首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
According to bioassay studies and high dissolved nutrient N/P ratios in the seawater column, phosphorus (P) is thought to control marine productivity in the northern Adriatic Sea. P in near-shore marine sediments of the Gulf of Trieste, the northernmost part of the Adriatic Sea, was investigated using pore water P distributions, and benthic P flux studies under oxic and anoxic conditions. The data show that P regeneration is up to three-fold more extensive in sediments overlain by oxygen-depleted waters and proceeds in parallel with Fe and Mn enhanced benthic fluxes. It appears from the incubation experiments that degradation of sedimentary organic matter is the main contribution to the flux of P at the sediment–water interface, while the release of phosphate adsorbed on the iron oxide surface is of minor importance.It appears that about 50% of P in the Gulf of Trieste is retained within in the sediments, probably bonded to clay minerals and carbonate grains or precipitated as fluoroapatite. In these sediments total P (Ptot) is preserved preferentially over organic C (Corg). P regenerated from surficial sediments contributes about 1/3 of the P that is assimilated by benthic microalgae. The phytoplankton P requirement should be entirely supplied from fresh-water sources. These results suggest that oxygen depletion in coastal areas caused by eutrophication enhances P regeneration from sediments, providing the additional P necessary for increased biological productivity. The development of anoxic bottom waters in coastal areas enhances the recycling of P, exacerbating the nutrient requirement in the area. A geochemical record of P burial in a longer sedimentary sequence revealed an increasing trend of Ptot and organic P (Porg) contents occurring approximately 50 years BP (after 1950), probably due to increasing use of inorganic fertilizers and detergents in the area.  相似文献   

2.
何建华  余雯  尹明端 《台湾海峡》2010,29(2):277-282
分析了楚科奇海数个站位表层沉积物中有机碳含量、J8站位的沉积速率和有机碳含量的垂直分布.结果显示沉积物中有机碳含量为0.56%~2.00%,平均值为1.31%(m/m,下同),J8站位有机碳含量随埋藏深度的增加呈略为降低的趋势,有机碳的埋藏速率约1.56mg/(cm2.a),相对于楚科奇海和该站位的浮游植物光合作用合成的有机碳而言,进入沉积物的有机碳占初级生产力的比例很高.这说明楚科奇海沉积物有很高的接纳初级生产者产生的有机碳并将其固定、保存的能力.  相似文献   

3.
The Lakshadweep are a group of coral atolls enclosing lagoons and submerged reefs and banks in the Arabian Sea off the western coast of India. The sediments in the lagoons consist of corals, halimeda, shells of gastropods, pelecypods, foraminifera, ostracods, etc. derived from the breaking up of the reefs by mechanical processes such as waves, winds, currents, etc. To study the grain-size characteristics of these calcareous sediments in the lagoons, 50 samples were analysed and the grain-size parameters were calculated. The mean of the samples range from ?1.538 to 2.161, standard deviation from 0.935 to 1.859, skewness from ?1.051 to 1.635 and kurtosis from 2.068 to 4.402. The sediments range from coarse sand and gravel to very fine sand size in general and usually are well sorted. A bimodal to polymodal character is present in the sediments due to mixing of a number of heterogeneous constituents. The coarser sediments consist of corals and a good amount of halimeda occurs in the 0 (1 mm) to ?1 (2 mm) phi class. Foraminifera predominantly occur in the interval 1 (0.5 mm) to 0 (1 mm) phi. In the range 1 (0.5 mm) to 2 (0.25 mm) phi, corals are again important, while in the sizes finer than 2 phi (0.25 mm), all the constituents predominate. The size distribution was compared with those obtained at other places such as Barracuda Keys, Gulf of Aqaba, Isla Perez and Lower Florida Keys. The present grain-size variation is not only controlled by the composition of the calcareous sediments but is also modified by the different transporting agents, such as waves, winds, currents, etc. Different energy conditions also exist in the lagoon. Mean transport direction seems to be roughly towards the SSE and saltation is an important mode of transport.  相似文献   

4.
《Marine Geology》2005,216(3):127-143
This study was carried out in order to understand the early diagenetic redistribution of phosphorus and relevant mass balance in the sediments of the East Sea. In two cruises during May 1993 and October 1995, 11 box cores were collected in the southwestern part of the East Sea. Dissolved phosphorus and iron were analyzed in the porewater from the cores. Sediment samples were analyzed for solid-phase P species and solid-phase Fe oxyhydroxide by sequential extraction.Phosphorus speciation results show that organic P is the major chemical form of phosphorus in young sediments within the upper 50 cm of sediment. However, the authigenic fraction of total P increases with depth, indicating the precipitation of carbonate fluorapatite (CFA) in the sediments. The authigenic CFA (Ca5(PO4)2.6(CO3)0.4F) was formed and buried at rates of 11–110 μmol cm−2 kyr−1. The main source of dissolved phosphorus for the precipitation of CFA is organic P. Dissolved phosphorus, released from the decomposition of organic P, diffuses upward to return to bottom water, or is sorbed to iron oxides in the oxidized sediments. As sedimentation proceeds, the iron oxide-bound P is released in the reduced layer and enters the dissolved phase, which contributes P to the formation of CFA in addition to that contributed by the organic P.The burial flux of reactive P (iron oxide-bound P+authigenic P+organic P) is 0.09–0.53 g P m−2 yr−1 that accounts for 18–58% of the reactive P arriving at the sediment/water interface. The burial flux of reactive P is high in the upper and lower continental margin sediment. The burial flux of reactive P in the Ulleung Basin sediment is less than those in the continental margin sites by a factor of 6, indicating that the reactive P burial flux is mainly dependent on sedimentation rate.  相似文献   

5.
 Sediment cores from the upper continental slope of the eastern Arabian Sea have high organic carbon (OC), CaCO3, and sand content at the top. The values decrease with increasing depth in the Holocene and Upper Pleistocene. Topographic highs show highest OC and lower CaCO3 in the Holocene clayey sediments and vice versa in the Pleistocene sandy sediments. The OC is immature and marine or a mixture of both marine and terrestrial in the Holocene sediments and is mostly terrestrial and/or reworked marine in the Pleistocene sediments. Productivity is the main controlling factor for the organic carbon enrichment. Texture and reworking also influence the organic carbon variations. Received: 29 May 1996/Revision received: 10 January 1997  相似文献   

6.
7.
8.
The presence of a strongly developed oxygen minimum zone (OMZ; [O2]<2 μM) in the northeastern Arabian Sea affords the opportunity to investigate whether oxygen deficiency in bottom waters enhances the preservation of organic matter in the underlying sediments. We explored if the observed patterns of organic matter accumulation could be explained by differences in productivity, sedimentation rate, water depth, and mineral texture. The differences in the burial rates of organic matter in sediments deposited within or below the OMZ could not be explained on the basis of these factors. All collected evidence points to a coupling of low oxygen concentrations and enhanced organic matter preservation. Under more oxygenated conditions bioturbation as well as the presence of labile manganese and iron oxides are probably important factors for a more efficient microbially mediated degradation of organic matter. Pore water profiles of dissolved Mn2+ and Fe2+ show that reduction of manganese and iron oxides plays a minor role in sediments lying within the OMZ and a larger role in sediments lying below the OMZ.  相似文献   

9.
Monsoon-driven biogeochemical processes in the Arabian Sea   总被引:3,自引:0,他引:3  
Although it is nominally a tropical locale, the semiannual wind reversals associated with the Monsoon system of the Arabian Sea result annually in two distinct periods of elevated biological activity. While in both cases monsoonal forcing drives surface layer nutrient enrichment that supports increased rates of primary productivity, fundamentally different entrainment mechanisms are operating in summer (Southwest) and winter (Northeast) Monsoons. Moreover, the intervening intermonsoon periods, during which the region relaxes toward oligotrophic conditions more typical of tropical environments, provide a stark contrast to the dynamic biogeochemical activity of the monsoons. The resulting spatial and temporal variability is great and provides a significant challenge for ship-based surveys attempting to characterize the physical and biogeochemical environments of the region. This was especially true for expeditions in the pre-satellite era.Here, we present an overview of the dynamical response to seasonal monsoonal forcing and the characteristics of the physical environment that fundamentally drive regional biogeochemical variability. We then review past observations of the biological distributions that provided our initial insights into the pelagic system of the Arabian Sea. These evolved through the 1980s as additional methodologies, in particular the first synoptic ocean color distributions gathered by the Coastal Zone Color Scanner, became available. Through analyses of these observations and the first large-scale physical–biogeochemical modeling attempts, a pre-JGOFS understanding of the Arabian Sea emerged. During the 1990s, the in situ and remotely sensed observational databases were significantly extended by regional JGOFS activities and the onset of Sea-viewing Wide Field-of-View Sensor ocean color measurements. Analyses of these new data and coupled physical–biogeochemical models have already advanced our understanding and have led to either an amplification or revision of the pre-JGOFS paradigms. Our understanding of this complex and variable ocean region is still evolving. Nonetheless, we have a much better understanding of time–space variability of biogeochemical properties in the Arabian Sea and much deeper insights about the physical and biological factors that drive them, as well as a number of challenging new directions to pursue.  相似文献   

10.
Biogeochemical ocean-atmosphere transfers in the Arabian Sea   总被引:2,自引:2,他引:2  
Transfers of some important biogenic atmospheric constituents, carbon dioxide (CO2), methane (CH4), molecular nitrogen (N2), nitrous oxide (N2O), nitrate , ammonia (NH3), methylamines (MAs) and dimethylsulphide (DMS), across the air–sea interface are investigated using published data generated mostly during the Arabian Sea Process Study (1992–1997) of the Joint Global Ocean Flux Study (JGOFS). The most important contribution of the region to biogeochemical fluxes is through the production of N2 and N2O facilitated by an acute, mid-water deficiency of dissolved oxygen (O2); emissions of these gases to the atmosphere from the Arabian Sea are globally significant. For the other constituents, especially CO2, even though the surface concentrations and atmospheric fluxes exhibit extremely large variations both in space and time, arising from the unique physical forcing and associated biogeochemical environment, the overall significance in terms of their global fluxes is not much because of the relatively small area of the Arabian Sea. Distribution and air–sea exchanges of some of these constituents are likely to be greatly influenced by alterations of the subsurface O2 field forced by human-induced eutrophication and/or modifications to the regional hydrography.  相似文献   

11.
Indian monsoon precipitation fluctuated significantly during the Holocene and a reliable reconstruction of the timing of the events and their implications is of great benefit to our understanding of the effect and response of low latitude climate systems to the forcing factors. We have carried out high-resolution terrigenous proxy studies on a laminated sediment core from the Oxygen Minimum Zone of the eastern Arabian Sea margin to reconstruct the summer monsoon-controlled precipitation changes during the Holocene. The temporal variation in the terrigenous proxy indicators of this core, in combination with other high-quality cores from the Arabian Sea, suggests several abrupt events in monsoon precipitation throughout the Holocene. The early Holocene monsoon intensification occurred in two abrupt steps at 9500 and 9100 years BP and weakened gradually thereafter, starting at 8500 years BP. A weakening in precipitation recorded at ∼7000 years BP, synchronous with similar conditions in India. One of the most significant weak monsoon periods recorded in our studies lies between 6000 and 5500 years BP. Spectral analysis of the precipitation records reveals statistically significant periodicities at 2200, 1350, 950, 750, 470, 320, 220, 156, 126, 113, 104 and 92 years. Most of these millennial-to-centennial cycles exist in various monsoon records as well as the tree ring Δ14C data and/or other solar proxy records. We suggest that throughout the Holocene, externally, small changes in solar activity controlled the Indian monsoon to a large extent, whereas internally, non-solar causes could have influenced the amplitude of decadal-to-centennial oscillations.  相似文献   

12.
Rock-magnetic measurements along with grain size, acid-insoluble residue (AIR), organic carbon (OC), CaCO3 and δ18O of the planktonic foraminifers of the sediments were determined for 15 gravity cores recovered from the western continental margin of India. Magnetic susceptibility (MS) values in the surficial sediments reflect the land-derived input and, in general, are the highest in terrigenous sediment-dominated sections of the cores off Saurashtra–Ratnagiri, followed by the sediments off Indus–Gulf of Kachchh and then Mangalore–Cape Comorin.

The down-core variations in mineral magnetic parameters reveal that the glacial sediments off the Indus are characterized by low MS values/S-ratios associated with high AIR-content, low OC/CaCO3 contents and relatively high δ18O values, while those off SW India are characterized by low MS values/high S-ratio% associated with low AIR content, and relatively high OC, CaCO3 and δ18O values. Conversely, the Early Holocene sediments of all cores are characterized by high MS values/S-ratio% associated with high AIR content, low OC, CaCO3 contents and gradually decreased δ18O values. These results imply that during the Last Glacial Maximum (LGM), the cores off northwestern India received abundant continental supply leading to the predominance of eolian/fluvial sedimentation. In the SW region the influence of hinterland flux is less evident during this period, but convective mixing associated with the NE monsoon resulted in increased productivity. During the early Holocene intense SW monsoon conditions resulted in high precipitation on land, which in turn contributed increased AIR content/MS values in the continental margin sediments. A shallow water core off Kochi further suggests that the intense SW monsoon conditions prevailed until about 5 ka. The late Holocene organic-rich sediments of the SW margin of India were, however, subjected to early diagenesis at different intervals in the cores. Therefore, caution is needed when interpreting regional climatic change from down-core changes in sediment magnetic properties.  相似文献   


13.
We used the decline in total phosphorus (P) concentration with depth in sediment profiles from the North-western Baltic Proper coastal zone to calculate the site-specific amount of sediment P eventually to be released to the water column: The potentially mobile P. P fractionation revealed that iron bound P dominated the potentially mobile P at sites with oxic surface sediment layers. Organic P forms were also a major constituent of the potentially mobile P pool. We determined that 1–7 g P/m2 were potentially mobile at our sites, and the turnover time of this P pool was considered short, i.e., less than a decade. To determine long-term average P fluxes to and from the surface sediment layer, we first multiplied the constant and relatively low P concentration in deeper sediment layers with the sediment accumulation rate to gain the P burial rate. Then the average total P concentration in settling matter was multiplied with the sediment accumulation rate to estimate the depositional P flux at each site. The difference between the depositional and burial rates represents the long-term average release rate of sediment P and varied between 1.0 and 2.7 g P/m2 yr among our sites. These rates are at the same order of magnitude as values reported from other areas of the Baltic Sea, and constitute a major source of P to the water column.  相似文献   

14.
15.
For better understanding the phosphorus(P) cycle and its impacts on one of the most important fishing grounds and pressures on the marine ecosystem in the Yellow Sea(YS) and East China Sea(ECS), it is essential to distinguish the contents of different P speciation in sediments and have the knowledge of its distribution and bioavailability. In this study, the modified SEDEX procedure was employed to quantify the different forms of P in sediments. The contents of phosphorus fractions in surface sediments were 0.20–0.89 μmol/g for exchangeable-P(Exch-P), 0.37–2.86 μmol/g for Fe-bound P(Fe-P), 0.61–3.07 μmol/g for authigenic Ca-P(ACa-P), 6.39–13.73μmol/g for detrital-P(DAP) and 0.54–10.06 μmol/g for organic P(OP). The distribution of Exch-P, Fe-P and OP seemed to be similar. The concentrations of Exch-P, Fe-P and OP were slightly higher in the Yellow Sea than that in the East China Sea, and low concentrations could be observed in the middle part of the ECS and southwest off Cheju Island. The distribution of ACa-P was different from those of Exch-P, Fe-P and OP. DAP was the major fraction of sedimentary P in the research region. The sum of Exch-P, Fe-P and OP may be thought to be potentially bioavailable P in the research region. The percentage of bioavailable P in TP ranged from 13% to 61%. Bioavailable P burial flux that appeared regional differences was affected by sedimentation rates, porosity and bioavailable P content, and the distribution of bioavailable P burial flux were almost the same as that of TP burial flux.  相似文献   

16.
This study analyzes the heat budget of the Arabian Sea using satellite-derived sea-surface temperature (SST) from 1985 to 1995 along with other data sets. For a better understanding of air–sea interaction, canonical average monthly fields representing the spatial and temporal structure of the various components of the heat balance of the Arabian Sea are constructed from up to 30 years of monthly atmospheric and oceanic data. The SST over the Arabian Sea is not uniform and continually evolves with time. Cooling occurs over most of the basin during November through January and May through July, with the greatest cooling in June and July. Warming occurs over most of the basin during the remainder of the year, with the greatest warming occurring in March and September. Results indicate that the sign of the net heat flux is strongly dependent on the location and month. The effects of net heat flux and penetrative solar radiation strongly influence the change in SST during February and are less important during August and September. Horizontal advection acts to cool the sea surface during the northeast monsoon months. During the southwest monsoon horizontal advection of surface waters warms the SST over approximately the southern half of the basin, while the advection of upwelled water from the Somalia and Oman coasts substantially cools the northern basin. The central Arabian Sea during the southwest monsoon is the only area where the change in SST is balanced by the entrainment and turbulent diffusion at the base of the mixed layer. Agreement between the temporal change in the satellite-derived SST and the change calculated from the conservation of heat equation is surprisingly good given the errors in the measured variables and the bulk formula parameters. Throughout the year, monthly results over half of the basin agree within 3°. Considering that the SST changes between 8° and 12° over the year, this means that our results explain from 62% to 75% of the change in SST over 56% of the Arabian Sea. Two major processes contribute to the discrepancy in the change in SST calculated according to the heat budget equation and the change in SST derived from satellite observations. The first is the effect of the horizontal advection term. The position of the major eddies and currents during the southwest monsoon greatly affects the change in SST due to the large gradient in temperature between the cold upwelled waters along the Somali coast to the warm waters in the interior of the basin. The second major process is the thermocline effect. In areas of shallow mixed-layer depth, high insolation and wind speeds of either less than 3 m/s or greater than 15 m/s, the bulk formulae parameterization of the surface heat fluxes is inappropriate.  相似文献   

17.
利用印度气象局(India Meteorological Department,IMD)、国际气候管理最佳路径档案库(International Best Track Archive for Climate Stewardship,IBTrACS)提供的1982—2020年阿拉伯海热带气旋路径资料,美国国家环境预报中心(National Centers for Environmental Prediction,NCEP)再分析资料,对近39 a阿拉伯海热带气旋源地和路径特征、活跃区域、频数及气旋累积能量(accumulated cyclone energy,ACE)指数的季节特征和年际变化特征进行分析,并结合环境因素,说明其物理成因。结果表明:阿拉伯海热带气旋多发于10°~25°N,65°~75°E海域,5—6月、9—12月发生频数较高且强度较强,1—4月、7—8月发生频数较低且气旋近中心最大风速均小于35 kn;频数的季节变化主要受控于垂直风切变要素;阿拉伯海热带气旋发生频数和ACE近年有上升趋势,年际变化主要受控于海面温度(sea surface temperature,SST)和850 hPa相对湿度要素。  相似文献   

18.
Remote sensing applications are important in the fisheries sector and efforts were on to improve the predic-tions of potential fishing zones using ocean color. The present study was aimed to investigat...  相似文献   

19.
An analysis of the gravity field and geoid heights allowed us to distinguish a third buried basin filled with sediments located in the southwestern part of the sea in the regions adjacent to the Carlsberg Ridge. From the previously known basins, it is separated by saddles. The saddles correspond to a series of faults and are possibly related to the pulse character of the northwestward prograding of the spreading axes of the Carlsberg Ridge. The continental origin of the Laxmi ridge is confirmed. The results of an analysis of the gravity field and its transformants, together with the two-dimensional density modeling, agree with the possibility of the existence of a spreading type of the crust (I) in the region of the Laxmi Basin. An analysis of the geoid height anomalies allows us to suggest that, with respect to the upper layers of the lithosphere, the Laxmi Ridge is not connected with the Chagos-Laccadive Ridge.  相似文献   

20.
本文利用简单海洋模式同化再分析产品等资料,阐述了阿拉伯海与赤道西印度洋,阿拉伯海与阿曼湾之间淡水输运量的季节变化特征,揭示了阿拉伯海淡水输运量的基本平衡和季节变化特征。结果表明,阿拉伯海得到的淡水输运量(包括来自赤道西印度洋、河流)和失去的淡水输运量(包括降水量减蒸发量、向阿曼湾输运)基本相当。阿拉伯海通过海气交换失去的淡水(降水量减蒸发量)主要由来自赤道西印度洋(包括孟加拉湾)的淡水输运来补偿,赤道西印度洋向阿拉伯海的淡水输运对维持阿拉伯海的盐度基本平衡起到至关重要的作用。阿拉伯海的淡水输运量在1?6月和12月为负值,失去淡水;7?11月为正值,9月最大,得到淡水。阿拉伯海的净淡水输运量的季节变化特征表现为单峰现象。阿拉伯海与赤道西印度洋(9°N断面)的淡水输运量主要出现在表层至约200 m层,多年平均约为0.1×106 m3/s,向阿拉伯海输运。从10月至翌年3月,来自孟加拉湾的低盐水向阿拉伯海输运,该输运主要出现在印度半岛西南端近海约60 m层以浅区域。夏季和秋季,出现在索马里半岛东部海域的涡旋(大回旋)引起的输运(涡旋的西部低盐水向北输运,东部高盐水向南输运),不仅输运量是一年当中最大的,而且影响的深度可达约300 m。该输运从6月开始形成,8?9月最强,11月迅速减弱。阿拉伯海与阿曼湾的淡水输运量较小,其垂直分布呈现3层结构,表层至10 m层,高盐水向阿拉伯海输运;15~170 m层,低盐水向阿曼湾输运;175~400 m层,高盐水向阿拉伯海输运。阿曼湾湾口断面多年平均淡水输运量约为0.39×104 m3/s,向阿曼湾输运。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号