首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The extinct Pleistocene volcano Muriah, situated behind the main Pleistocene—Recent Sunda magmatic arc in north-central Java, has erupted at least two contrasted groups of lavas. One group forms a well-defined compositional series (Anhydrous Series) from leucite basanite to tephritic phonolite, with olivine and tschermakitic clinopyroxene the main phenocrysts. The other group, the “Hydrous Series”, includes compositionally variable tephrites and high-K andesites with common plagioclase, biotite and amphibole. Lavas of the Anhydrous Series are much richer in LIL trace elements than the most potassic lavas of neighbouring active volcanoes, but relative HFS element enrichment is less pronounced. REE patterns have almost constant slopes from La (250–600 times chondrites) to Yb (5–10 times chondrites), while those of lavas of active centres are less light-enriched, and show flattening in the heavy REE. Anhydrous Series initial 87Sr/86Sr ratios (0.7043–0.7046) are lower than those of active centres (0.7047–0.7053). Hydrous Series lavas are intermediate in all these geochemical characteristics.The most mafic A-series leucite basanite, with Mg/(Mg + Fe2+) 0.69, 140 ppm Ni and 620 ppm Cr was probably derived from the primary magma for the series by fractionation of only 5 wt.% olivine. Its REE pattern suggests derivation from a garnet-bearing source. Experiments on this basanite, with up to 10% olivine and 20% orthopyroxene added, and in the presence of H2O and H2O/CO2 mixtures, have shown that for all but very high magma water contents, the olivine and garnet liquidus fields are widely separated by fields of phlogopite and clinopyroxene. There is no liquidus field of orthopyroxene. Hence, if magma production involved an equilibrium melting process alone, the most probable sources are of garnet-bearing phlogopite clinopyroxenite type. Alternatively, this magma may represent the end-product of interaction between a low-K basanite magma from a garnet lherzolite source in the asthenosphere and a phlogopite-bearing lherzolite zone in the lower lithosphere. Its production was probably related to crustal doming and extension superimposed on the dominant subduction regime. Hydrous Series magmas may have resulted from mixing between Anhydrous Series magmas and high-K calc-alkaline basaltic to andesitic magmas more directly related to subduction processes.  相似文献   

2.
The Mount Edziza Volcanic Complex in north-central British Columbia includes a group of overlapping basaltic shields, salic composite volcanoes, domes and small calderas that range in age from 7.5 Ma to less than 2000 years B.P. The volcanic assemblage is chemically bimodal, comprising voluminous alkali olivine basalt and hawaiite, a salic suite of mainly peralkaline trachyte and comendite, plus a relatively small volume of intermediate rocks (trachybasalt, tristanite, mugearite, benmoreite). The complex is the product of five cycles of magmatic activity, each of which began with alkali olivine basalt and culminated with the eruption of salic magma. The regular chemical variation shown by almost 100 major- and trace-element analyses suggests a genetic lineage between the basic and salic members of each cycle. Least-squares mathematical modelling, indicates that the salic rocks (trachyte and comendite) have formed by fractionation of observed phenocryst and cumulate nodule mineral phases from a common alkali olivine basalt parent magma.Hawaiite is thought to be a cumulate rock, formed by partial fractionation and feldspar accumulation within rising columns of primary alkali olivine basalt. Fractionation leading from alkali olivine basalt through trachybasalt and trachyte to comendite is believed to have taken place where primary basalt became trapped in large crustal reservoirs. The early removal of olivine, clinopyroxene and plagioclase, leading to a trachytic residuum, and subsequent fractionation of mainly alkali feldspar, leading to the peralkaline end members, is consistent with major- and trace-element variation and with isotopic and REE data.The chemical diversity of the complex is attributed to its location over a zone of crustal extension where mantle-derived basalt, trapped in large high-level reservoirs, underwent prolonged fractionation.  相似文献   

3.
The lavas of the 1955 east rift eruption of Kilauea Volcano have been the object of considerable petrologic interest for two reasons. First, the early 1955 lavas are among the most differentiated ever erupted at Kilauea, and second, the petrographic character and chemical composition of the lava being erupted changed significantly during the eruption. This shift, from more differentiated (MgO=5.0–5.7%) to more magnesian (MgO=6.2–6.8%) lava, has been variously interpreted, as either due to systematic excavation of a zoned, differentiated magma body, or to invasion of the differentiated magma by more primitive magma, followed by rapid mixing and eruption of the resulting hybrid magmas. Petrologic examination of several nearvent spatter samples of the late 1955 lavas shows abundant evidence for magma mixing, including resorbed and/or reversely zoned crystals of olivine, augite and plagioclase. In addition, the compositional ranges of olivine, plagioclase and groundmass sulfide are very large, implying that the assemblages are hybrid. Core compositions of olivine phenocrysts range from Fo85 to Fo77. The most magnesian olivines in these samples must have originally crystallized from a melt containing 8.0–8.5% MgO, which is distinctly more magnesian than the bulk composition of the late 1955 lavas. The majorelement and trace-element data are either permissive or supportive of a hybrid origin for the late 1955 lavas. In particular, the compositional trends of the 1955 lavas on plots of CaO vs MgO, and the virtual invariance of Al2O3 and Sr in these plagioclase-phyric lavas are more easily explained by magma mixing than by fractionation. The pattern of internal disequilibrium/re-equilibration in the late 1955 spatter samples is consistent with reintrusion and mixing having occurred at least twice, during the latter part of the 1955 eruption. Plagioclase zonation preserves possible evidence for additional, earlier reintrusion events. Least-squares modelling the mixing of early 1955 bulk compositions with various summit lavas±olivine pick the 1952 summit lava as most like the primitive component. The results also indicate the primitive component had MgO=7.5–8.0%, corresponding to liquidus temperatures of 1165–1175°C. The absence of Fe-Ti oxide phenocrysts in the late 1955 lavas implies that the cooler component of the hybrid had T>1110°C. Thus the thermal contrast between the two components may have been as much as 55–65°C, sufficient to produce the conspicuous disequilibrium effects visible in the spatter samples.  相似文献   

4.
The data on the geochemistry of the rocks of Kizimen Volcano and results of microprobe studies of major and trace elements in plagioclase grains from acid lavas and basalt inclusions are presented. The characteristics of the Kizimen Volcano are the following: (1) basalt inclusions are abundant in acid lavas; (2) banded, mixed lavas occur; (3) the distribution curves of rare-earth elements of acidic lavas and basalt inclusions intersect; (4) Sr-Nd isotope systematics of the rocks and inclusions do not indicate mixture with crustal material; (5) plagioclase phenocrysts are of direct and reverse zonation; (6) olivine and hornblende, as well as acid and mafic plagioclases, coexist in the rocks. The studies revealed that the rocks are of a hybrid nature and originated in the course of repeated mixture of acid and mafic melts either with chemical and thermal interaction of melts or exclusively thermal ones. Study of the major- and trace-element distribution in zonal minerals provides an informative tool for understanding the history of the generation and evolution of melts in a magma chamber.  相似文献   

5.
A picrite lava (22 wt% MgO; 35 vol.% ol) along the western shore of the1.3–1.4 Ma Kahoolawe tholeiitic shield, Hawaii, contains small xenoliths of harzburgite, lherzolite, norite, and wehrlite. The various rock types have textures where either orthopyroxene, clinopyroxene, or plagioclase is in a poikilitic relationship with olivine. The Mg#s of the olivine, orthopyroxene, and clinopyroxene in this xenolith suite range between 86 and 82; spinel Mg#s range from 60 to 49, and plagioclase is An75–80. A 87Sr/86Sr ratio for one ol-norite xenolith is 0.70444. In comparison, the host picrite has olivine phenocrysts with an average Mg# of 86.2 (range 87.5–84.5), and a whole-rock 87Sr/86Sr ratio of 0.70426. Textural and isotopic information together with mineral compositions indicate that the xenoliths are related to Kahoolawe tholeiitic magmatism, but are not crystallization products of the magma represented by their host picrite. Rather, the xenoliths are crystalline products of earlier primitive liquids (FeO/MgO ranging 1 to 1.3) at 5–9 kbar in the cumulate environment of a magma reservoir or conduit system. The presence of ultramafic xenoliths in picrite but not in typical Kahoolawe tholeiitic lava (6–9 wt% MgO) is consistent with replenishment of reservoirs by dense Mg-rich magma emplaced beneath resident, less dense tholeiitic magma. Mg-rich magmas have proximity to reservoir cumulate zones and are therefore more likely than fractionated residual liquids to entrain fragments of cumulate rock.  相似文献   

6.
Bouvet Island, situated near the southernmost end of the Mid-Atlantic Ridge, is characterized by lavas ranging in composition from hawaiite through mugearite and benmoreite to rhyolite. Major and trace elements vary systematically throughout the sequence, as do mineral compositions, and geochemical modelling indicates that the compositional variations observed in the differentiated lavas can be ascribed to extensive fractional crystallization of a parental hawaiite magma. Following this scheme the hawaiite parent magma experienced approximately 44% fractional crystallization of plagioclase + clinopyroxene + olivine + opaque oxides and minor apatite to give rise to the mugearite magma, which in turn experienced a further 69% fractional crystallization of the same phase assemblage (though with more evolved compositions) to give rise to the Bouvet Island rhyolite. Extensive fractional crystallization (64%), possibly separated in time, of the parental hawaiite gave rise to the benmoreite magma. In the latter scheme the fractionating phases are similar both in composition and proportion to those crystallizing in the passage from hawaiite to mugearite, suggesting that the Bouvet Island hawaiites correspond in composition to a six phase (plag + of + cpx + Fe-Ti oxide + ap+ lq) saturation surface and that the more differentiated lavas resulted from differing degrees of crystallization on this surface.  相似文献   

7.
1–15 μm diameter ultramafic inclusions in anorthitic plagioclase megacrysts from Skye were analyzed by electron microprobe and tentatively identified as sub-calcic augite, or sub-calcic augite submicroscopically intergrown with amphibole. The inclusions nucleated in Ca-Al-depleted, Fe-Mg-H2O-enriched magma adjacent to the interface between plagioclase crystals and basalt and were rapidly enveloped by the growing plagioclase. The inclusions may be important in the fractional crystallization of the Skye alkali olivine basalt suite.  相似文献   

8.
Magma plumbing system of the 2000 eruption of Miyakejima Volcano, Japan   总被引:1,自引:0,他引:1  
During the 2000 eruption at Miyakejima Volcano, two magmas with different compositions erupted successively from different craters. Magma erupted as spatter from the submarine craters on 27 June is aphyric basaltic andesite (<5 vol% phenocrysts, 51.4–52.2 wt% SiO2), whereas magma issued as volcanic bombs from the summit caldera on 18 August is plagioclase-phyric basalt (20 vol% phenocrysts, 50.8–51.3 wt% SiO2). The submarine spatter contains two types of crystal-clots, A-type and A-type (andesitic type). The phenocryst assemblages (plagioclase, pyroxenes and magnetite) and compositions of clinopyroxene in these clots are nearly the same, but only A-type clots contain Ca-poor plagioclase (An < 70). We consider that the A-type clots could have crystallized from a more differentiated andesitic magma than the A-type clots, because FeO*/MgO is not strongly influenced during shallow andesitic differentiation. The summit bombs contain only B-type (basaltic type) crystal-clots of Ca-rich plagioclase, olivine and clinopyroxene. The A-type and B-type clots have often coexisted in Miyakejima lavas of the period 1469–1983, suggesting that the magma storage system consists of independent batches of andesitic and basaltic magmas. According to the temporal variations of mineral compositions in crystal-clots, the andesitic magma became less evolved, and the basaltic magma more evolved, over the past 500 years. We conclude that gradually differentiating basaltic magma has been repeatedly injected into the shallower andesitic magma over this period, causing the andesitic magma to become less evolved with time. The mineral chemistries in crystal-clots of the submarine spatter and 18 August summit bombs of the 2000 eruption fall on the evolution trends of the A-type and B-type clots respectively, suggesting that the shallow andesitic and deeper basaltic magmas existing since 1469 had successively erupted from different craters. The 2000 summit collapse occurred due to drainage of the andesitic magma from the shallower chamber; as the collapse occurred, it may have caused disruption of crustal cumulates which then contaminated the ascending, deeper basalt. Thus, porphyritic basaltic magma could erupt alone without mixing with the andesitic magma from the summit caldera. The historical magma plumbing system of Miyakejima was probably destroyed during the 2000 eruption, and a new one may now form.Editorial responsibility: S Nakada, T Druitt  相似文献   

9.
Phenocrysts in volcanic rocks are commonly used to deduce crystallization processes in magma chambers. A fundamental assumption is that the phenocrysts crystallized in the magma chambers at isobaric and nearly equilibrium conditions, on the basis of their large sizes. However, this assumption is not always true as demonstrated here for a porphyritic alkali basalt (Kutsugata lava) from Rishiri Volcano, northern Japan. All phenocryst phases in the Kutsugata lava, plagioclase, olivine, and augite, have macroscopically homogeneous distribution of textures showing features characteristic of rapid growth throughout the crystals. Rarely, a core region with distinct composition is present in all phenocryst phases. Phenocrysts, excluding this core, are occasionally in direct contact with each other, forming crystal aggregates. The equilibrium liquidus temperature of plagioclase, the dominant phase (35 vol%) in the Kutsugata lava, can never exceed the estimated magmatic temperature, unless the liquidus temperature increases significantly due to vesiculation of the magma during ascent. This suggests that most phenocrysts in the Kutsugata lava were formed by decompression of the magma during ascent in a conduit, rather than by cooling during residence in a magma reservoir. In the magma chamber before eruption, probably located at depth of more than 7 km, only cores of the phenocrysts were present and the magma was nearly aphyric (<5 vol% crystals), though the observed rock is highly porphyritic with up to 40 vol% crystals. The Kutsugata magma is inferred to have been rich in dissolved H2O (>4 wt.%) in the magma chamber, and liquidus temperatures of phenocryst phases were significantly suppressed. Large undercooling caused by decompression and degassing of the magma was the driving force for significant crystallization during ascent because of the increase in liquidus temperature due to vapor exsolution. Low ascent rate of the Kutsugata magma, which is suggested by pahoehoe lava morphology and no association of pyroclastics, gave sufficient time for crystallization. Furthermore, the large degree of superheating of plagioclase in the magma chamber caused plagioclase crystallization with low population density and large crystal size, which characterizes the porphyritic nature of the Kutsugata lava. Alkali basalt is likely to satisfy these conditions and similar phenomena are suggested to occur in other volcanic systems.  相似文献   

10.
Rejuvenated-stage tuff cones (Honolulu Volcanics) on Koolau volcano, Oahu, Hawaii, contain xenoliths of Koolau shield basalt. Because Koolau subaerial shield lavas represent a Hawaiian geochemical 'end member', and submarine shield lavas have compositions with some affinities to Mauna Loa and Kilauea, we analyzed 28 xenolithic basalts from Salt Lake and Koko Head cones to determine how these seemingly random samplings of the Koolau profile compare to established Koolau geochemistry. Analyses reveal that 24 are shield tholeiitic basalt—the focus of this study—and 4 are rejuvenated-stage basaltic rocks. The tholeiitic xenoliths represent largely upper Koolau shield lavas, as these samples (8.3 to 5.8 wt% MgO) have, with one exception, overall major- and trace-element compositions that overlap those of Koolau subaerial shield lavas. Secondary processes, however, created some distinctions—namely, enrichments/depletions in K, Ba, Sr, SiO2, and FeO, and, due to zeolitization (chabazite with attending okenite and apophyllite), elevated CaO. One xenolithic basalt with 8.2 wt% MgO has higher Ti, Zr, Nb, and Sc, and lower Zr/Nb than subaerial lavas, and appears to represent relatively early, deeper shield—thereby reinforcing that the Koolau shield source varied temporally. Olivine, orthopyroxene, and plagioclase are the phenocrysts (clinopyroxene is rare), and their core compositions range widely across the suite—Fo87.8–72, orthopyroxene Mg#s 85–72, and An74–60. Several xenolithic basalts have both normally and reversely zoned orthopyroxene and plagioclase with a variety of core compositions (e.g., orthopyroxene-core Mg#s 82, 77, and 72, all in one sample). These compositions and zonations record evidence for wide compositional ranges of replenishment (MgO ~13–8 wt%) and reservoir (MgO ~7 to <5 wt%) magmas mixing in varying proportions; however, extreme MgO lavas (~13 and <5 wt%) are not observed as either subaerial or xenolithic basalt, but are indicated by phenocryst cores of Fo87.8 and orthopyroxene-Mg# 72. The Koolau magma-mixing history resembles that of Kilauea, and is unlike the 'steady-state' mixing known for Mauna Loa. Finally, these basalt samples show that any xenolithic occurrence of Koolau lava is subject to the zeolitization prevalent in the tuff-cone hosts.Editorial handling: M. Carroll  相似文献   

11.
Thirty-six basalt samples from near East Pacific Rise 13°N are analyzed for major and trace elements. Different types of zoned plagioclase phenocrysts in basalts are also backscatter imaged, and major element profiles scanned and analyzed for microprobe. Basalts dredged from a restricted area have evolved to different extents (MgO=9.38wt%—6.76wt%). High MgO basalts are modeled for crystalliza-tion to MgO of about 7wt%, and resulted in the Ni contents (≈28 ppm) that are generally lower than that in observed basalts (>60 ppm). It suggests that low MgO basalts may have experienced more intensive magma mixing. High MgO (9.38wt%) basalt is modeled for self-"mixing-crystallization", and the high Ni contents in low MgO basalts can be generated in small scale and periodical self-mixing of new magma (high MgO). "Mixing-crystallization" processes that low MgO magmas experienced accord with recent 226Ra/230Th disequilibria studies for magma residence time, in which low MgO magmas have experi-enced more circles of "mixing-crystallization" in relatively longer residence time. Magma mixing is not homogeneous in magma chamber, however, low MgO magmas are closer to stable composition pro-duced by periodical "mixing-crystallization", which is also an important reason for magma diversity in East Pacific Rise. Zoned plagioclase phenocrysts can be divided into two types: with and without high An# cores, both of which have multiple reversed An# zones, suggesting periodical mixing of their host magmas. Cores of zoned plagioclase in low MgO (7.45wt%) basalt differ significantly with their mantle in An#, but are similar in An# with microlite cores (products of equilibrium crystallization) in high MgO (9.38wt%) basalt, which further shows that plagioclase phenocryst cores in low MgO basalts may have formed in their parental magmas before entering into the magma chamber.  相似文献   

12.
Shirouma-Oike volcano, a Quaternary composite volcano in central Japan, consists mostly of calc-alkaline andesitic lavas and pyroclastic rocks. Products of the earlier stage of the volcano (older group) are augite-hypersthene andesite. Hornblende crystallized during the later stage of this older group, whereas biotite and quartz crystallized in the younger group.Assemblages of phenocrysts in disequilibrium, such as magnesian olivine(Fo30)/quartz, iron-rich hypersthene(En55)/iron-poor augite(Wo43.5, En42.5, Fs14.0), and two different types of zoning on the rim of clinopyroxene are found in a number of rocks. Detailed microprobe analyses of coexisting minerals reveal that phenocrysts belong to two distinctly different groups; one group includes magnesian olivine + augite which crystallized from a relatively high-temperature (above 1000°C) basaltic magma; the second group, which crystallized from relatively low temperature (about 800°C) dacitic to andesitic magma, includes hypersthene + hornblende + biotite + quartz + plagioclase + titanomagnetite ± ilmenite (in the younger group) and hypersthene + augite + plagioclase + titanomagnetite ± hornblende (in the older group). The temperature difference between the two magmas is clarified by Mg/Fe partition between clinopyroxene and olivine, and Fe-Ti oxides geothermometer. The compositional zoning of minerals, such as normal zoning of olivine and magnesian clinopyroxene, and reverse zoning of orthopyroxene, indicate that the basaltic and dacitic-andesitic magmas were probably mixed in a magma reservoir immediately before eruption. It is suggested that the basaltic magma was supplied intermittently from a deeper part to the shallower magma reservoir, in in which dacitic-andesitic magma had been fractionating.  相似文献   

13.
Quaternary basalt magmas in the Circum-Pacific belt and island arcs and also in Indonesia change continuously from less alkalic and more siliceous type (tholeiite) on the oceanic side to more alkalic and less siliceous type (alkali olivine basalt) on the continental side. In the northeastern part of the Japanese Islands and in Kamchatka, zones of tholeiite, high-alumina basalt, and alkali olivine basalt are arranged parallel to the Pacific coast in the order just named, whereas in the southwestern part of the Japanese Islands, the Aleutian Islands, northwestern United States, New Zealand, and Indonesia, zones of high-alumina basalt and alkali olivine basalt are arranged parallel to the coast. In the Izu-Mariana, Kurile, South Sandwich and Tonga Islands, where deep oceans are present on both sides of the island arcs, only a zone of tholeiite is represented. Thus the lateral variation of magma type is characteristic of the transitional zone between the oceanic and continental structures. Because the variation is continuous, the physico-chemical process attending basalt magma production should also change continuously from the oceanic to continental mantle. Suggested explanations for the lateral variation assuming a homogeneous mantle are: 1) Close correspondence between the variations of depth of earthquake foci in the mantle and of basalt magma type in the Japanese Islands indicates that different magmas are produced at different depths where the earthquakes are generated by stress release: tholeiite at depths around 100 km, high-alumina basalt at depths around 200 km, and alkali olivine basalt at depths greater than 250 km. 2) Primary olivine tholeiite magma is produced at a uniform level of the mantle (100–150 km), and on the oceanic side of the continental margin, it leaves the source region immediately after its production and forms magma reservoirs at shallow depths, perhaps in the crust, where it undergoes fractionation to produce SiO2-oversaturated tholeiite magma, whereas on the continental side, the primary magma forms reservoirs near the source region and stays there long enough to be fractionated to produce alkali olivine basalt magma, and in the intermediate zone, the primary magma forms reservoirs at intermediate depths where it is fractionated to produce high-alumina basalt magma.  相似文献   

14.
Spinel-lherzolite xenoliths have been found in olivine tholeiite near Andover in the Tasmanian Tertiary volcanic province. They show a high-pressure mineralogy of predominant olivine (Mg90), with aluminous enstatite (Mg90) and lesser aluminous diopside and chrome-bearing spinel, and resemble lherzolite xenoliths commonly found in undersaturated lavas. Such xenoliths are unusual in tholeiitic basalts and the occurrence directly attests to a mantle origin for at least some tholeiitic magmas.The lherzolites are accompanied by doleritic and pyroxenitic xenoliths and by olivine, orthopyroxene, clinopyroxene and plagioclase xenocrysts. If near-liquidus phases are represented amongst the xenocrysts, then the magnesian number of the host basalt and its xenocryst assemblage provisionally suggest a magma derived by more than 15–20% partial melting of mantle peridotite, before commencing xenocryst crystallisation at pressures between 8–13 kbar.With this new record, lherzolite-bearing lavas in Tasmania now cover an extremely wide compositional range, extending from highly undersaturated olivine melilitite to olivine tholeiite. They also include a considerable number of fractionated alkaline rocks that are only sparsely reported in the literature as lherzolite hosts. This latter group contains representatives of a previously suggested but unestablished alkaline fractionation series based on olivine nephelinite, viz. calcic olivine nephelinite → sodic olivine nephelinite → potassi-sodic olivine nephelinite → mafic nepheline benmoreite → mafic phonolite.Lherzolite and megacryst-bearing lavas are relatively more abundant in peripheral parts to the main basalt sequences in Tasmania. This suggests that they developed in fringing zones of less intense mantle melting which enhanced stagnation and fractionation of magmas within the mantle before eruption. Calculated crustal thicknesses under these areas suggest that the magmas were generated at pressures exceeding 6–11 kbar, with the Andover tholeiitic magma exceeding 9 kbar.  相似文献   

15.
Bimodal tholeiitic and mildly alkalic basalts occur near Bhir, in the central part of Deccan Volcanic Province (DVP). Major and trace element concentrations show that, of the ten flows, nine are tholeiitic and one is an alkalic basalt. The Bhir basalts have a wide range of chemical composition. Geochemical variations in the stratigraphic section define three distinct phases of evolution (zones 1 to 3). Crystal fractionation of plagioclase, clinopyroxene, olivine and Fe–Ti oxide expanded the compositional range. Low Mg#s (39–55), low concentrations of Ni and Cr and high Zr suggest the evolved nature of the Bhir basalts. Fractionation modeling suggests about 42% fractional crystallization.In spite of the dominant role of fractional crystallization in the evolution of Bhir basalts, some other processes must be sought to explain the chemical variations. Crustal contamination, magma mixing and degree of partial melting are suggested to explain the observed chemical variations. Resorption, reverse zoning and compositional bimodality in plagioclase phenocrysts indicate magma mixing. Samples of flows one and four suspected of being contaminated all have enriched SiO2 and LILE (K, Rb, and Ba) contents and depletion in Ti and P, believed to be due to ‘granitic’ crustal contamination.As compared to tholeiitic basalts, the alkalic basalts are characterized by low SiO2 and high TiO2, Na2O, K2O and P2O5. Alkalic basalts are richer in LILE (Rb and Ba), HFSE (Nb, Zr, and Y) and REE than the tholeiitic basalts. The alkalic basalt occurrence is important from a petrogenetic point of view and also suggests that the sources of alkalic basalt magmas may be of variable ages under different parts of the DVP. Based on major, trace and rare earth element distributions it is suggested that asthenospheric mantle having affinities with the source of OIB was the source material of the magmas and the range in the composition of tholeiitic and alkalic basalts was probably controlled by different degrees of melting and/or inhomogeneities in the mantle source.  相似文献   

16.
In 1874 and 1875 the fissure swarm of Askja central volcano was activated during a major rifting episode. This rifting resulted in a fissure eruption of 0.3 km3 basaltic magma in Sveinagja graben, 50 to 70 km north of Askja and subsequent caldera collapse forming the Oskjuvatn caldera within the main Askja caldera. Five weeks after initial collapse, an explosive mixed magma eruption took place in Askja. On the basis of matching chemistry, synchronous activity and parallels with other rifted central volcanoes, the events in Askja and its lissure swarm are attributed to rise of basaltic magma into a high-level reservoir in the central volcano, subsequent rifting of the reservoir and lateral flow magma within the fissure swarm to emerge in the Sveinagja eruption. This lateral draining of the Askja reservoir is the most plausible cause for caldera collpse. The Sveinagja basalt belong to the group of evolved tholejites characteristie of several Icelandic central volcanoes and associated fissure swarms. Such tholeiites, with Mgvalues in the 40 to 50 tange, represent magmas which have suffered extensive fractional crystallization within the crust. The 12% porphyritic Sveinagja basalt contains phenocrysts of olivine (Fo62–67), plagioclase (An57–62), clinopyroxene (Wo38En46Wo16) and titanomagnetite. Extrusion temperature of the lava, calculated on the basis of olivine and plagioclase geothermometry, is found to be close to 1150°C.  相似文献   

17.
Detailed petrographic analysis of calcalkaline volcanic rocks of Shirouma-Oike volcano, Japan, reveals that the complex phenocryst assemblage (Ol+Cpx+Opx+Hb+Bt+Qz+Pl+Mt+Hm) in the younger group volcanic rocks can be divided into two groups, a high temperature group (Ol+Cpx±An-rich Pl) and a low temperature group (Op+Hb+Bt+Qz±Ab-rich Pl+Mt+Hm). Compositional zonation of the phenocrystic minerals, normal zoning in olivine and clinopyroxene, and reverse zoning in orthopyroxene and plagioclase, indicate that these two groups of phenocrysts precipitated from two different magmas which mixed before the eruption. The low temperature magma is a stagnant magma in a shallow magma chamber, to which high temperature basaltic magma is intermittently supplied. Magma mixing is also indicated in olivine-bearing two pyroxene andesite of the older group volcanic rocks, by the coexistence of normally zoned Mg-rich clinopyroxene phenocrysts and reversely zoned Fe-rich clinopyroxene phenocrysts, and by reverse zoning in orthopyroxene phenocrysts. It is concluded that magma mixing is an important process responsible for the generation of the disequilibrium features in calc-alkaline volcanic rocks.  相似文献   

18.
The Mojanda–Fuya Fuya Volcanic Complex consists of two nearby volcanoes, Mojanda and Fuya Fuya. The older one, Mojanda volcano (0.6 to 0.2 Ma), was first constructed by andesites and high-silica andesites forming a large stratovolcano (Lower Mojanda). This edifice was capped by a basaltic andesite and andesitic cone (Upper Mojanda), which collapsed later to form a 3-km-wide summit caldera, after large phreatomagmatic eruptions. The Lower Fuya Fuya edifice was constructed by the extrusion of viscous Si-rich andesitic lavas and dacitic domes, and the emission of a thick sequence of pyroclastic-flow and fallout deposits which include two voluminous rhyolitic layers. An intermediate construction phase at Fuya Fuya is represented by a mainly effusive cone, andesitic in composition (San Bartolo edifice), the construction of which was interrupted by a major sector collapse in the Late Pleistocene. Finally, a complex of thick siliceous lavas and domes was emplaced within the avalanche amphitheatre, forming the Upper Fuya Fuya volcanic centre. This paper shows that the general evolution from an effusive to an explosive eruptive style is related to a progressive adakitic contribution to the magma source. Although all the rocks of the complex are included in the medium-K field of continental arcs, the Fuya Fuya suite (61–75 wt.% SiO2) shows depletion in Y and HREE and high Sr/Y and La/Yb values, compared to the less silicic Mojanda suite (55–66.5 wt.% SiO2). The Mojanda calc-alkaline suite was generated by partial melting of an adakite-metasomatised mantle source that left a residue with 2% garnet, followed by fractional crystallization of dominant plagioclase + pyroxene + olivine at shallow, intra-crustal depths. For Fuya Fuya, geochemical and mineralogical data suggest either (1) partial melting of a similar metasomatised mantle with more garnet in the residue (4%), followed by fractional crystallization involving plagioclase, amphibole and pyroxene, or (2) mixing of mafic mantle-derived magma from the Mojanda suite and slab melts, followed by the same fractional crystallization process.  相似文献   

19.
Ascertaining the emplacement mechanism of oceanic basaltic lavas is important in understanding how ocean floor topography is produced and oceanic plates evolve, particularly during the early stages of crustal development of a supra-subduction zone. A detailed study of the volcanic stratigraphy at International Ocean Discovery Program (IODP) Site U1438 in the Amami Sankaku Basin, west of the Kyushu–Palau Ridge, has revealed the development of lava accretion and ridge topography on the Philippine Sea plate at about 49 Ma. Igneous basement rocks penetrated at Site U1438 are the uppermost 150 m of ~6 km-thick oceanic crust, and comprise, in a downhole direction, sheet flows (12.6 m), lobate sheet flows (61.3 m), pillow lavas (50.7 m), and thin sheet flows (25.3 m). The lowermost sheet flows are intercalated with layers of limestone and epiclastic tuff. Lithofacies analysis reveals that the lowermost sheet flows, limestone, and tuff formed on an axial rise, the pillow lavas were emplaced on a ridge slope, and the lobate sheet flows formed off ridge on an abyssal plain. The lithofacies of the basement basalt corresponds to the upper portions of fast-spreading oceanic crust, suggesting that subduction initiation was associated with intermediate to fast rates of seafloor spreading. The surface sheet flows are olivine–clinopyroxene-phyric basalt and differ from the lower basalt flows that contain phenocrysts of olivine and plagioclase, with or without clinopyroxene. The depleted chrome-spinel composition and olivine–clinopyroxene phenocryst assemblage in the surface sheet flows suggests a slight contribution of water for magma generation not present for the lower basalt flows. Considering the lithological difference between the backarc and forearc oceanic crust in the Izu–Bonin–Mariana arc, with sheet flow dominant in the former, seafloor spreading occurred faster in the later stage of subduction initiation.  相似文献   

20.
A petrological model for the uppermost upper mantle and crust under the Koolau shield to a depth of about 60 km has been derived on the basis of petrology of the upper mantle and crustal xenoliths in nephelinites of the Honolulu Volcanic Series. Three main xenolith suites exist in the Koolau shield: dunites, spinel lherzolites, and garnet-bearing pyroxenites. On the basis of mineralogy, it is inferred that the dunites represent cumulates in shallow crustal tholeiitic magma chambers, the spinel lherzolites form a thick (~ 40 km) layer in the upper mantle, and the garnet pyroxenite suite occurs as veins and stringers in the spinel lherzolites at about 60 km depth.The eruption sequence in a Hawaiian volcano, i.e., tholeiite → transitional basalt → alkali basalt, is generated by partial melting of a volatile-bearing garnet-lherzolite part of a lithospheric plate as it rides over a hot spot. If the tholeiite, transitional, and alkali basalts of Hawaiian volcanoes are generated at the same depth, then the observed sequence of lavas requires replenishment of the source area with volatiles and gradual decrease of the degree of partial melting with time. Post-erosional olivine nephelinites are produced from isotopically distinct, deeper source area, which may be the asthenosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号