共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
James M. Gerhart 《Ground water》1984,22(2):168-175
The ground-water flow system in the Lower Susquehanna River Basin in Pennsylvania and Maryland can be considered as one complex unconfined aquifer in which secondary porosity and permeability are the dominant influences on the occurrence and flow of ground water. The degree of development of secondary porosity and permeability in the various lithologies of the lower basin determines the aquifer characteristics of each lithology. Based on qualitative evidence, the use of a porous-media model was assumed to be appropriate on a regional scale and a finite-difference ground-water flow model was constructed for the lower basin. The conceptual model of ground-water flow in the lower basin incorporates the major features of the flow system. Through the use of two layers, 21 hydrogeologic units, and five topographic settings, the conceptual model was systematically reduced to arrive at a simplified conceptual model. Further reduction produced a numerical model representation of the conceptual model, in which the essential features of the lower-basin flow system were quantified for input into the numerical model. The model was calibrated under both steady-state and transient conditions, and was used to evaluate the water-supply potential of the 21 hydrogeologic units. The carbonate units have the greatest potential for ground-water development and the Triassic sedimentary and crystalline units have the least potential. A total ground-water yield potential of about 900 million gallons per day could be obtained from the lower basin with a consequent 50-percent reduction of base flow in streams. 相似文献
4.
5.
6.
7.
8.
The number of studies on the actual and potential environmental consequences of contaminated ground water is growing. One means of studying these consequences is through an idealized flow and transport model, S-PATHS, which allows the hydrologist to determine the salient features of contaminant migration with a minimum of data. The transport of contaminants by ground water from many waste disposal sites can be geometrically idealized as flow between a line and a circle. The flow system adjacent to the disposal site can be represented as a contaminant line source, and a downgradient pumping well as a circular sink. To study waste disposal sites on a larger scale the model geometry is reversed and the disposal site is represented as a circular source, and a river or other convenient line of evaluation is represented as a line sink. This idealization allows S-PATHS to describe the flow and transport process directly by a single partial differential expression. S-PATHS considers transmissivity, effective porosity, sorption, source strength, source concentration, decay, potentiometric gradient, circle size, and distance to the line. Coding for the model is not lengthy and can be run on a large-capacity, hand-held calculator. 相似文献
9.
10.
Sarah K. Marshall Peter G. Cook Anthony D. Miller Craig T. Simmons Shawan Dogramaci 《Ground water》2019,57(5):718-726
In large-scale pumping projects, such as mine dewatering, predictions are often made about the rate of groundwater level recovery after pumping has ceased. However, these predictions may be impacted by geological uncertainty—including the presence of undetected impermeable barriers. During pumping, an impermeable barrier may be undetected if it is located beyond the maximum extent of the cone of depression; yet it may still control drawdown during the recovery phase. This has implications for regional-scale modeling and monitoring of groundwater level recovery. In this article, non-dimensional solutions are developed to show the conditions under which a barrier may be undetected during pumping but still significantly impact groundwater level recovery. The magnitude of the impact from an undetected barrier will increase as the ratio of pumping rate to aquifer transmissivity increases. The results are exemplified for a hypothetical aquifer with an unknown barrier 3 km from a pumping well. The difference in drawdown between a model with and without a barrier may be <1 m in the 10 years while pumping is occurring, but up to 50 m after pumping has ceased. 相似文献
11.
12.
Ground-Water Flow Systems and Stability of a Slope 总被引:3,自引:0,他引:3
13.
14.
15.
16.
17.
18.
Séverine Bernardie Jean-Pascal Gilbert François Lebert Hubert Fabriol 《Pure and Applied Geophysics》2007,164(1):177-197
The monitoring of the stability of old mines constitutes an important research objective for our institution, BRGM. The study
reported here shows the contribution of high-frequency (>30 kHz) acoustic emissions to the detection of the damage within
a rock mass, during an experiment within a pilot site of an old flooded iron mine. The experiment consisted of recording all
the hydroacoustic events in a broad frequency band (between 30 Hz and 180 kHz), during 18 months. The monitoring network has
been calibrated by a triggered block fall that made it possible to highlight a relationship between the occurrence of high-frequency/low-frequency
hydroacoustic emissions and rock falls. The events recorded have been associated with the micro-failure of the rock mass near
the roof, prior to the detachment of the blocks. This monitoring showed important high-frequency hydroacoustic activity, which
may be associated with mechanical instabilities generated by the evolution of water pressure during the experiment. In conclusion,
the high-frequency hydroacoustic activity appears to be a good indicator of instability and, therefore, this new technique
constitutes a promising tool for monitoring abandoned underground cavities. 相似文献
19.
Patterns and Age Distribution of Ground-Water Flow to Streams 总被引:2,自引:0,他引:2
Simulations of ground-water flow in a generic aquifer system were made to characterize the topology of ground-water flow in the stream subsystem and to evaluate its relation to deeper ground-water flow. The flow models are patterned after hydraulic characteristics of aquifers of the Atlantic Coastal Plain and are based on numerical solutions to three-dimensional, steady-state, unconfined flow. The models were used to evaluate the effects of aquifer horizontal-to-vertical hydraulic conductivity ratios, aquifer thickness, and areal recharge rates on flow in the stream subsystem. A particle tracker was used to determine flow paths in a stream subsystem, to establish the relation between ground-water seepage to points along a simulated stream and its source area of flow, and to determine ground-water residence time in stream subsystems. In a geometrically simple aquifer system with accretion, the source area of flow to streams resembles an elongated ellipse that tapers in the down gradient direction. Increased recharge causes an expansion of the stream subsystem. The source area of flow to the stream expands predominantly toward the stream headwaters. Base flow gain is also increased along the reach of the stream. A thin aquifer restricts ground-water flow and causes the source area of flow to expand near stream headwaters and also shifts the start-of-flow to the drainage basin divide. Increased aquifer anisotropy causes a lateral expansion of the source area of flow to streams. Ground-water seepage to the stream channel originates both from near- and far-recharge locations. The range in the lengths of flow paths that terminate at a point on a stream increase in the downstream direction. Consequently, the age distribution of ground water that seeps into the stream is skewed progressively older with distance downstream. Base flow ia an integration of ground water with varying age and potentially different water quality, depending on the source within the drainage basin. The quantitative results presented indicate that this integration can have a wide and complex residence time range and source distribution. 相似文献