首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
在较为理想的孔隙介质模型和测井环境下,利用严格的Biot理论,建立了利用声全波测井资料直接反演渗透率的图版,作为对方法可行性的检验,用该图版分别对理论合成数据和现场实测声全波资料进行了处理,并将其反演结果分别同合成时的输入值和取芯测量值进行了比较。  相似文献   

2.
双相介质井孔多极源声测井理论及分波分析与全波计算   总被引:7,自引:4,他引:7  
用Biot双相介质模拟油储层,对井孔中多极声源激发的声波场进行了系数的理论推导,分波分析和全波计算。对模式波作了通常的频散分析,特别强调地激发特性对横式波传播行为的影响。  相似文献   

3.
基于Biot的饱和孔隙弹性介质的运动方程和利用复变函数方法,本文研究了无限饱水孔隙弹性空间中由常速运动源所产生的位移场。考虑了两种类型源:a.沿无限空间水平轴运动的斜向集中力源;b.运动双力偶源。关于力源的运动速度,考虑了4种情形:a.力源的运动速度U小于饱水孔隙弹性介质的三种体波速度一亚音速情形;b.速度U小于介质的第一纵波过度和横波速度,但大于第二纵波速度─—弱跨音速情形;c.速度U小于第一纵波速度,但大于横波速度和第二级波速度─—强跨音速情形;d.速度U大于介质的所有三种体波速度─—超音速情形。结果表明,在跨音达和超音速情形里,解呈现出与力源相联系的平面冲击波特征,位移出现了相应的跳跃。  相似文献   

4.
1991年3月22日耀斑激波的传播特性   总被引:2,自引:3,他引:2       下载免费PDF全文
采用MHD数值方法研究了1991年3月22日22:47UT日面大耀斑引起的行星际激波传播的几何特性,以及初始驱动时间对传播的影响。得出:1.该激波在黄道面投影是非对称的,最快处偏离耀斑法线向东;2.激波面偏离球面,但随着远离太阳这种偏离减小;3.总能相同时,驱动时间短的激波较强,速度较快;能量变化范围相同时,不同初速比不同驱动时间对激波传播速度影响更大。  相似文献   

5.
利用二维谱分析井径变化对声波测井响应的影响   总被引:1,自引:1,他引:0       下载免费PDF全文
本文简要介绍了井孔声场二维谱的计算方法,实现了对不同井径井孔中的声场二维谱和声场模拟计算,得到了不同井径井孔声场二维谱的分布图以及声压波形图.通过对不同井径井孔中声场二维谱的特征分析,讨论了不同井孔中的声波场中的纵波、横波以及各种模式波的特征.通过对比二维谱可以明显地看出纵波、横波以及各种模式波均受井径变化的影响.实践证明井孔声场二维谱能够直观地显示出不同井径中声场传播的特征.  相似文献   

6.
渗透率场敏感系数的数值计算   总被引:5,自引:1,他引:5       下载免费PDF全文
由渗流微分方程定解问题,利用格林互易定理从理论上导出了渗透率场敏感系数 的计算公式,并借助于数值积分和差分方法给出了渗透率场敏感系数的离散形式. 由Peacem an方程建立了井压渗透率场敏感系数与网格压力渗透率场敏感系数的关系. 对理论模型利用 三维不均匀非稳定渗流场的压强数值解计算了井压对渗透率场的敏感系数,并用敏感系数的 直接计算方法进行了验证,结果表明本文的计算方法与直接计算方法相吻合.  相似文献   

7.
利用斯通利波速度反演地层横波速度的方法与应用研究   总被引:1,自引:0,他引:1  
从严格的Biot-Rosenbaum模型出发,在低频近似下得到井孔中斯通利波相速度的解析表达式。它与Tang等从简化的Biot-Rosenbaum模型所得到的结果类似。从理论上说明了在低频近似下简化模型的合理性,在不同频率下,对其结果中所含的声系大小修正和Norris修正作了比较。  相似文献   

8.
目前评价固井质量的声波测井方法均是在井内泥浆中辐射声波,再耦合到套管中激发套管波,这种测量方式在重泥浆或含气的井筒内应用时受到了限制.本文将电磁超声换能器引入到套管井中,无需井内介质的声耦合直接在套管中激发沿着套管轴向偏振、周向传播的准SH波.利用多物理场有限元仿真技术优化设计了磁盘阵列式的偏置磁场和跑道型线圈结构的电...  相似文献   

9.
孔隙度和渗透率是岩石和测井储层评价的两个重要参数.通过大量的学术调研,对影响孔隙度和渗透率测量的实验条件进行分析和总结.影响的因素主要有实验的温度和各种压力条件.但不同孔渗条件的岩样,温度和压力影响的程度不同.总的来说,随着温度和压力的升高,孔隙度和渗透率稍稍降低,整体变化幅度很小.岩样孔隙度和渗透率越低,温度和压力敏感性越强.研究温度和压力对孔隙度渗透率测量的影响因素,为准确测量岩样的孔隙度和渗透率提供实验依据,也为研究储层温度和压力条件下的多场耦合问题提供理论基础,同时为石油热开采提高渗透率和核废料地下安全性处理提供技术支持.  相似文献   

10.
通过对两相饱和介质 Biot 方程的变换,利用 Poisson 方程和 Helm holtz 方程性质,求解得到两相饱和介质在集中力点源作用下的位移场 Green 函数  相似文献   

11.
To investigate the effect of permeability on the propagation of seismo-acoustic waves through marine sediments, a theoretical model based on Biot's equations is established which relates the compressional wave velocity measured at a fixed frequency to computed velocities at zero and infinite frequencies in terms of sediment porosity and permeability. The model is examined experimentally in a standard soil mechanics consolidation test (itself dependent, among other things, on sediment porosity and permeability) which has been modified to include measurements of compressional wave velocity at 1 MHz and shear-wave velocity at 5 kHz. This test allows the elastic modulus of the sediment frame to be assessed under different load conditions simultaneous with the velocity determinations. From a number of tests on different samples, five samples are chosen to typify the range of sediment sizes. The results show that the difference between the measured velocity at 1 MHz and the model-derived velocity at zero frequency increases with increasing particle size (from clays to fine sand), with decreasing porosity, and with increasing permeability. For sediments coarser than fine sand the simple model breaks down, possibly because of the dominance of scattering/diffraction effects at the high frequency of the experiment. Within this limitation the model seems satisfactory to offer a capability of predicting the permeability of a sea floor sediment to an order of magnitude by the in situ measurement of seismic velocities over a wide range of frequencies; the prediction process requires a good in situ determination of sediment porosity such as that offered by electrical formation factor measurements.  相似文献   

12.
含流体砂岩地震波频散实验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
为了研究孔隙流体对不同渗透率岩石地震波速度的影响,在实验室利用跨频带岩石弹性参数测试系统得到了应变幅值10-6的2~2000Hz频段下的地震波速度和1 MHz频率下的超声波速度,利用差分共振声谱法得到了频率600Hz岩石干燥和完全饱水情况下岩石声学参数.实验表明,在低饱和度下,致密砂岩在地震和超声频段下没有明显的频散;在高饱和度下纵波速度的频散变得明显.从干燥到完全水饱和条件,不同频率测量的致密砂岩的体积模量随岩石孔隙度增高而降低,且体积模量的变化量受岩石微观孔隙结构的影响较大.高孔、高渗砂岩无论在低含水度下还是在高含水饱和度下频散微弱,并且在地震频段下围压对于岩石纵横波速度的影响要大于频率的影响.高孔、高渗砂岩和致密砂岩不同含水饱和度下的频散差异可应用于储层预测,油气检测等方面,同时该研究可以更好地帮助理解岩石的黏弹性行为,促进岩石物理频散理论的发展,提高地震解释的精度.  相似文献   

13.
We have modeled the effect of a direct current (DC) electric field on the propagation of seismic waves by the pseudospectral time domain (PSTD) method, based on a set of governing equations for the poroelastic media. This study belongs to the more general term of the seismoelectric coupling effect. The set of physical equations consists of the poroelastodynamic equations for the seismic waves and the Maxwell's equations for the electromagnetic waves; the magnitude of the seismoelectric coupling effect is characterized by the charge density, the electric conductivity, the Onsager coefficient, a function of the dielectric permittivity, the fluid viscosity, and the zeta potential. The poroelastodynamic vibration of a solid matrix generates an electric oscillation with the form of streaming current via the fluctuation of pore pressure. Meanwhile, fluctuating pore pressure also causes oscillatory variation of the electric resistivity of the solid matrix. The simulated poroelastic wave propagation and electric field variation with an existing background DC electric field are compared with the results of a physical experiment carried out in an oilfield. The results show that the DC electric field can significantly affect the propagating elastic energy through the seismoelectric coupling in a wide range of the seismic frequency band.  相似文献   

14.
We measured in the laboratory ultrasonic compressional and shear‐wave velocity and attenuation (0.7–1.0 MHz) and low‐frequency (2 Hz) electrical resistivity on 63 sandstone samples with a wide range of petrophysical properties to study the influence of reservoir porosity, permeability and clay content on the joint elastic‐electrical properties of reservoir sandstones. P‐ and S‐wave velocities were found to be linearly correlated with apparent electrical formation factor on a semi‐logarithmic scale for both clean and clay‐rich sandstones; P‐ and S‐wave attenuations showed a bell‐shaped correlation (partial for S‐waves) with apparent electrical formation factor. The joint elastic‐electrical properties provide a way to discriminate between sandstones with similar porosities but with different clay contents. The laboratory results can be used to estimate sandstone reservoir permeability from seismic velocity and apparent formation factor obtained from co‐located seismic and controlled source electromagnetic surveys.  相似文献   

15.
16.
The bottom simulating reflector (BSR) in gas hydrate-bearing sediments is a physical interface which is composed of solid, gas, and liquid and is influenced by temperature and pressure. Deep sea floor sediment is a porous, unconsolidated, fluid saturated media. Therefore, the reflection and transmission coefficients computed by the Zoeppritz equation based on elastic media do not match reality. In this paper, a two-phase media model is applied to study the reflection and transmission at the bottom simulating reflector in order to find an accurate wave propagation energy distribution and the relationship between reflection and transmission and fluid saturation on the BSR. The numerical experiments show that the type I compressional (fast) and shear waves are not sensitive to frequency variation and the velocities change slowly over the whole frequency range. However, type II compressional (slow) waves are more sensitive to frequency variation and the velocities change over a large range. We find that reflection and transmission coefficients change with the amount of hydrate and free gas. Frequency, pore fluid saturation, and incident angle have different impacts on the reflection and transmission coefficients. We can use these characteristics to estimate gas hydrate saturation or detect lithological variations in the gas hydrate-bearing sediments.  相似文献   

17.
The strong coupling of applied stress and pore fluid pressure, known as poroelasticity, is relevant to a number of applied problems arising in hydrogeology and reservoir engineering. The standard theory of poroelastic behavior in a homogeneous, isotropic, elastic porous medium saturated by a viscous, compressible fluid is due to Biot, who derived a pair of coupled partial differential equations that accurately predict the existence of two independent dilatational (compressional) wave motions, corresponding to in-phase and out-of-phase displacements of the solid and fluid phases, respectively. The Biot equations can be decoupled exactly after Fourier transformation to the frequency domain, but the resulting pair of Helmholtz equations cannot be converted to partial differential equations in the time domain and, therefore, closed-form analytical solutions of these equations in space and time variables cannot be obtained. In this paper we show that the decoupled Helmholtz equations can in fact be transformed to two independent partial differential equations in the time domain if the wave excitation frequency is very small as compared to a critical frequency equal to the kinematic viscosity of the pore fluid divided by the permeability of the porous medium. The partial differential equations found are a propagating wave equation and a dissipative wave equation, for which closed-form solutions are known under a variety of initial and boundary conditions. Numerical calculations indicate that the magnitude of the critical frequency for representative sedimentary materials containing either water or a nonaqueous phase liquid is in the kHz–MHz range, which is generally above the seismic band of frequencies. Therefore, the two partial differential equations obtained should be accurate for modeling elastic wave phenomena in fluid-saturated porous media under typical low-frequency conditions applicable to hydrogeological problems.  相似文献   

18.
The evidence attesting to the possibility of the largest spectral maximum in seismic noise with a peak frequency of 0.14–0.22 Hz to form as a result of low-frequency dissipation of elastic wave energy in rocks is presented. According to this mechanism, elastic wave energy in rock, which can be considered as a two-component medium (solid matrix + pore water), is dissipated in the form of low-frequency pulses whose energy is the lower the smaller the coefficient of porosity. It is assumed that weak seismic events continuously occur in the frequency range above 6 Hz, and their dissipated energy is a source of the low-frequency noise.  相似文献   

19.
This paper describes the measurements of the acoustic and petrophysical properties of two suites of low‐shale sandstone samples from North Sea hydrocarbon reservoirs, under simulated reservoir conditions. The acoustic velocities and quality factors of the samples, saturated with different pore fluids (brine, dead oil and kerosene), were measured at a frequency of about 0.8 MHz and over a range of pressures from 5 MPa to 40 MPa. The compressional‐wave velocity is strongly correlated with the shear‐wave velocity in this suite of rocks. The ratio VP/VS varies significantly with change of both pore‐fluid type and differential pressure, confirming the usefulness of this parameter for seismic monitoring of producing reservoirs. The results of quality factor measurements were compared with predictions from Biot‐flow and squirt‐flow loss mechanisms. The results suggested that the dominating loss in these samples is due to squirt‐flow of fluid between the pores of various geometries. The contribution of the Biot‐flow loss mechanism to the total loss is negligible. The compressional‐wave quality factor was shown to be inversely correlated with rock permeability, suggesting the possibility of using attenuation as a permeability indicator tool in low‐shale, high‐porosity sandstone reservoirs.  相似文献   

20.
Quantifying the effects of pore-filling materials on elastic properties of porous rocks is of considerable interest in geophysical practice. For rocks saturated with fluids, the Gassmann equation is proved effective in estimating the exact change in seismic velocity or rock moduli upon the changes in properties of pore infill. For solid substance or viscoelastic materials, however, the Gassmann theory is not applicable as the rigidity of the pore fill (either elastic or viscoelastic) prevents pressure communication in the pore space, which is a key assumption of the Gassmann equation. In this paper, we explored the elastic properties of a sandstone sample saturated with fluid and solid substance under different confining pressures. This sandstone sample is saturated with octadecane, which is a hydrocarbon with a melting point of 28°C, making it convenient to use in the lab in both solid and fluid forms. Ultrasonically measured velocities of the dry rock exhibit strong pressure dependency, which is largely reduced for the filling of solid octadecane. Predictions by the Gassmann theory for the elastic moduli of the sandstone saturated with liquid octadecane are consistent with ultrasonic measurements, but underestimate the elastic moduli of the sandstone saturated with solid octadecane. Our analysis shows that the difference between the elastic moduli of the dry and solid-octadecane-saturated sandstone is controlled by the squirt flow between stiff, compliant, and the so-called intermediate pores (with an aspect ratio larger than that of compliant pore but much less than that of stiff pores). Therefore, we developed a triple porosity model to quantify the combined squirt flow effects of compliant and intermediate pores saturated with solid or viscoelastic infill. Full saturation of remaining stiff pores with solid or viscoelastic materials is then considered by the lower embedded bound theory. The proposed model gave a reasonable fit to the ultrasonic measurements of the elastic moduli of the sandstone saturated with liquid or solid octadecane. Comparison of the predictions by the new model to other solid substitution schemes implied that accounting for the combined effects of compliant and intermediate pores is necessary to explain the solid squirt effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号