing sequence to be applied to uncorrelated Chirp data, which can improve vertical and lateral resolution compared to conventional methods. It includes application of a Wiener filter to transform a frequency-modulated sweep into a minimum-phase pulse sequence. In this way, the data become causal and can undergo predictive deconvolution to reduce ringing and enhance vertical resolution. Afterwards, FX-deconvolution and Stolt migration can be applied to obtain an improved imaging of the subsurface. The result of this procedure is a seismic reflection image with higher resolution than traditional ones, which are normally represented using the envelope function of the signal. This technique can be particularly useful for engineering-geotechnical surveys and archaeological investigations that require a fine detail imaging of the uppermost meters of the sub-seafloor.  相似文献   

13.
图像融合在遥感中的应用   总被引:4,自引:0,他引:4  
介绍了关于低分辨率的多光谱图像与高分辨率的全色图像相融合的一些方法。图像融合的目的是为了获取高分辨率的多光谱图像,它既包含了多光谱信息又具有全色图像的高空间分辨率特点。图像融合在遥感中的主要目的在于尽量保持图像的光谱信息.以便用于土地覆盖分类等领域,这一点与其在军事应用和计算机辅助设计领域有所不同。阐述了如何在不使用高分辨率的全色图像情况下进行融合的方法,由于同时获取的多光谱图像之间存在亚像元级的偏移现象,将位移量作为附加信息来有效提高采样频率,以此获取高空间分辨率信息。最后选取了SPOT卫星的多光谱图像作为例子.对文中所阐述的算法进行了试验,并对试验结果作了比较分析。  相似文献   

14.
Deep towed side-scan sonar vehicles such as TOBI acquire high quality imagery of the seafloor with very high spatial resolution but poor locational accuracy. Fusion of the side-scan sonar data with bathymetry data from an independent source is often desirable to reduce ambiguity in geological interpretations, to aid in slant-range correction and to enhance seafloor representation. The main obstacle to fusion is accurate registration of the two datasets.The application of hierarchical chamfer matching to the registration of TOBI side-scan sonar images and multi-beam swath bathymetry is described. This matches low level features such as edges in the TOBI image, with corresponding features in a synthetic TOBI image created by simulating the flight of the TOBI vehicle through the bathymetry. The method is completely automatic, relatively fast and robust, and much easier than manual registration. It allows accurate positioning of the TOBI vehicle, enhancing its usefulness as a research tool. The method is illustrated by automatic registration of TOBI and multi-beam bathymetry data from the Mid-Atlantic Ridge.  相似文献   

15.
H.S. Lee  S.H. Kwon 《Ocean Engineering》2003,30(18):2313-2328
A new technique for measuring wave profiles by wavelet transform using the Mexican Hat wavelet as the mother wavelet is introduced. This technique has the potential to provide low cost, high resolution field measurements of wave profiles in the laboratory. The experiments to capture the video image of the wave profile were carried out in a wave flume. Then, the Mexican Hat wavelet was adopted to trace out the exact profiles of the waves from the captured video images. The series of tests on numerical data and video images show promise as means of detecting two-dimensional profiles of waves.  相似文献   

16.
A new bathymetry processing software package has been developed to postprocess new GLORI-B swath bathymetry data using preexisting techniques. GLORI-B bathymetry is calculated using an interferometry (phase delay) method using the modified GLORIA towfish which has parallel rows of transducers on both sides. We describe four types of artifacts observed during the first use of this new system during Legs 5 and 6 of the Gloria Expedition which surveyed the fastest spreading segment of the global seafloor spreading system and the broad chain of volcanoes near Easter Island. These artifacts include cross-track bias, along-track bias, a 'dropped edge' effect, and random noise. We describe and illustrate how we minimize these artifacts. We merge the SeaBeam 2000 bathymetry data with the GLORI-B bathymetry data to produce a final bathymetric mosaic which covers about 243,400 km2 and shows a different style of diffuse widely spread volcanism not previously observed along hotspot chains. The data are used in several studies describing seamount morphology, elastic thickness of the lithosphere, tectonic and geochemical evolution of the area, and mantle flow from a hotspot to a superfast seafloor spreading center.  相似文献   

17.
研究了在连续的X波段导航雷达图像序列中丢失一帧图像状态下的一种快速修复算法.该算法主要采用基于运动估计与运动补偿的视频序列修复技术进行插帧修复.具体步骤是根据雷达图像中像素点的运动特点,采用改进的三步搜索算法并结合双向运动估计进行搜索,然后对矢量场进行后续处理,最后内插出重建帧.为了提高图像修复的精度,还引入了亚像素运...  相似文献   

18.
The problems associated with the acoustic transmission of real-time television pictures are considered in this paper. A solution to the high data rate video source is found in the application of a spatial data redundancy reduction algorithm, Micro Adaptive Picture Sequencing (MAPS). This algorithm has been implemented on two commercially available microprocessors (M68000), which operate on a digitized image to produce a coded image which is transmitted and reconstructed. Using the spatial data reduction algorithm it is possible to transmit 1 to 2 frames per second of a96 times 96 pixel times 4bits gray level image over a 9600 baud link. Although these images do not possess the full dynamic range and resolution of home quality video, this work suggests that the acoustic channel could be utilized for control of an unmanned untethered submersible. Also, the transmission of high resolution information is made practical when some data reductions are performed prior to acoustic transmission.  相似文献   

19.
Image processing techniques are discussed that correct distortions in GLORIA II side scan sonar imagery including water column offset, slant-range distortion, multiple returns, aspect ratio, speckle noise, striping, and cross-track power drop-off. The software operates within NASA's ELAS image processing system and is applied to the original 12-bit GLORIA II data. Procedures are discussed for generating large scale mosaics and three-dimensional overlays with sea floor bathymetry. The results are shown in four sonographs acquired off the southern coast of California.  相似文献   

20.
高分辨率SAR影像在海岛监视监测中的应用   总被引:1,自引:0,他引:1       下载免费PDF全文
高分辨率合成孔径雷达(SAR)是先进的成像微波遥感器,可全天候和全天时工作,在海岛监视监测中发挥特殊作用。文章概述高分辨率SAR的成像原理和国际应用进展,通过介绍海岛礁在高分辨率SAR影像上的表现,直观展示高分辨率SAR在小海岛识别和海岛开发工程监视监测等方面的应用,尤其提出利用SAR影像特征区分小海岛和船只的方法,同时提出将高分辨率SAR影像与中分辨率光学影像相结合的应用建议,助力我国海岛保护管理和监视监测工作。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号