首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Modeling of the eddy viscosity by breaking waves   总被引:1,自引:1,他引:0  
Breaking wave induced nearsurface turbulence has important consequences for many physical and biochemical processes including water column and nutrients mixing,heat and gases exchange across air-sea interface.The energy loss from wave breaking and the bubble plume penetration depth are estimated.As a consequence,the vertical distribution of the turbulent kinetic energy(TKE),the TKE dissipation rate and the eddy viscosity induced by wave breaking are also provided.It is indicated that model results are found to be consistent with the observational evidence that most TKE generated by wave breaking is lost within a depth of a few meters near the sea surface.High turbulence level with intensities of eddy viscosity induced by breaking is nearly four orders larger than υwl(=κuwz),the value predicted for the wall layer scaling close to the surface,where uw is the friction velocity in water,κ with 0.4 is the von Kármán constant,and z is the water depth,and the strength of the eddy viscosity depends both on wind speed and sea state,and decays rapidly through the depth.This leads to the conclusion that the breaking wave induced vertical mixing is mainly limited to the near surface layer,well above the classical values expected from the similarity theory.Deeper down,however,the effects of wave breaking on the vertical mixing become less important.  相似文献   

2.
《Coastal Engineering》2006,53(5-6):463-485
A Navier–Stokes solver with a free surface model is used for simulating wave breaking, undertow, and turbulence in breaking waves. The free surface model is based on the Volume of Fluid concept. Turbulence scales larger than the grid scale are simulated directly while turbulence scales smaller than the grid scale are represented by a sub-grid scale model. Two different approaches for the sub-grid scale model have been applied, which are the Smagorinsky model and a model based on a k-equation for the sub-grid scale turbulence. The waves approach the shore in shore-normal direction and break on a plane constant sloping beach. Periodic spilling and plunging breakers are simulated for 20 and 16 wave periods, respectively. The set-up, undertow, and turbulence levels are compared to experimental results. Despite the rather coarse resolution of the computational domain, satisfactory results for the wave height decay and undertow have been obtained. However, the turbulence levels are over-predicted when using the standard values of the model parameters and a complete answer to this problem has not been found. Furthermore, the evolution of vorticity over the wave period has been studied. It shows that at the initial breaking point vorticity is generated around the vertical as well as around the transverse axis. Later vorticity around the longitudinal axis (offshore–onshore direction) is generated, probably through deformation of vorticity around the other axis.  相似文献   

3.
《Coastal Engineering》2004,51(1):53-80
In this paper, a two-dimensional multi-scale turbulence model is proposed to study breaking waves. The purpose of developing this model is to produce a relatively accurate model with moderate computer requirements. The free surface is tracked by the VOF technique, the log-law profile for the mean velocity is applied at the bottom. Comparing with the Reynolds-Averaged Navier-Stokes models (RANS), the present model shows improving agreement with experimental measurements in terms of surface elevations, particle velocities, wave height distributions and undertow profiles. The subgrid scale (SGS) turbulent transport mechanism is also discussed in the paper. It is found that turbulent production and dissipation are of the same order, but turbulent production is primarily located at the wavefront and above the wave trough, whereas turbulent dissipation is primarily located at the back face of a wave, indicating that in these regions, the assumption of equilibrium is not correct. Below the trough level, the local equilibrium assumption is reasonable. Turbulent convection and diffusion are of the same order at the trough level. Above the trough level, turbulent convection dominates. Under the spilling breaking wave, turbulent kinetic energy is continue to dissipate in the bore region, whereas under the plunging breaking wave, the turbulent kinetic energy is dissipated very rapidly within one wave period.  相似文献   

4.
5.
Accurate and computationally-efficient modeling of stratified mixing processes are of paramount importance in both coastal and large-scale ocean circulation. In this study, our main objective is to investigate the feasibility and accuracy of large eddy simulation (LES) as a possible tool to study small-scale oceanic processes. To this end, LES is evaluated in a 3D lock-exchange problem, which contains shear-driven mixing, internal waves, interactions with boundaries and convective motions, while having a simple domain, initial and boundary conditions, and forcing.Two general classes of LES models are tested, namely eddy viscosity (EV) models based on constant–coefficient and dynamic Smagorinsky models, and an approximate deconvolution (AD) model. By noting that the dynamic Smagorinsky and AD models have different strengths in that the former is good in providing appropriate dissipation while the latter in preserving the detail of coherent structures on coarse resolution meshes, a hybrid approach combining EV and AD models is also evaluated. A direct numerical simulation (DNS) is performed as the benchmark solution, and all LES models are tested on three coarse meshes. The main measure of mixing is taken as the temporal evolution of background potential energy.It is found that constant-coefficient Smagorinsky models can only provide a marginal improvement over under-resolved simulations, while both dynamic Smagorinsky and AD models lead to significant improvements in mixing accuracy. The primary accomplishment of this study is that it is shown that the hybrid approach attains the best agreement with the mixing curve from DNS, while being computationally approximately a thousand times faster.  相似文献   

6.
In an attempt to elucidate the mechanics of deep-water wave breaking, a variety of breaking waves, including spilling and plunging waves, of different length scales and geometries was studied. The waves were generated through wave-wave interactions using wave packets with constant-steepness components, constant-amplitude components, and also components following the Pierson-Moskowitz distribution. Wave steepening prior to breaking were found to cause an increase in the high frequency spectral slope of the wave spectrum. The slopes were correlated to the type of breaking and the intensity of the breaking. The energy loss through breaking varied with the spectral characteristics of the wave packet. On the other hand, it was also noted that, irrespective of the wave packet, the losses were from the higher frequency end of the first harmonics.  相似文献   

7.
This study uses a large eddy simulation (LES) model to investigate the turbulence processes in the ocean surface boundary layer at Zhangzi Island offshore. Field measurements at Zhangzi Island (39°N, 122°E) during July 2009 are used to drive the LES model. The LES results capture a clear diurnal cycle in the oceanic turbulence boundary layer. The process of the heat penetration and heat distribution characteristics are analyzed through the heat flux results from the LES and their differences between two diurnal cycles are discussed as well. Energy balance and other dynamics are investigated which show that the tide-induced shear production is the main source of the turbulence energy that balanced dissipation. Momentum flux near the surface shows better agreement with atmospheric data computed by the eddy correlation method than those computed by bulk formula.  相似文献   

8.
《Ocean Modelling》2007,16(1-2):106-140
Mixing in both coastal and deep ocean emerges as one of the important processes that determines the transport of pollutants, sediments and biological species, as well as the details of the global thermohaline circulation. Both the observations, due to their lack in space and time resolution, and most coastal and general circulation models due to inadequate physics, can only provide partial information about oceanic mixing processes. A new class of nonhydrostatic models supplemented with physically based subgrid-scale (SGS) closures, or so-called large eddy simulation (LES), is put forth as another tool of investigation to complement observational and large-scale modeling efforts.However, SGS models have been developed primarily for homogeneous, isotropic flows. Here, four SGS models based on Smagorinsky eddy viscosity and diffusivity are tested for stratified flows in the context of 2D dam-break problem in a rectangular enclosed domain. This idealized testbed leads to a number of simplifications about the initial conditions, boundary conditions and geometry, while exhibiting the dynamically complex characteristics of stratified flows involving the interaction of shear-induced mixing and internal waves. Direct numerical simulations (DNS) at high resolutions are taken as benchmark solutions. Under-resolved simulations without SGS terms (so-called DNS1) are used to quantify the impact of SGS stresses. The performance of LES is assessed by using the time evolution of the volume fraction of intermediate density water masses generated by mixing. The simulations are conducted using a nonhydrostatic high-order spectral element model Nek5000 developed to exhibit minimal numerical dissipation and dispersion errors, which is advantageous to quantify accurately the impact of SGS stresses.It is found that all tested SGS models lead to improved results with respect to those from DNS1. Also, SGS models allow for simulations with coarse resolutions that blow up in DNS1 due to lack of adequate dissipation where needed. The SGS model in which the vertical eddy diffusion is modulated via a function that depends on the Richardson number Ri shows the most faithful reproduction of mixed water masses at all resolutions tested.The sensitivity of the results to the tunable parameter of the SGS model, to changes in the Ri-dependent function and resolution of the turbulent overturning scales is shown.  相似文献   

9.
The height of a wave at the time of its breaking, as well as the depth of water in which it breaks, are the two basic parameters that are required as input in design exercises involving wave breaking. Currently the designers obtain these values with the help of graphical procedures and empirical equations. An alternative to this in the form of a neural network is presented in this paper. The networks were trained by combining the existing deterministic relations with a random component. The trained network was validated with the help of fresh laboratory observations. The validation results confirmed usefulness of the neural network approach for this application. The predicted breaking height and water depth were more accurate than those obtained traditionally through empirical schemes. Introduction of a random component in network training was found to yield better forecasts in some validation cases.  相似文献   

10.
采用低速气流运动控制方程组和湍流大涡模拟方法,研究了来风风向对航母甲板风的影响,得到了不同来风风向条件下,艏艉对称面附近、甲板上方低场及航母后方某点处压力和垂向速度随时间的变化关系。结果表明:航母有一定角度的侧向风对舰载机起飞有利,右舷风比左舷风有利;从有利于舰载机着舰角度看,右舷来风较左舷来风有利;从舰载机着舰下滑稳定性上看,来风风向角度越小越有利。  相似文献   

11.
为了探究海底地形对湍流动能收支的影响,本文使用并行大涡模拟模式(The Parallelized Large-Eddy Simulation Model,PALM),以坡陡作为无量纲地形参数(δ),设置了亚临界、临界和超临界三种地形状态(δ=0.5,1和2)进行数值模拟。文章计算并呈现了地形作用下的流体速度和湍流动能收支分布,以及湍流动能平衡方程各参量。通过回归分析和量纲分析重点讨论了地形顶点处耗散和海表处能量的耗散,与地形坡陡的关系,得出其关系均呈指数形式。  相似文献   

12.
《Coastal Engineering》1999,36(1):59-85
Simple theoretical models to determine the equilibrium profile shape under breaking and non-breaking waves are presented. For the case of breaking waves, it is assumed that the seaward transport in the undertow is locally balanced by a net vertical sedimentation, so that no bottom changes occur at equilibrium. The parameterization of the water and sediment flux in the surf zone yields a power curve for the equilibrium profile with a power of 2/3, which is in agreement with previous field investigations on surf zone profile shapes. Three different models were developed to derive the profile shape under non-breaking waves, namely (1) a variational formulation where the wave energy dissipation in the bottom boundary layer is minimized over the part of the profile affected by non-breaking waves, (2) an integration of a small-scale sediment transport formula over a wave period where the slope conditions that yield zero net transport determine equilibrium, and (3) a conceptual formulation of mechanisms for onshore and offshore sediment transport where a balance between the mechanisms defines equilibrium conditions. All three models produced equilibrium profile shapes of power-type with the power typically in the range 0.15–0.30. Comparison with field data supported the results obtained indicating different powers for the equilibrium profile shape under breaking and non-breaking waves.  相似文献   

13.
Energy dissipation in waves breaking on gentle slopes   总被引:1,自引:0,他引:1  
The flow field of waves breaking on a gently sloping beach is shown to closely resemble that of hydraulic jumps. This supports the use of the hydraulic jump formulation for the breaking wave energy dissipation. A correction to this formulation, which takes into account the effects of turbulent flow, is found to explain the observed discrepancies between the classical theoretical result and the experiments satisfactorily. These findings are used to propose a simple, semi-empirical model for the wave height decay which includes the set-up. The model is generalized to a wider range of wave conditions by analyzing published data.  相似文献   

14.
《Coastal Engineering》2006,53(1):99-113
This paper illustrates the results of experimental research carried out in the wave flume of the Water Engineering and Chemistry Department laboratory of Bari Technical University (Italy) and based on the analysis of three different regular waves breaking on a sloping bottom. The investigation refers particularly to the surf zone, with the aim to develop two themes: the study of velocity and Reynolds shear stress distributions in the shoaling zone of a regular wave field and the study of turbulence in the breaking region, observing that these two aspects greatly influence many coastal processes, such as undertow currents, sediment transport and action on maritime structures.  相似文献   

15.
A measurement programme, conducted in a small-scale wave flume, which comprised the breaking of periodic and random waves on a gently sloping beach, was partly repeated in a large-scale wave flume. The results are used here to make a scale comparison. The quantities considered in the comparison are wave heights, set-up and vertical profiles of maximum seaward, maximum shoreward and time-mean horizontal velocities. It appears that, both qualitatively and quantitatively, scale effects in these quantities are virtually absent in the wave height range of 0.1 m to 1.5 m.  相似文献   

16.
The experimental results have so far shown that when a wave breaks on a vertical wall with an almost vertical front face at the instant of impact that is called perfect breaking or perfect impact, the greatest impact forces are produced on the wall. Therefore, the configuration of breaking waves is important in the design considerations of coastal structures. The present study is concerned with determining the geometrical properties of oscillatory waves that break perfectly on the vertical wall of composite-type breakwaters. The laboratory tests for perfect breaking waves on composite breakwaters are conducted with base slopes of 1/2, 1/4 and 1/6, and with berm widths of 0.00, 0.10, 0.20, 0.30 and 0.40 m. The shape and the dimensions of waves at the instant of perfect breaking on the wall are determined using a video camera. The experimental results for the geometrical properties of the breakers are presented non-dimensionally. Within the range of present experimental conditions, it is found that the dimensionless breaker crest height, hb/dw, and dimensionless breaker height, Hb/dw, decrease; and, dimensionless breaker depth, dw/H0, increases with increasing relative berm width, B/D. The breaker height index, Hb/H0, is almost unaffected by B/D. The deep-water wave steepness and the base slope of the breakwater do not seem to influence the geometrical properties of the breakers at wall systematically.  相似文献   

17.
18.
为准确探讨破碎波作用下气体如何卷入以及气泡的形成与输运特性, 文章结合粒子图像测速技术(particle image velocimetry, PIV)、高速相机和气泡测量系统, 以及基于Navier-Stokes方程的三维数值模型对气泡形成及其运动过程进行研究。研究结果表明: 文章建立的数值模型能合理地捕捉到破碎波作用下气体的卷入及其输运过程; 波浪的破碎会形成较大的气腔, 其破裂过程又将产生大量的气体微团; 气泡会增加水体的紊动, 造成水体与空气交界面附近形成大量的漩涡以及水体的飞溅; 气泡的破裂会消耗大量的水体能量, 同时发现较大的紊动动能与气泡的生成有关, 且气泡数随平均紊动动能的增加呈线性增长关系。  相似文献   

19.
The reflection and breaking of internal waves on a sloping beach were studied in a small wavetank filled with water and petroleum. The dependence of the reflection coefficient of the internal waves on wave steepness and on beach slope is found to be very similar to that of surface waves. The reflection coefficient is small for the very gentle slope, increases rapidly as the slope increases, and becomes almost constant for the steep slope. The reflection coefficient decreases with increase of the wave steepness. Also, the transition slope at which the coefficient curve has the maximum gradient increases with increase of the wave steepness. Breaking pattern of the internal waves is classified into four types; breaking, semi-breaking, wrinkle-generating, and non-breaking. Their dependence on beach slope and wave steepness is examined. The regular sequence of the four breaking types from breaking to non-breaking is observed with decrease of wave steepness or with increase of beach slope.  相似文献   

20.
Laboratory tests are conducted to measure the impact pressures of breaking waves on vertical, 5° forward, and 5, 10, 20, 30, and 45° backward sloping walls. The base structure of the wall has a foreshore slope of . Regular waves are used throughout the experiments for all wall angles. The maximum impact pressures on the wall are shown to satisfy the log-normal probability distribution. It is found from the present experiments that the impact pressures and resulting forces on sloping walls can be greater than those on a vertical wall. On the seven different walls tested, the maximum impact pressures occur most frequently slightly below the still-water level. The pattern of the impact pressure history does not change with the slope of the wall, and as the probability of maximum impact pressure decreases, the pressures around the peak pressure region of the impact pressure histories remain longer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号