首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tal Ezer  Lie-Yauw Oey 《Ocean Dynamics》2013,63(2-3):243-263
A high-resolution numerical ocean circulation model of the Bering Sea (BS) is used to study the natural variability of the BS straits. Three distinct categories of strait dynamics have been identified: (1) Shallow passages such as the Bering Strait and the Unimak Passage have northward, near barotropic flow with periodic pulses of larger transports; (2) wide passages such as Near Straits, Amukta Pass, and Buldir Pass have complex flow patterns driven by the passage of mesoscale eddies across the strait; and (3) deep passages such as Amchitka Pass and Kamchatka Strait have persistent deep return flows opposite in direction to major surface currents; the deep flows persist independent of the local wind. Empirical orthogonal function analyses reveal the spatial structure and the temporal variability of strait flows and demonstrate how mesoscale variations in the Aleutian passages influence the Bering Strait flow toward the Arctic Ocean. The study suggests a general relation between the barotropic and baroclinic Rossby radii of deformations in each strait, and the level of flow variability through the strait, independent of geographical location. The mesoscale variability in the BS seems to originate from two different sources: a remote origin from variability in the Alaskan Stream that enters the BS through the Aleutian passages and a local origin from the interaction of currents with the Bowers Ridge in the Aleutian Basin. Comparisons between the flow in the Aleutian passages and flow in other straits, such as the Yucatan Channel and the Faroe Bank Channel, suggest some universal topographically induced dynamics in strait flows.  相似文献   

2.
In this paper, we use the unstructured grid model SCHISM to simulate the thermohydrodynamics in a chain of baroclinic, interconnected basins. The model shows a good skill in simulating the horizontal circulation and vertical profiles of temperature, salinity, and currents. The magnitude and phases of the seasonal changes of circulation are consistent with earlier observations. Among the mesoscale and subbasin-scale circulation features that are realistically simulated are the anticyclonic coastal eddies, the Sebastopol and Batumi eddies, the Marmara Sea outflow around the southern coast of the Limnos Island, and the pathway of the cold water originating from the shelf. The superiority of the simulations compared to earlier numerical studies is demonstrated with the example of model capabilities to resolve the strait dynamics, gravity currents originating from the straits, high-salinity bottom layer on the shallow shelf, as well as the multiple intrusions from the Bosporus Strait down to 700 m depth. The warm temperature intrusions from the strait produce the warm water mass in the intermediate layers of the Black Sea. One novel result is that the seasonal intensification of circulation affects the interbasin exchange, thus allowing us to formulate the concept of circulation-controlled interbasin exchange. To the best of our knowledge, the present numerical simulations, for the first time, suggest that the sea level in the interior part of the Black Sea can be lower than the sea level in the Marmara Sea and even in some parts of the Aegean Sea. The comparison with observations shows that the timings and magnitude of exchange flows are also realistically simulated, along with the blocking events. The short-term variability of the strait transports is largely controlled by the anomalies of wind. The simulations demonstrate the crucial role of the narrow and shallow strait of Bosporus in separating the two pairs of basins: Aegean-Marmara Seas from one side and Azov-Black Seas from the other side. The straits of Kerch and Dardanelles provide sufficient interbasin connectivity that prevents large phase lags of the sea levels in the neighboring basins. The two-layer flows in the three straits considered here show different dependencies upon the net transport, and the spatial variability of this dependence is also quite pronounced. We show that the blocking of the surface flow can occur at different net transports, thus casting doubt on a previous approach of using simple relationships to prescribe (steady) outflow and inflow. Specific attention is paid to the role of synoptic atmospheric forcing for the basin-wide circulation and redistribution of mass in the Black Sea. An important controlling process is the propagation of coastal waves. One major conclusion from this research is that modeling the individual basins separately could result in large inaccuracies because of the critical importance of the cascading character of these interconnected basins.  相似文献   

3.
The Canadian Arctic Archipelago (CAA) is a complex area formed by narrow straits and islands in the Arctic. It is an important pathway for freshwater and sea-ice transport from the Arctic Ocean to the Labrador Sea and ultimately to the Atlantic Ocean. The narrow straits are often crudely represented in coupled sea-ice–ocean models, leading to a misrepresentation of transports through these straits. Unstructured meshes are an alternative in modelling this complex region, since they are able to capture the complex geometry of the CAA. This provides higher resolution in the flow field and allows for more accurate transports (but not necessarily better modelling). In this paper, a finite element sea-ice model of the Arctic region is described and used to estimate the sea-ice fluxes through the CAA. The model is a dynamic–thermodynamic sea-ice model with elastic–viscous–plastic rheology and is coupled to a slab ocean, where the temperature and salinity are restored to climatology, with no velocities and surface elevation. The model is spun-up from 1973 to 1978 with NCEP/NARR reanalysis data. From 1979 to 2007, the model is forced by NCEP/DoE reanalysis data. The large scale sea-ice characteristics show good agreement with observations. The total sea-ice area agrees very well with observations and shows a sensitivity to the Arctic oscillation (AO). For 1998–2002, we find estimates for the sea-ice volume and area fluxes through Admunsen Gulf, McClure Strait and the Queen Elizabeth Islands that compare well with observation and are slightly better than estimates from other models. For Nares Strait, we find that the fluxes are much lower than observed, due to the missing effect of topographic steering on the atmospheric forcing fields. The 1979–2007 fluxes show large seasonal and interannual variability driven primarily by variability in the ice velocity field and a sensitivity to the AO and other large-scale atmospheric variability, which suggests that accurate atmospheric forcing might be crucial to modelling the CAA.  相似文献   

4.
《国际泥沙研究》2020,35(4):417-429
The aim of the current study was to determine the nature of the seasonal variability of the Suspended Particulate Matter (SPM) fluxes from the drainage basin to the estuary in a macrotidal region (Northeastern Brazil), and the estuarine response to a seawater intrusion regarding sediment deposition, which will support the understanding of the global transport of materials at the continent-ocean interface. Thermohaline structure data was acquired using a Conductivity, Temperature, and Depth (CTD) probe with a sampling frequency of 4 Hz. Suspended particulate material was measured by gravimetric measurements applied to exact filtered volume samples. The outflows were measured through the use of an Acoustic Doppler Current Profiler (ADCP) with frequency of 1.5 MHz. The horizontal thermal and saline gradients varied from warmer and less saline waters (2014) to cooler and saline waters (2015). The gradient behavior when linked to volume transport and SPM flows, suggests a minimization of the fluvial flows in 2015, easing the advance of coastal water (CW) towards the inner estuary, leading to an inversion of the baroclinic pressure gradient. The bottom saline front, generated by the entrance of coastal water masses, caused an increase in SPM concentrations due to increased fluid density, resuspension of previously deposited sediment, and erosion of banks. High concentrations of SPM indicate higher volume transport suggesting a hydraulic barrier due to the change/inversion of the baroclinic pressure gradient, resulting in water and material retention. Material deposition was observed during neap tide, while during spring tide the material is resuspended, increasing the concentration, generating cycles of deposition and erosion during the neap-spring tides. The sediment in suspension that reach the estuary, even with low fluvial volume, stay in this environment forming new islands because of deposition. High deposition rates or sediment cycling, if generated by the hydraulic barrier, may indicate that the flows of SPM from the continental drainage to the estuary and adjacent continental shelf are interrupted and the residence time is increased.  相似文献   

5.
A coastal ocean extended Prince William Sound nowcast/forecast system (EPWS/NFS) has been running semi-automatically for an extended domain of Prince William Sound (PWS), Alaska for 2 years. To determine the performance of this modeling system, an assessment is conducted. EPWS/NFS and PWS/NFS (viz., its predecessor) nowcasts are compared with observed time series of sea surface temperature (SST) and coastal sea level (CSL) at a few stations, and to velocity profiles from a moored ADCP. With the extension of the model domain to include the continental shelf outside PWS and forced by an operational global ocean model (Global-Navy Coastal Ocean Model (Global-NCOM)) and a 2D tidal model at the open boundary, EPWS/NFS has achieved significant improvement over PWS/NFS, which covered only PWS per se, for most of the predicted variables in this study. In both magnitude and phase, EPWS/NFS accurately predicts the coastal tide fluctuations, as well as M2 tidal currents in Central Sound, although significant errors in coastal tides exist during some spring and neap tide cycles. Other than for the tidal motions, EPWS/NFS generally produces less energetic CSL and velocity variations than those observed. In comparison, although PWS/NFS well predicts the coastal tides, it suffers from the absence of low-frequency CSL variations, as well as misprediction of M2 tidal currents in Central Sound. For 40 h low-passed PWS/NFS and EPWS/NFS velocities, significant phase error occurs during the model–date comparison period, while EPWS/NFS nowcasts generally produce less root-mean-square-error (rmse) and smaller correlations with the observations than PWS/NFS does. Both observations and EPWS/NFS have similar vertical profiles of baroclinic velocity standard deviations, but some substantial discrepancies occur in the velocity direction. Also, in the Central Sound, EPWS/NFS predicts well the SST seasonal cycle and a major cooling event during the summer 2005. However, for periods shorter than 1 week, both PWS/NFS and EPWS/NFS SST underestimated the observed fluctuations by an order of magnitude.  相似文献   

6.
Previous studies have concluded that the volume transport and surface current velocity of the Tsushima Warm Current are at a maximum between summer and autumn and at a minimum between winter and spring. Each study has obtained these results indirectly, using the sea level difference across the Tsushima-Korea Strait or dynamic calculation. Numerical experiments are performed to estimate the seasonal variability in the sea level difference caused by the Bottom Cold Water (BCW), which intrudes from the Sea of Japan along the Korean coast in the bottom layer. These experiments basically treat the baroclinic adjustment problem of the BCW in a rectangular cross section perpendicular to the axis (northeast-southwest direction) of the Tsushima-Korea Strait. It is a five-layer model for summer and a two-layer model for winter. The initial conditions and parameters in models are chosen so as to match the calculated velocity-density fields with the observed velocity-density fields [Isobe A., S. Tawara, A. Kaneko and M. Kawano (1994) Continental Shelf Research, 14, 23–35.]. Consequently, the experiments prove that the observed seasonal variability in the sea level difference across the Tsushima-Korea Strait largely contains the baroclinic motion caused by the BCW. It should be noted that the position of the BCW also plays an important role in producing a considerable seasonal variation of the sea level difference. It is critical to remove the baroclinic contribution from the observed sea level differences across the Tsushima-Korea Strait in order to estimate the seasonal variation in the volume transport of the Tsushima Warm Current.  相似文献   

7.
Observations of surface velocity data from August 2002 to February 2004 were collected by a series of four long-range high-frequency (HF) radars along the coast of New Jersey. The shelf observations of the central Mid-Atlantic Bight (MAB) were compared to historical observations of surface flow characteristics in the area. The time-averaged spatial mean velocity of 4 cm/s in the down-shelf along-shelf direction and 3 cm/s in the offshore across-shelf direction compared very well to historical surface measurements in the study region. However, as the spatial resolution of the data set revealed, this simple measure masked significant spatial variations in the overall and seasonal mean flow structures. Three regions – the south bank of the Hudson Shelf Valley, the southern New Jersey inner shelf (LEO-15) region, and the region offshore of the Delaware Bay mouth (southwest corner) – had mean flows that favor offshore transport of surface water. In terms of temporal variability, maps of the principle axes showed that the across-shelf (minor) axis contribution was not insignificant in the surface layer ranging from 0.3 to 0.9 of along-shelf (major) axis and that there were seasonal differences in orientation and ellipticity. Analysis of the spatial changes in the temporal and spatial correlation scales over the shelf showed that shelf position, in addition to site separation, contributed to the differences in these properties. Furthermore, observations over the Hudson Shelf Valley region suggested that this was a region of transition in which the orientation of along- and across-shelf components begin to change.  相似文献   

8.
9.
Two-layer equatorial primitive equations for the free troposphere in the presence of a thin atmospheric boundary layer and thermal dissipation are developed here. An asymptotic theory for the resonant nonlinear interaction of long equatorial baroclinic and barotropic Rossby waves is derived in the presence of such dissipation. In this model, a self-consistent asymptotic derivation establishes that boundary layer flows are generated by meridional pressure gradients in the lower troposphere and give rise to degenerate equatorial Ekman friction. That is to say, the asymptotic model has the property that the dissipation matrix has one eigenvalue which is nearly zero: therefore the dynamics rapidly dissipates flows with pressure at the base of the troposphere and creates barotropic/baroclinic spin up/spin down. The simplified asymptotic equations for the amplitudes of the dissipative equatorial barotropic and baroclinic waves are studied by linear theory and integrated numerically. The results indicate that although the dissipation slightly weakens the tropics to midlatitude connection, strong localized wave packets are nonetheless able to exchange energy between barotropic and baroclinic waves on intraseasonal timescales in the presence of baroclinic mean shear. Interesting dissipation balanced wave-mean flow states are discovered through numerical simulations. In general, the boundary layer dissipation is very efficient for flows in which the barotropic and baroclinic components are of the same sign at the base of the free troposphere whereas the boundary layer dissipation is less efficient for flows whose barotropic and baroclinic components are of opposite sign at the base of the free troposphere.  相似文献   

10.
A cyclonic gyre controls the advection of source waters into the formation areas of bottom water in the southern and western parts of the Weddell Sea and the subsequent transport of modified water masses to the north. Determination of the structure of the Weddell Gyre and of the associated transports was one of the objectives of the “Weddell Gyre Study” which began in September 1989 and ended in January 1993. The collected data set comprises records of moored current meters and profiles of temperature and salinity distributed along a transect between the northern tip of the Antarctic Peninsula and Kapp Norvegia. The circulation pattern on the transect is dominated by stable boundary currents of several hundred kilometers width at the eastern and western sides of the basin. They are of comparable size on both sides and provide nearly 90% of the volume transport of the gyre which amounts to 29.5 Sv. In the interior, a weak anticyclonic cell of 800 km diameter transports less than 4 Sv. Apart from the continental slopes, the near-bottom currents flow at some locations in an opposite direction to those in the water column above, indicating a significant baroclinic component of the current field. The intensity of the boundary currents is subject to seasonal fluctuations, whereas in the interior, time scales from days to weeks dominate. The large-scale circulation pattern is persistent during the years 1989 to 1991. The heat transport into the southern Weddell Sea is estimated to be 3.48×1013 W. This implies an equivalent heat loss through the sea surface of 19 W m−2, as an average value for the area south of the transect. The derived salt transport is not significantly different from zero; consequently, the salt gain by sea ice formation has to compensate almost entirely the fresh water gain from the melting ice shelves and from precipitation. Estimation of water mass formation rates from the thermohaline differences of the inflow and outflow through the transect indicates that 6.0 Sv of Warm Deep Water are transformed into 2.6 Sv of Weddell Sea Bottom Water, into 1.2 Sv of Weddell Sea Deep Water, and into 2.2 Sv of surface water.  相似文献   

11.
We applied a three-dimensional general ocean and coastal circulation model to the Irish Sea in order to determine water renewal time scales in the region. The model was forced with meteorological data for 1995, a year with relatively warm summer and when extensive hydrographic surveys were conducted in the Irish Sea. We investigated intra-annual variability in the rates of net flow through the Irish Sea and carried out several flushing simulations based on conservative tracer transport. The results indicate that the net northward flow of 2.50 km3/d is seasonally highly variable and under certain conditions is reversed to southward. The variability in obtained residence times is high; baroclinic effects are significant. Obtained results point at the importance of spatial and temporal consideration for transport of pollutants in the shelf seas. Implications for management are numerous and involve activities such as transport, fishing, use of resources, nature conservation, monitoring, tourism and recreation.  相似文献   

12.
The San Francisco Bay‐Delta estuary and its upstream watershed have been highly modified since exploration and settlement by Europeans in the mid‐18th century. Although these hydrologic alterations supported the growth of California's economy to the eighth largest in the world, they have been accompanied by significant declines in native aquatic species and subsequent efforts to reverse these declines through flow management. To inform ongoing deliberations on management of freshwater flows to the estuary, we examined a recent nine‐decade hydrologic record to evaluate seasonal and annual trends in reported Delta outflow. Statistically significant trends were observed in seasonal outflows, with decreasing trends observed in 4 months (February, April, May, and November) and increasing trends observed in 2 months (July and August). Trend significance in early‐to‐mid autumn (September and October) is ambiguous due to uncertainty associated with in‐Delta agricultural water use. In spite of increasing water use over the period examined, we found no statistically significant annual trend in Delta outflow, a result likely due to large inter‐annual variability. Linkages between outflow trends and changes in upstream flows and coincident developments such as reservoir construction and operation, out‐of‐basin imports and exports, and expansion of irrigated agriculture are discussed. To eliminate inter‐annual variability as a factor, change attribution is explored using modelled flows and fixed climatology in a companion paper.  相似文献   

13.
Station Helgoland Roads in the south-eastern North Sea (German Bight) hosts one of the richest long-term time series of marine observations. Hydrodynamic transport simulations can help understand variability in the local data brought about by intermittent changes of water masses. The objective of our study is to estimate to which extent the outcome of such transport simulations depends on the choice of a specific hydrodynamic model. Our basic experiment consists of 3,377 Lagrangian simulations in time-reversed mode initialized every 7 h within the period Feb 2002–Oct 2004. Fifty-day backward simulations were performed based on hourly current fields from four different hydrodynamic models that are all well established but differ with regard to spatial resolution, dimensionality (2D or 3D), the origin of atmospheric forcing data, treatment of boundary conditions, presence or absence of baroclinic terms, and the numerical scheme. The particle-tracking algorithm is 2D; fields from 3D models were averaged vertically. Drift simulations were evaluated quantitatively in terms of the fraction of released particles that crossed each cell of a network of receptor regions centred at the island of Helgoland. We found substantial systematic differences between drift simulations based on each of the four hydrodynamic models. Sensitivity studies with regard to spatial resolution and the effects of baroclinic processes suggest that differences in model output cannot unambiguously be assigned to certain model properties or restrictions. Therefore, multi-model simulations are needed for a proper identification of uncertainties in long-term Lagrangian drift simulations.  相似文献   

14.
The ocean circulation on Australia's Northern Shelf is dominated by the Monsoon and influenced by large-scale interannual variability. These driving forces exert an ocean circulation that influences the deep Timor Sea Passage of the Indonesian Throughflow, the circulation on the Timor and Arafura Shelves and, further downstream, the Leeuwin Current. Seasonal maxima of northeastward (southwestward) volume transports on the shelf are almost symmetric and exceed 106 m3/s in February (June). The associated seasonal cycle of vertical upwelling from June to August south of 8.5°S and between 124°E and 137.5°E exceeds 1.5×106 m3/s across 40 m depth. During El Niño events, combined anomalies from the seasonal means of high regional wind stresses and low inter-ocean pressure gradients double the northeastward volume transport on the North Australian Shelf to 1.5×106 m3/s which accounts for 20% of the total depth-integrated transport across 124°E and reduce the total transport of the Indonesian Throughflow. Variability of heat content on the shelf is largely determined by Pacific and Indian Ocean equatorial wind stress anomalies with some contribution from local wind stress forcing.  相似文献   

15.
A three-level nested Regional Ocean Modeling System was used to examine the seasonal evolution of the Copper River (CR) plume and how it influences the along- and across-shore transport in the northern Gulf of Alaska (NGoA). A passive tracer was introduced in the model to delineate the growth and decay of the plume and to diagnose the spread of the CR discharge in the shelf, into Prince William Sound (PWS) and offshore. Furthermore, a model experiment with doubled discharge was conducted to investigate potential impacts of accelerated glacier melt in future climate scenarios. The 2010 and 2011 simulation revealed that the upstream (eastward) transport in the NGoA is negligible. About 60 % of the passive tracer released in the CR discharge is transported southwestward on the shelf, while another one third goes into PWS with close to 60 % of which exiting PWS to the shelf from Montague Strait. The rest few percent is transported across the shelf break and exported to the GoA basin. The downstream transport and the transport into PWS are strongly regulated by the downwelling-favorable wind, while the offshore transport is related to the accumulation of plume water in the shelf, frontal instability, and the Alaskan Stream. It takes weeks in spring for the buoyancy to accumulate so that a bulge forms outside of the CR estuary. The absence of strong storms as in the summer of 2010 allows the bulge continue growing to trigger frontal instability. These frontal features can interact with the Alaskan Stream to induce transport pulses across the shelf break. Alternatively as in 2011, a downwelling-favorable wind event in early August (near the peak discharge) accelerates the southwestward coastal current and produces an intense downstream transport event. Both processes result in fast drains of the buoyancy and the plume content, thereby rapid disintegration of the plume in the shelf. The plume in the doubled discharge case can be two to three times in size, which affects not only the magnitude but also the timing of certain transport events. In particular, the offshore transport increases by several folds because the plume appears to be more easily entrained by the seaward flow along the side of Hinchinbrook Canyon.  相似文献   

16.
Abstract

Laboratory experiments and analysis of shallow water equations in a rotating fluid show that channel flow is governed by the ratio of the width of the channel to the Rossby radius of deformation R= √[g&Delta;ρHf 2]. Flows through narrow ocean openings exhibit blocking and clear evidence of hydraulic control. These imply that formulae can be derived for width, volume flux, and velocity scales of the currents. A new version of the constant potential vorticity problem is solved, and it is shown to predict volume flux within 22% of the zero potential vorticity results. Next a systematic method of predicting volume flux through ocean passages is described. Some examples are given from the Denmark Straits overflow and the flow of Antarctic Bottom Water into the western Atlantic Ocean. Two-layer flows and counter-flows with rotation in a narrow passage, the so-called lock exchange flow problem, duplicate flows at a number of important straits and openings to bays. A potential vorticity formulation is reviewed. The flows in the mouths of various bays such as Funka Bay in Hokkaido, Japan, Spencer Gulf in South Australia, and Chesapeake Bay in the United States has R < width of the mouth, and the two currents are separated by a front. The width of the front and the density difference can be predicted with good results.  相似文献   

17.
Abstract

A high vertical resolution model is used to examine the instability of a baroclinic zonal flow and a finite amplitude topographically forced wave. Two families of unstable modes are found, consisting of zonally propagating most unstable modes, and stationary unstable modes. The former have time scale and spatial structure similar to baroclinic synoptic disturbances, but are localized in space due to interaction with the zonally asymmetric forcing. These modes transport heat efficiently in both the zonal and meridional directions. The second family of stationary unstable modes has characteristics of modes of low frequency variability of the atmosphere. They have time scales of 10 days and longer, and are of planetary scale with an equivalent barotropic vertical structure. The horizontal structure resembles blocking flows. They are maintained by available potential energy of the basic wave, and have large zonal heat fluxes. The results for both families of modes are interpreted in terms of an interaction between forcing and baroclinic instability to create favoured regions for eddy development. Applications to baroclinic planetary waves are also considered.  相似文献   

18.
19.
利用1979~2003年的NCEP/NCAR再分析资料探讨了亚澳季风区经向气流的季节性分支和结构特征. 结果表明,亚澳季风区经向气流的垂直斜压结构由冬到夏发生季节性转向,即从冬季时的低层北风、高层南风转换为夏季时的低层南风、高层北风. 季节反向的经向气流主体偏向北半球,其区域差异性在对流层中低层更为显著. 以印度半岛和中南半岛为界,亚洲热带季风区中低层经向气流在冬夏季均呈现三通道特征,与此相应,亚澳季风区自西向东存在三支相对独立的经向环流分支,且冬夏季的差异均很显著,如冬季的中心高度自西向东递减、夏季的经向跨度自西向东递增等.  相似文献   

20.
Relaxation geospeedometry has been applied to two series of clastogenic obsidian flows on Tenerife to determine their thermal history across the glass transition. The phonolite flows investigated were both generated by lava fountaining activity followed by rheomorphism of the deposits. The detailed sampling resolution within the two series enabled an accurate quantification of their thermal history. Cooling rates within the investigated spatter-fed flows vary over more than two orders of magnitude. The highest cooling rates of 0.39 K/min were modeled for the central vesiculated part of one flow. The dense basal obsidian layers of both flows were cooled at substantially lower rates of 0.0042 and 0.0028 K/min, respectively. There appears to be an influence of in-situ vesiculation processes on the thermal budget of the investigated flows. In addition, the slow cooling rates for the basal portions of both flows seem to be associated with a stage of thermal buffering. Continual advective heat transport of hot material along a basal shear plane may sustain elevated temperatures associated with (quasi-) isothermal annealing within this “décollement”. Numerical simulations based on conductive heat loss concepts fail to resolve the cooling history quantified through relaxation geospeedometry for the investigated flows. The effects of vesiculation and thermal annealing on the cooling behavior of the clastogenic flows across the glass transition are discussed in the light of these new data. In addition, viscometric data on these phonolites are used to correlate the known cooling rates to viscosities at the glass transition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号