首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1997年1月2日~1998年12月31日新疆伽师地震群的发生,使柯坪断裂的滑动速率和运动方向发生了改变。利用MD系列断层仪对柯坪断裂东段的运动特征进行了观测与研究。结果表明,柯坪断裂带东段在伽师地震群前后,垂直滑动速率由0.037 mm/a提高到0.069 mm/a,水平错动速度由左旋0.033 mm/a改变为右旋0.016 mm/a;水平运动方向发生了改变,垂直运动强度提高了近一倍;伽师震群发生前后,柯坪断裂东段附近的应力场发生了改变,最大和最小水平应变率的大小虽未变化,但主应变率轴绕顺时针方向旋转了16.7°。  相似文献   

2.
We have conducted dynamic rupture propagation experiments to establish the relations between in-source stress drop, fracture energy and the resulting particle velocity during slip of an unconfined 2 m long laboratory fault at normal stresses between 4 and 8 MPa. To produce high fracture energy in the source we use a rough fault that has a large slip weakening distance. An artifact of the high fracture energy is that the nucleation zone is large such that precursory slip reduces fault strength over a large fraction of the total fault length prior to dynamic rupture, making the initial stress non-uniform. Shear stress, particle velocity, fault slip and acceleration were recorded coseismically at multiple locations along strike and at small fault-normal distances. Stress drop increases weakly with normal stress. Average slip rate depends linearly on the fault strength loss and on static stress drop, both with a nonzero intercept. A minimum fracture energy of 1.8 J/m2 and a linear slip weakening distance of 33 μm are inferred from the intercept. The large slip weakening distance also affects the average slip rate which is reduced by in-source energy dissipation from on-fault fracture energy.Because of the low normal stress and small per event slip (∼86 μm), no thermal weakening such as melting or pore fluid pressurization occurs in these experiments. Despite the relatively high fracture energy, and the very low heat production, energy partitioning during these laboratory earthquakes is very similar to typical earthquake source properties. The product of fracture energy and fault area is larger than the radiated energy. Seismic efficiency is low at ∼2%. The ratio of apparent stress to static stress drop is ∼27%, consistent with measured overshoot. The fracture efficiency is ∼33%. The static and dynamic stress drops when extrapolated to crustal stresses are 2–7.3 MPa and in the range of typical earthquake stress drops. As the relatively high fracture energy reduces the slip velocities in these experiments, the extrapolated average particle velocities for crustal stresses are 0.18–0.6 m/s. That these experiments are consistent with typical earthquake source properties suggests, albeit indirectly, that thermal weakening mechanisms such as thermal pressurization and melting which lead to near complete stress drops, dominate earthquake source properties only for exceptional events unless crustal stresses are low.  相似文献   

3.
活动构造反映的是现代构造活动,与地震及多种地质灾害密切相关,是地震预测、减灾及城市和工程安全评价工作的重要基础,也是研究现代地球动力学的重要基础资料。断裂分段及其长度,滑动速率,同震位移,古地震及重复间隔,最近一次事件至今的离逝时间是活动构造的基本定量参数。立足于这些定量参数,可以进一步开展活动构造地震危险性和未来断裂错动量和构造变形量的评价,并进行现代构造运动学和动力学理论研究。  相似文献   

4.
This paper discusses the fault parameters of the Mikawa earthquake of January 12, 1945 on the basis of a simple dislocation model. Basically, the model assumes a rectangular shape of the fault plane striking N-S, so that it may fit the observed surface fault trace. Several sets of the fault parameters are tested to interpret the vertical and horizontal ground movements as observed geodetically. The fault model which is finally accepted is as follows: total length: 12 km; width: 11 km; dip angle: 30°; reverse dip-slip: 2 m; right-lateral strike-slip: 1 m. Geometry and slip in the present model seem to harmonize with the other sorts of evidence such as the seismological, tsunami genetic and reconnaissance data. From the tectonic point of view, this earthquake may be attributed to the secondary fault activity associated with the right lateral movement of the Median Tectonic Line.  相似文献   

5.
西秦岭位于东西向展布的秦岭-大别-苏鲁中央造山带与南北向展布的贺兰山-龙门山-川滇地震带构成的巨型"十字"构造区的交汇点,是中国大陆中部"西秦岭-松潘构造结"的重要组成部分.西秦岭晚新生代的构造变形与青藏高原的侧向扩展过程密切相关.该区构造变形的几何图像、运动特征及其深部动力学机制对于揭示青藏高原东北部的动力过程及强震...  相似文献   

6.
The slip rate predicted from geodetic and geomorphological measurements is quite uniform on ~800–1,000 km length of the Altyn Tagh and the Kunlun faults. GPS velocity field documents that tectonic loading on the two active faults changes greatly along their strikes. To explore the mechanical relationship between far‐field tectonic loading and fault slip‐rate accumulation, we built a 3D viscoelastic finite‐element model with fault motion governed by frictional strength of contact interfaces. Based on numerical experiments, it is found that the observed uniform slip rate could reflect lateral variation of frictional strength along fault strike. Variation of predicted frictional coefficient ranges from ~0.13 to ~0.02, verifying that the two active faults must be weak for their mechanical strength. In addition, the good fitness between the relatively weak segment of faults and the location of strong earthquakes suggests that seismic activity along the two faults could be related to their frictional strength.  相似文献   

7.
关于汶川地震发震机制   总被引:10,自引:0,他引:10  
2008年5月12日汶川8级地震的发震断层是四川龙门山逆冲带的前锋灌县—安县断层,或此断层附近新产生相同产状的断层。发震断层走向NE倾向NW,逆冲兼右行平移。汶川地震的发震机制是印藏陆-陆碰撞后,印度次大陆活塞状嵌入欧亚板块造成青藏高原东部向SEE方向近水平挤压,在龙门山冲断带前锋向东南逆冲到四川盆地,构造应力积累和释放的结果。汶川地震演示了一个青藏高原东缘龙门山隆起的构造模型,即其经由龙门山冲断带的地壳冲断作用和缩短作用而隆升。这与Burchfiel的模型不同,该模型认为龙门山上升是由于韧性下地壳流受到四川盆地高强度地壳阻挡而上涌所致。这两种模型可能各有其适用时间阶段,然而本文的模型是不可或缺的,因汶川地震已显示了它的真实性。  相似文献   

8.
断块大地构造与地震活动的构造物理研究   总被引:3,自引:0,他引:3       下载免费PDF全文
马瑾 《地质科学》2009,44(4):1063-1082
断块大地构造理论几乎涉及地震活动的各个方面: 1)地震记录表明不但是强震,大多数6级以上地震也分布在构造块体边界上,构造块体控制了地震分布; 2)地震活动规律体现在块体整体活动中。例如,鄂尔多斯地块周边单个断陷带的地震活跃期与平静期长短不一,无明显规律。但当把鄂尔多斯地块周边作为一个整体,其地震活动在时间上显示了准周期性; 3)地块运动通过周边断层交替活动实现。从断层活动相互作用的时间间隔和错动形式出发可把它分为强震交替活动型(又可分长时间间隔和短时间间隔两类)和强震与弱震或断层蠕动交替活动型。强震交替活动型中时间间隔很短的双震活动较早被发现。强震交替活动型中时间间隔很长的类型虽然不易识别,但是依赖于中国历史地震目录,还是发现鄂尔多斯地块周边山西断陷带与渭河断陷带在历史上的3次交替活动等; 强震与弱震或断层蠕动型的交替活动型很不容易被发现,仅在台网较密,观测条件较好的北京地区观测到。4)利用一些实验结果讨论了交替活动的规律。此外,结合断块大地构造理论对一些地震现象进行了讨论。  相似文献   

9.
近断层强地震动预测中的有限断层震源模型   总被引:1,自引:0,他引:1  
提出了近断层强地震动预测中建立活断层上设定地震有限断层震源模型的方法和步骤.首先,根据地震地质和地震活动性调查以及地球物理勘探等资料,确定活断层的空间方位和滑动类型; 然后,根据地震定标律确定活断层的宏观震源参数; 第三,将高强体模型与k平方滑动模型相结合,产生断层破裂面上的混合滑动分布.在此基础上,预测了与1994年Northridge地震断层类型、矩震级(Mw6.7)基本一致的设定地震的有限断层震源模型.最后,将预测的有限断层震源模型与基于地震学的、使用动力学拐角频率的地震动随机合成方法相结合,预测了1994年Northridge地震近断层12个基岩台站的加速度时程,并和实际记录进行了对比.结果表明,用上述方法和步骤建立的有限断层震源模型是可行、实用的.   相似文献   

10.
Crustal tectonic activities are essentially the consequences of the accumulation and release of in situ stress. Therefore, studying the stress state near active faults is important for understanding crustal dynamics and earthquake occurrences. In this paper, using in situ stress measurement results obtained by hydraulic fracturing in the vicinity of the Longmenshan fault zone before and after the Wenchuan Ms 8.0 earthquake and finite element modeling, the variation of stress state before and after the Wenchuan Ms 8.0 earthquake is investigated. The results show that the shear stress, which is proportional to the difference between principal stresses, increases with depth and distance from the active fault in the calm period or after the earthquakes, and tends to approach to the regional stress level outside the zone influenced by the fault. This distribution appears to gradually reverse with time and the change of fault properties such as frictional strength. With an increase in friction coefficient, low stress areas are reduced and areas with increased stress accumulation are more obvious near the fault. In sections of the fault with high frictional strengths, in situ stress clearly increases in the fault. Stress accumulates more rapidly in the fault zone relative to the surrounding areas, eventually leading to a stress field that peaks at the fault zone. Such a reversal in the stress field between the fault zone and surrounding areas in the magnitude of the stress field is a potential indicator for the occurrence of strong earthquakes.  相似文献   

11.
基于青藏高原及邻区的三维粘弹性有限元模型,讨论2008年于田MS7.3级地震与2014年于田MS7.3级地震之间的关系,并研究2014年于田MS7.3级地震的发生造成周围断层的库仑破裂应力变化。初步结果表明:1)2008年于田MS7.3级地震在2014年于田MS7.3级地震震中滑动方向上产生的库仑破裂应力变化高于地震触发的阈值0.01 MPa,存在明显的触发作用。在视摩擦系数分别取0.4和0.6时,震源区同震库仑破裂应力变化为0.0167 MPa和0.0170 MPa;而考虑粘弹性松弛作用时产生的库仑应力增加量分别为0.0187 MPa和0.0194 MPa。结合断裂带构造应力年累计速率的结果,2008年于田地震的发生造成2014年于田地震提前21.4~24.9 a;2)在较短的时间尺度内,对于距离相近的两次地震之间,同震产生的应力变化远大于粘弹性松弛效应产生的变化;3)2014年于田MS7.3级地震的发生造成阿尔金断裂中北段、玛尼—玉树断裂中段、东昆仑断裂西段、柴达木北缘断裂东段、西秦岭北缘断裂西段等不同程度的加载效应,地震危险性有所增强。其中阿尔金断裂中段库仑应力增加最为明显,最大达2.8×10–3 MPa;玛尼—玉树断裂中段次之,应力增加量最大达5.6×10–4 MPa;东昆仑断裂西段应力增加量最大达4.75×10–4 MPa。而玛尼—玉树断裂西段库仑破裂应力最大卸载量达3.6×10–3 MPa。  相似文献   

12.
We use coseismic GPS data from the 1999 Chi-Chi, Taiwan earthquake to estimate the subsurface shape of the Chelungpu fault that ruptured during the earthquake. Studies prior to the earthquake suggest a ramp–décollement geometry for the Chelungpu fault, yet many finite source inversions using GPS and seismic data assume slip occurred on the down-dip extension of the Chelungpu ramp, rather than on a sub-horizontal décollement. We test whether slip occurred on the décollement or the down-dip extension of the ramp using well-established methods of inverting GPS data for geometry and slip on faults represented as elastic dislocations. We find that a significant portion of the coseismic slip did indeed occur on a sub-horizontal décollement located at 8 km depth. The slip on the décollement contributes 21% of the total modeled moment release. We estimate the fault geometry assuming several different models for the distribution of elastic properties in the earth: homogeneous, layered, and layered with lateral material contrast across the fault. It is shown, however, that heterogeneity has little influence on our estimated fault geometry. We also investigate several competing interpretations of deformation within the E/W trending rupture zone at the northern end of the 1999 ground ruptures. We demonstrate that the GPS data require a 22- to 35-km-long lateral ramp at the northern end, contradicting other investigations that propose deformation is concentrated within 10 km of the Chelungpu fault. Lastly, we propose a simple tectonic model for the development of the lateral ramp.  相似文献   

13.
东天山受印度?欧亚板块碰撞的远程影响,新构造活跃,同时在气候影响下地表侵蚀速率有明显的空间差异,是探讨构造活动、地表过程和气候变化相互作用的理想区域;而反映构造变形的断层滑移量和地形起伏度是理解构造和气候相互作用的重要参数.通过三维地震反射深度剖面解译构建东天山阜康断裂带西端古牧地背斜三维构造几何形态,发现阜康断裂带断...  相似文献   

14.
A few cases of occurrence of normal aftershocks after strike slip earthquakes in compressive regime have been reported in the literature. Occurrence of such aftershocks is intriguing as they occurred despite the apparent stabilizing influence of compressive plate tectonic stresses on the normal faults. To investigate the occurrence processes of such earthquakes, we calculate change in static stress on optimally oriented normal and reverse faults in the dilational and compressional step over zones, respectively, due to slip on a vertical strike slip fault under compressive regime. We find that change in static stress is much more pronounced on normal faults as compared to that on reverse faults, for all values of fault friction. Change in static stress on reverse fault is marginally positive only when the fault friction is low, whereas for normal faults it is positive for all values of fault friction, and is maximum for high fault friction. We suggest that strike slip faulting in compressive regime creates a localized tensile environment in the dilational step over zone, which causes normal faulting in that region. The aftershocks on such normal faults are considered to have occurred as an almost instantaneous response of stress transfer due to strike slip motion.  相似文献   

15.
利用华北地区1999~2007、2013~2017两期GPS水平运动速度场数据,采用块体负位错模型,分别反演了郯庐断裂带中南段不同段的断层闭锁程度和滑动亏损速率分布;结合地表应变结果,综合分析了郯庐断裂带前后两期的变形差异特征,并探讨了其与日本3·11地震间的可能关系。研究结果表明:日本地震后,郯庐断裂带中南段郯城以北的段落闭锁程度有所减弱,中南段东部地区主张应变率增强,处于拉张状态;日本大地震的发生对郯庐断裂带中南段的应变积累起到一定的缓解作用。2013~2017最新一期反演结果显示莒县以北断层闭锁程度仍较高,闭锁深度较深,为右旋挤压亏损,是1668年郯城地震的未破裂段;莒县以南到泗洪附近断层闭锁程度较低,无滑动亏损积累;泗洪以南到嘉山段断层闭锁程度较高,是历史地震的未破裂段,同时该地区小震不活跃,易于应力积累,地震危险性值得关注。  相似文献   

16.
A few cases of occurrence of normal aftershocks after strike slip earthquakes in compressive regime have been reported in the literature. Occurrence of such aftershocks is intriguing as they occurred despite the apparent stabilizing influence of compressive plate tectonic stresses on the normal faults. To investigate the occurrence processes of such earthquakes, we calculate change in static stress on optimally oriented normal and reverse faults in the dilational and compressional step over zones, respectively, due to slip on a vertical strike slip fault under compressive regime. We find that change in static stress is much more pronounced on normal faults as compared to that on reverse faults, for all values of fault friction. Change in static stress on reverse fault is marginally positive only when the fault friction is low, whereas for normal faults it is positive for all values of fault friction, and is maximum for high fault friction. We suggest that strike slip faulting in compressive regime creates a localized tensile environment in the dilational step over zone, which causes normal faulting in that region. The aftershocks on such normal faults are considered to have occurred as an almost instantaneous response of stress transfer due to strike slip motion.  相似文献   

17.
Tidal triggering of reservoir-associated earthquakes   总被引:1,自引:0,他引:1  
Fred W. Klein   《Engineering Geology》1976,10(2-4):197-210
If the effect of a reservoir is to bring a fault zone gradually to failure and trigger an earthquake, then it is reasonable that rapidly fluctuating tidal stresses may influence the time of the induced earthquakes. An examination of earthquakes from eight reservoirs shows that earthquakes at six sites occur at preferred times in the semidiurnal tidal cycle. Tidal-stress orientations and the phase within the semidiurnal tidal cycle were calculated for only the largest earthquakes occurring at each site. This insures the elimination of aftershocks and selects earthquakes which are independent of each other. Sites of a significant earthquake/tide correlation with less than a 3% chance of occurring randomly include Hebgen Lake, Mont., U.S.A.; Kariba, Rhodesia; Kerr Dam, Mont., U.S.A.; Kremasta, Greece; Lake Mead, Nev., U.S.A.; and Monteynard, France. Each data set includes from about ten to twenty earthquakes. In most of the above cases earthquake triggering seems to occur when tidal stress enhances slip, i.e., when tidal stresses are oriented to enhance the tectonic stress.  相似文献   

18.
In the present work we analyse one of the active normal faults affecting the central Apennines, i.e. the Mt. Morrone normal fault system. This tectonic structure, which comprises two parallel, NW-SE trending fault segments, is considered as potentially responsible for earthquakes of magnitude ≥ 6.5 and its last activation probably occurred during the second century AD. Structural observations performed along the fault planes have allowed to define the mainly normal kinematics of the tectonic structure, fitting an approximately N 20° trending extensional deformation. Geological and geomorphological investigations performed along the whole Mt. Morrone south-western slopes permitted us to identify the displacement of alluvial fans, attributed to Middle and Late Pleistocene by means of tephro-stratigraphic analyses and geomorphological correlations with dated lacustrine sequences, along the western fault branch. This allowed to evaluate in 0.4 ± 0.07 mm/year the slip rate of this segment. On the other hand, the lack of synchronous landforms and/or deposits that can be correlated across the eastern fault segment prevented the definition of the slip rate related to this fault branch. Nevertheless, basing on a critical review of the available literature dealing with normal fault systems evolution, we hypothesised a total slip rate of the fault system in the range of 0.4 ± 0.07 to 0.8 ± 0.09 mm/year. Moreover, basing on the length at surface of the Mt. Morrone fault system (i.e. 22–23 km) we estimated the maximum expected magnitude of an earthquake that might originate along this tectonic structure in the order of 6.6–6.7.  相似文献   

19.
基于1999~2018年GPS水平运动速度场数据,解算并分析了四川“Y”形构造区各周期网格速度场、地壳应变率场,并讨论了近20年尺度的地壳应变场演化过程。研究表明:1)2008年汶川地震前1999~2007期GPS速度场相对稳定,整体“Y”型构造区地壳运动变化不大,但汶川地震后龙门山断裂带发生较大变化,由4.0 mm/a增至10.0 mm/a。2)1999~2007年,整个四川“Y”型构造区应变场演化特征微弱,而汶川地震之后的两个周期,最大剪应变自龙门山山前断裂向西到汶川一带,形成了由高到低、平行于龙门山断裂带走向的高密度梯度带。龙门山断裂带以ES或EES向的主压应变为主,其量值变化范围为 5.0×10-8 /a~12.0×10-8 /a;鲜水河断裂由震前主拉应变,改为震后近EW向的主压应变特征。面膨胀结果则显示龙门山断裂带由震前低密度梯度带瞬间变为平行于龙门山断裂带走向的高密度变化区。3)2008年汶川地震和2013年芦山地震是最为重要的时刻分割点。近20年的应变率场变化,更似一个“时间—地壳构造运动”的大轮回,目前四川“Y”型构造区整体处于2008年汶川地震前较为稳定的活动周期。龙门山断裂带仍值得我们做出更为深入的研究。  相似文献   

20.
新生代以来,印度板块与欧亚大陆的碰撞和持续的汇聚在青藏高原西北部的帕米尔地区造成了强烈的陆内变形,形成一系列典型的构造地貌。文章在卫片解译、DEM数据处理的基础上,结合野外地质、地貌观察与测量,对帕米尔东北缘的构造地貌与活动构造特征进行了研究,取得以下认识: 1)在英吉沙地区,通过测量地貌变形面计算出英吉沙背斜隆起高度约为230m,并利用面积平衡法估算出英吉沙背斜的最小构造缩短量约为110m,参考前人的年代学数据计算出英吉沙背斜在中更新世以来的最低隆升速率约为0.23mm/a,最小构造缩短速率约为0.11mm/a; 2)在帕米尔前缘,乌泊尔断裂为一条伴随右旋走滑分量的逆冲断裂,该断裂的右旋走滑作用错断了古近纪地层及流过断裂的河流,通过测量单次地震造成的水系错断量并参考前人研究的该地区大震复发周期约为1000年,估算出该断裂的平均走滑速率为 4.0~6.8mm/a,并推测断裂开始活动的时间大约在 2.2~3.0Ma以前; 3)对喀什地区构造地貌特征的观察与研究表明,明尧勒-喀什背斜和阿图什-踏浪河背斜可能分别为帕米尔东北缘西昆仑山山前冲断带和西南天山山前冲断带的前缘,该地区以西,帕米尔东北缘西昆仑山和西南天山两大构造系统已经发生了碰撞和拼贴。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号