首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
The analysis of observations of the eclipse on August 1, 2008, at wavelengths of 10.5 and 12 cm demonstrated that, in the epoch of deep minimum between the 23rd and 24th cycles of solar activity, the radio radius of the solar disk in the equatorial direction was 120 × 103 km larger than the radio radius in the polar direction. In this case, the brightness temperature of the polar region turned out to be of the order of (35–37) × 103 K and corresponded to the radiation emission from upper layers of the chromosphere from an altitude of about 11 × 103 km. At the heliolatitude <25° beyond the visible disk at a distance of about 70 × 103 km from the photosphere an increased radio brightness of up to 100 × 103 K was observed, which testifies to the increased electron density in the equatorial zone of the corona at the complete absence of groups of spots on the solar disk.  相似文献   

2.
On the basis of multifrequency solar radio observations made on RATAN–600 radiotelescope with high spatial resolution at nine wavelengths in the 2–32–wavelength range is shown that filaments and cavities are well detected on the solar scans at short centimeter wavelengths as the regions of low radio brightness with angular dimensions of 25′–80′ in E—W direction. The tendency of decreasing radio sizes for cavities and filaments from 2.0 to 8.0 cm is observed. The coronal hole (CH) is more contrast in the range of 8–32 cm. The radio size of CH in E—N direction increases from 2′ (at 8.2) to 5′.0 (at 31.6 cm). The spectra of the brightness temperature of CH and the quiet Sun are obtained. The brightness temperature of CH is twice lower than that of the quiet Sun at wavelength of 31.6 cm.  相似文献   

3.
The authors have previously discussed an improved method for obtaining the absolute solar brightness temperature using the new Moon as a calibration source. New measurements of the Sun-to-new Moon ratio at three frequencies near 36 GHz ( = 8 mm) and also at two frequencies near 93 GHz ( = 3 mm) are reported. The slopes of the solar brightness temperature spectrum based on these ratios are then discussed. The absolute solar brightness spectrum derived from all current available measurements is also presented and discussed.  相似文献   

4.
Ch. V. Sastry 《Solar physics》1994,150(1-2):285-294
We have mapped the continuum emission from the undisturbed Sun at a wavelength of 8.7 m during 1981–1985 using the large decameter-wave radiotelescope at Gauribidanur, India with a resolution of 26 #x00D7; 38 arc min. During the period August 6–30, 1983, the Sun was exceptionally quiet at meter and decameter wavelengths, and we were able to make maps on several consecutive days. On these days the position of the centroid of the radio Sun agreed quite closely with the center of the optical Sun indicating that there is very little or no contribution from active regions. But the observed peak brightness temperature varied from 100 000 to 700 000 K. The half-power widths of the brightness distribution were in the range of 3 to 4R . The variations of the brightness temperature and the half-power widths are not correlate. It is therefore suggested that the variations of the brightness temperature are not caused by uniform density variations or due to scattering by an irregular corona.  相似文献   

5.
The solar flare of November 4, 2001, at 16.03–16.57 UT (GOES soft X-ray class X1.0, optical importance 3B, and coordinates N06W180) is used as an example to investigate the relationship between sporadic VHF radio bursts and charged particle fluxes (of both solar and magnetospheric origins) at an altitude of 500 km. The radio background intensity was recorded at frequencies of 280, 300, 151, and 500 MHz by nondirectional ground-based mid-latitude radio antennas spaced ~700 km apart. The results of our radio measurements are compared with the dynamics of 0.2–12 MeV electron and 1–5 MeV proton fluxes based on data from the MKL instrument onboard the CORONAS-F satellite (the orbit altitude and inclination are 500 km and 82.5°, respectively).  相似文献   

6.
The radio observations of the coronal streamers obtained using Clark Lake radioheliograph at 73.8, 50.0, and 38.5 MHz during a period of minimum activity in September 1986 are presented. Streamers appear to correlate with two prominent disk sources whose intensities fluctuated randomly. The variations in half-power diameter of the radio Sun are found to correspond with the variations in the white-light extents of the coronal streamers. It appears that the shape of the radio Sun is not a function of the phase of the solar cycle; instead it depends on the relative positions of the streamers in the corona. The observed peak brightness temperatures,T B , of the streamers are found to be very low, being 6 × 104 K.We compute the brightness temperature distribution along the equator by tracing the rays in the coronal plasma. The rays are deflected away by the streamers before reaching the critical density level, whereas they penetrate deeper into the coronal hole for small angles between the line of sight and the streamer axis. As a consequence, it is found that the streamers and coronal holes appear in the calculated equatorial brightness distribution as irregular brightness depressions and enhancements, respectively. The fine structures are found to disappear when the scattering due to small-scale density inhomogeneities is included in the ray-tracing calculations. The required relative level of density fluctuations, 1 = N/N, is found to be greater than 12% to reduce the peak brightness temperature from 106 K to 6 × 104 K for all the three frequencies.On leave from Indian Institute of Astrophysics, Bangalore 560034, India.  相似文献   

7.
Solar observations from millimeter to ultraviolet wavelengths show that there is a temperature minimum between photosphere and chromosphere. Analyses based on semi-empirical models locate this point at about 500 km above the photosphere. The consistency of these models has been tested by means of millimeter to infrared observations. We show that variations of the theoretical radial temperature profile near the temperature minimum impact the brightness temperature at centimeter, submillimeter, and infrared wavelengths, but the millimeter wavelength emission remains unchanged. We found a region between 500 and 1000 km above the photosphere that remains hidden to observations at the frequencies that we studied here.  相似文献   

8.
Using the Hilbert-Huang transform technique, we investigate the midrange periodicities in solar radio flux at 2800 MHz (F10.7) and sunspot areas (SAs) from February 1, 1947 to September 30, 2016. The following prominent results are found: (1) The quasi-periodic oscillations of both data sets are not identical, such as the rotational cycle, the midrange periodicities, and the Schwabe cycle. In particular, the midrange periodicities ranging from 37.9 days to 297.3 days are related to the magnetic Rossby-type waves; (2) The 1.3-year and 1.7-year fluctuations in solar activity indicators are surface manifestations (from photosphere to corona) of magnetic flux changes generated deep inside the Sun; (3) At the timescale of the Schwabe cycle, the complicated phase relationships in the three intervals (1947–1958, 1959–1988, and 1989–2016) agree with the produced periodicities of the magnetic Rossby-type waves. The findings indicate that the magnetic Rossby-type waves are the possible physical mechanism behind the midrange periodicities of solar activity indicators. Moreover, the significant change in the relationship between photospheric and coronal activity took place after the maximum of solar cycle 22 could be interpreted by the magnetic Rossby-type waves.  相似文献   

9.
We report observations of the solar radio radius at wavelengths between 1.2 and 11 cm performed with the Bonn 100 m-telescope. In combination with former measurements of the centre-to-limb variation of the solar brightness these observations are discussed in terms of atmospheric models. We consider the solar disk to be covered by arches at low latitudes, while at the poles coronal holes are located. The temperature dependence on height is taken from EUV-line intensities, hydrostatic equilibrium is adopted, spicules are assumed to be responsible for the relatively low brightening. The interpretation of our measurements demands certain values of the brightness temperature of spicules as a function of wavelength within a modest interval.  相似文献   

10.
We present new results of heliographic observations of quiet‐Sun radio emission fulfilled by the UTR‐2 radio telescope. The solar corona investigations have been made close to the last solar minimum (Cycle 23) in the late August and early September of 2010 by means of the two‐dimensional heliograph within 16.5–33 MHz. Moreover, the UTR‐2 radio telescope was used also as an 1‐D heliograph for one‐dimensional scanning of the Sun at the beginning of September 2010 as well as in short‐time observational campaigns in April and August of 2012. The average values of integral flux density of the undisturbed Sun continuum emission at different frequencies have been found. Using the data, we have determined the spectral index of quiet‐Sun radio emission in the range 16.5–200 MHz. It is equal to –2.1±0.1. The brightness distribution maps of outer solar corona at frequencies 20.0 MHz and 26.0 MHz have been obtained. The angular sizes of radio Sun were estimated. It is found that the solar corona at these frequencies is stretched‐out along equatorial direction. The coefficient of corona ellipticity varies slightly during above period. Its mean magnitudes are equal to ≈ 0.75 and ≈ 0.73 at 20.0 MHz and 26.0 MHz, respectively. The presented results for continuum emission of solar corona conform with being ones at higher frequencies. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.

The radio frequency emission at 10.7 cm (or 2800 MHz) wavelength (considered as solar flux density) out of different possible wavelengths is usually selected to identify periodicities because of its high correlation with solar extreme ultraviolet radiation as well as its complete and long observational record other than sunspot related indices. The solar radio flux at 10.7 cm wavelength plays a very valuable role for forecasting the space weather because it is originated from lower corona and chromospheres region of the Sun. Also, solar radio flux is a magnificent indicator of major solar activity. Here in the present work the solar radio flux data from 1965 to 2014 observed at the Domimion Radio Astrophysical Observatory in Penticton, British Columbiahas been processed using Date Compensated Discrete Fourier Transform (DCDFT) to identify predominant periods within the data along with their confidence levels. Also, the multi-taper method (MTM) for periodicity analysis is used to validate the observed periods. Present investigation exhibits multiperiodicity of the time series F10.7 solar radio flux data around 27, 57, 78, 127, 157, 4096 days etc. The observed periods are also compared with the periods of MgII Index data using same algorithm as MgII Index data has 99.9% correlation with F10.7 Solar Radio Flux data. It can be observed that the MgII index data exhibits similar periodicities with very high confidence levels.Present investigation also clearly indicates that the computed results are very much confining with the results obtained in different communication for the similar data of 10.7 cm Solar Radio Flux as well as for the other solar activities.

  相似文献   

12.
In this study, we look for the mid‐term variations in the daily average data of solar radius measurements made at the Solar Astrolabe Station of TUBITAK National Observatory (TUG) during solar cycle 23 for a time interval from 2000 February 26 to 2006 November 15. Due to the weather conditions and seasonal effect dependent on the latitude, the data series has the temporal gaps. For spectral analysis of the data series, thus, we use the Date Compensated Discrete Fourier Transform (DCDFT) and the CLEANest algorithm, which are powerful methods for irregularly spaced data. The CLEANest spectra of the solar radius data exhibit several significant mid‐term periodicities at 393.2, 338.9, 206.5, 195.2, 172.3 and 125.4 days which are consistent with periods detected in several solar time series by several authors during different solar cycles. The knowledge relating to the origin of solar radius variations is not yet present. To see whether these variations will repeat in next cycles and to understand how the amplitudes of such variations change with different phases of the solar cycles, we need more systematic efforts and the long‐term homogeneous data. Since most of the periodicities detected in the present study are frequently seen in solar activity indicators, it is thought that the physical mechanisms driving the periodicities of solar activity may also be effective in solar radius variations (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
We describe the technique and results of modelling the solar radio emission during the maximum phase of the solar eclipse of March 29, 2006 on the RATAN-600. The aim of modelling is to refine the brightness temperature of the solar corona at the distances up to two solar radii from the center of the optical disk of the Sun. We obtained the distribution of brightness temperature in the vicinity of the coronal hole above the solar North Pole at the wavelength of 13 cm. The results of modelling showed that brightness temperatures of the coronal hole at the distances greater than 1.02 RC (here RC is the radius of the optical disk of the Sun) is substantially lower than the expected average brightness temperature of a typical coronal hole, and that of the quiescent Sun (below 30000 K) at the wavelength of 13 cm. The classical Baumbach-Allen formula for electron density in a spherically symmetric corona agrees with the results of observations starting at distances of (1.4–1.5) RC.  相似文献   

14.
Hale region 16898 was observed by the Westerbork Synthesis Radio Telescope at 6 cm and by the Ultraviolet Spectrometer and Polarimeter and the X-Ray Spectrometer on the Solar Maximum Mission satellite. Optical pictures of the same active region were taken at Sacramento Peak, Big Bear, and Meudon Observatories. The radio emission mechanisms are identified by comparing radio data with ultraviolet and soft X-ray data. The height of the radio sources and the magnetic field strength at that height are deduced. A radio source above a large sunspot shows a crescent shaped depression of circular polarization and a high brightness temperature. The emission mechanism is identified as gyroresonance at the second and the third harmonic layers and it is found that the second harmonic layer, where the magnetic field strength is 900 G, must be in the corona. An extended loop-like source connecting the leading and the following part of the active region as well as the sources associated with small spots are mainly due to thermal free-free emission by hot and dense plasma which is also observed in ultraviolet and soft X-ray radiation. The calculated radio brightness temperature, using the physical parameters deduced from the ultraviolet and soft X-ray line intensities, agrees with the observed brightness temperature. The height of the low brightness temperature sources above the small spots is 6000 ± 3000 km and that above the large spot is less than 3000 km: the source above the large spot does not show any shift relative to the sunspot due to the projection effect. Very strong radio emission was found which was associated with the merging of a group of small spots into the large sunspot. In the same day, warm ( 106 K) and dense matter was present above the large spot. Evidence for nonthermal emission is presented.  相似文献   

15.
For almost 30 hr after the major (gamma-ray) two-ribbon flare on 6 November 1980, 03:30 UT, the Hard X-Ray Imaging Spectrometer (HXIS) aboard the SMM satellite imaged in > 3.5 keV X-rays a gigantic arch extending above the active region over the limb. Like a similar configuration on 22 May 1980, this arch formed the lowest part of a stationary post-flare radio noise storm recorded at metric wavelengths at Nançay and Culgoora. 6.5 hr after the flare a coronal region below the arch started quasi-periodic pulsations in X-ray brightness, observed by several SMM instruments. These brightness variations had no response in the chromosphere (H), very little in the transition layer (O v), but they clearly correlated with similar variations in brightness at 169 MHz. There were 13 pulses of this kind, with apparent periodicity of about 20 min, until another flare occurred in the active region at 15:00 UT. All the brightenings appeared within a localized area of about 30000 km2 in the northern part of the active region, but they definitely did not occur all at the same place.The top of the X-ray arch, at an altitude of 155 000 km, was continuously and smoothly decaying, taking no part in the striking variations below it. Therefore, the area variable in brightness does not seem to be the footpoint of the arch, as we supposed for similar variations on 22 May. More likely, it is a separate region connected directly with the source of the radio storm; particles accelerated in the storm may be dumped into the low corona and cause the X-ray enhancements. The X-ray arch was enhanced by two orders of magnitude in 3.5–5.5 keV X-ray counts and the temperature increased from 7.3 × 106 to 9 × 106 K when the new two-ribbon flare occurred at 15:00 UT. Thus, it is possible that energy is brought into the arch via the upper parts of the reconnecting flare loops - a process that can continue for hours.  相似文献   

16.
The radio emission of a selected number of solar active regions has been investigated with high angular resolution at two frequencies: 10 and 17 GHz. By comparing the results of the two observations the following conclusions can be drawn:
  1. The brightness temperature distribution of an active region is often composed of very bright cores of small dimension (angular extent θ?20″) imbedded in extended halos of lower brightness.
  2. The radio emission of such structures as well as the degree of polarization can be explained with a thermal process. The halos can originate by pure thermal bremsstrahlung while in the case of the very bright cores found at 10 GHz (brightness temperature T b?1–9 × 106K) the emission at the harmonics of the gyrofrequency is needed.
  相似文献   

17.
R.P. Kane 《Solar physics》2002,205(2):351-359
A spectral analysis of the time series of daily values of ten solar coronal radio emissions in the range 275–1755 MHz, the 2800 MHz radio flux, several UV emission lines in the chromosphere and in the transition region, and sunspot number, for six successive intervals of 132 days each, during June 1997–July 1999 (26 months) showed that the spectral characteristics were not the same for all intervals. Details are presented for Interval 1, where there was no 27-day oscillation, and Interval 2, where there was a strong 27-day oscillation. In every interval, periodicities were remarkably similar in most of these indices, indicating that the solar atmosphere (chromosphere and corona) rotated as one block, up to a height of 150000 km. Above this height, the periodicities became obscure. Near the solar surface, sunspots showed extra or different periodicities, some of which vanished at low altitudes. For the 27-day feature as also for the long-term rise during 1996–1998, the maximum percentage changes were for radio emissions near 1350–1620 MHz.  相似文献   

18.
Special experiments have been performed to investigate the fluctuations of the intensity difference of the solar radio emission at two close frequencies. The autocorrelation functions and their spectra are obtained. The latter shows the presence of quasi-periodical components with periods of about 50 min in the solar radio emission. The possibility of explaining the observed quasi-periodical components by the supergranulation oscillations and the solar self-oscillations is considered.  相似文献   

19.
Magnetic fields give rise to distinctive features in different solar atmospheric regimes. To study this, time variations of the flare index, sunspot number and sunspot area, each index arising from different physical conditions, were compared with the solar composite irradiance throughout cycle 23. Rieger-type periodicities in these time series were calculated using Fourier and wavelet transforms (WTs). The peaks of the wavelet power of these periodicities appeared between the years 1999 and 2002. We found that the solar irradiance oscillations are less significant than those in the other indices during this cycle. The irradiance shows non-periodic fluctuations during this time interval. The peaks of the flare index, sunspot number and sunspot total area were seen around 2000.4, 1999.9 and 2001.0, respectively. These periodicities appeared intermittently and were not simultaneous in different solar activity indices during the three years of the maximum phase of solar cycle 23.  相似文献   

20.
The brightness temperature distributions of the solar atmosphere in the polar region at the distances from one to two solar radii during the solar activity minimum are reported. Observations of the maximum phase of the solar eclipse of March 29, 2006 were carried out simultaneously on two sectors of the RATAN-600 radio telescope over a wide range of centimeter waves, 1–31 cm. This study is based on a comparison of models and observations carried out on the northeastern sector of the RATAN-600.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号