首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Processes controlling the nitrogen (N) exchange between water and sediment in eutrophic Lake Sempach were studied using three different independent methods: benthic flux chambers, interstitial water data and hypolimnetic mass balances. The sediments released NH 4 + (1.1–16.1 mmoles m–2 d–1), NO 2 - (0.1–0.4 mmoles m–2 d–1) and dissolved organic N (<0.25 mmoles m–2 d–1). A net NO 3 - consumption (2.4–11.1 mmoles m–2 d–1) related to the NO 3 - concentrations in the overlying water was observed in all benthic chamber experiments. The flux of the reactive species NO 3 - and NH 4 + was found to depend on hydrodynamic conditions in the water overlying the sediment. For this reason, benthic chambers overestimated the fluxes of inorganic N compared to the other methods. Thus, in short-term flux chamber experiments the sediment may either become a sink or a source for inorganic N depending on the O2 concentration in the water overlying the sediment and the stirring rate. As demonstrated with a15NO 3 - experiment, nitrate-ammonification accounted for less than 12% of the total NO 3 - consumption. After six years of artificial oxygenation in Lake Sempach, a decrease in hypolimnetic total inorganic nitrogen (TIN) was observed in the last two years. The occurrence of dense mats of H2S-oxidizingBeggiatoa sp. indicated micro-aerobic conditions at the sediment surface. Under these conditions, a shorter distance between the ecological niches of nitrifying and denitrifying bacteria, and therefore a faster NO 3 - -transport, can possibly explain the lowering of TIN by enhanced net denitrification.  相似文献   

2.
Several attempts to stock fish in acidified alpine lakes have so far proven unsuccessful. In an effort to investigate the problems associated with the stocking of fish, the Swiss alpine Lake Laiozza was chosen for experimentation. An analysis of Lake Laiozza water revealed low ion concentrations (0.5 mg Ca/L, 0.13 mg Na/L, 0.02 mg Cl/L), moderate aluminium concentrations (121 ± 28 µg Al/L), and a moderately low pH (5.41 ± 0.21). As in common practice, one and two year old brown trout were exposed in a closed keep-net in Lake Laiozza. The water of Lake Laiozza proved to be acutely toxic to the fish. Mucous clogging of the gills, gill epithelial damage, plasma electrolyte losses, and high hematocrits were the predominant symptoms observed. All symptoms observed are typical for an acute intoxication with aluminium. This stands in contrast to the generally accepted view that aluminium concentrations lower than 200 µg Al/L should not be toxic to brown trout at a pH 5.4. The low Na and Cl and low Ca concentrations in the Lake Laiozza water seem to have rendered the fish much more susceptible to aluminium intoxication.  相似文献   

3.
Samples from Kawah Ijen crater lake, spring and fumarole discharges were collected between 1990 and 1996 for chemical and isotopic analysis. An extremely low pH (<0.3) lake contains SO4–Cl waters produced during absorption of magmatic volatiles into shallow ground water. The acidic waters dissolve the rock isochemically to produce “immature” solutions. The strong D and 18O enrichment of the lake is mainly due to enhanced evaporation at elevated temperature, but involvement of a magmatic component with heavy isotopic ratios also modifies the lake D and 18O content. The large ΔSO4–S0 (23.8–26.4‰) measured in the lake suggest that dissolved SO4 forms during disproportionation of magmatic SO2 in the hydrothermal conduit at temperatures of 250280°C. The lake δ18OSO4 and δ18OH2O values may reflect equilibration during subsurface circulation of the water at temperatures near 150°C. Significant variations in the lake's bulk composition from 1990 to 1996 were not detected. However, we interpret a change in the distribution and concentration of polythionate species in 1996 as a result of increased SO2-rich gas input to the lake system.Thermal springs at Kawah Ijen consist of acidic SO4–Cl waters on the lakeshore and neutral pH HCO3–SO4–Cl–Na waters in Blawan village, 17 km from the crater. The cation contents of these discharges are diluted compared to the crater lake but still do not represent equilibrium with the rock. The SO4/Cl ratios and water and sulfur isotopic compositions support the idea that these springs are mixtures of summit acidic SO4–Cl water and ground water.The lakeshore fumarole discharges (T=170245°C) have both a magmatic and a hydrothermal component and are supersaturated with respect to elemental sulfur. The apparent equilibrium temperature of the gas is 260°C. The proportions of the oxidized, SO2-dominated magmatic vapor and of the reduced, H2S-dominated hydrothermal vapor in the fumaroles varied between 1979 and 1996. This may be the result of interaction of SO2-bearing magmatic vapors with the summit acidic hydrothermal reservoir. This idea is supported by the lower H2S/SO2 ratio deduced for the gas producing the SO4–Cl reservoir feeding the lake compared with that observed in the subaerial gas discharges. The condensing gas may have equilibrated in a liquid–vapor zone at about 350°C.Elemental sulfur occurs in the crater lake environment as banded sediments exposed on the lakeshore and as a subaqueous molten body on the crater floor. The sediments were precipitated in the past during inorganic oxidation of H2S in the lake water. This process was not continuous, but was interrupted by periods of massive silica (poorly crystallized) precipitation, similar to the present-day lake conditions. We suggest that the factor controlling the type of deposition is related to whether H2S- or silica-rich volcanic discharges enter the lake. This could depend on the efficiency with which the lake water circulates in the hydrothermal cell beneath the crater. Quenched liquid sulfur products show δ34S values similar to those found in the banded deposits, suggesting that the subaqueous molten body simply consists of melted sediments previously accumulated at the lake bottom.  相似文献   

4.
Concentrations of both aluminium (Al) and dissolved organic carbon (DOC) in stream waters are likely to be regulated by factors that influence water flowpaths and residence times, and by the nature of the soil horizons through which waters flow. In order to investigate landscape‐scale spatial patterns in streamwater Al and DOC, we sampled seven streams draining the Hubbard Brook valley in central New Hampshire. We observed considerable variation in stream chemistry both within and between headwater watersheds. Across the valley, concentrations of total monomeric aluminium (Alm) ranged from below detection limits (<0·7 µmol l−1) to 22·3 µmol l−1. In general, concentrations of Alm decreased as pH increased downslope. There was a strong relationship between organic monomeric aluminium (Alo) and DOC concentrations (R2 = 0·92). We observed the highest Alm concentrations in: (i) a watershed characterized by a steep narrow drainage basin and shallow soils and (ii) a watershed characterized by exceptionally deep forest floor soils and high concentrations of DOC. Forest floor depth and drainage area together explained much of the variation in ln Alm (R2 = 0·79; N = 45) and ln DOC (R2 = 0·87; N = 45). Linear regression models were moderately successful in predicting ln Alm and ln DOC in streams that were not included in model building. However, when back‐transformed, predicted DOC concentrations were as much as 72% adrift from observed DOC concentrations and Alm concentrations were up to 51% off. This geographic approach to modelling Al and DOC is useful for general prediction, but for more detailed predictions, process‐level biogeochemical models are required. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
6.
The relative contribution of scattering (Q s –1 ) and intrinsic (Q i –1 ) attenuation to the totalS-wave attenuation for the frequencies of 1.5, 3.0, 6.0 and 12.0 Hz has been studied by applying the radiative energy transfer theory, Data of local earthquakes which occurred in northern Greece and were recorded by the permanent telementered network of the Geophysical Laboratory of the University of Thessaloniki have been used. The results show that in this area the scattering attenuation is dominant over all frequencies while intrinsic attenuation is significantly lower. The estimatedQ s –1 andQ i –1 values have frequency dependences off –0.72 andf –0.45, respectively. The frequency dependence ofQ s –1 is the same as that of the codaQ c –1 , obtained by applying the single scattering model, which probably implies that the frequency dependence of the coda wave attenuation is attributed to the frequency dependence of the scattering attenuation.Q c –1 values are very close to scattering attenuation for short lapse times, (10–20 sec), and intermediate between scattering and intrinsic attenuation for the longer lapse times, (50–100 sec). This difference is explained as the result of the depth-dependent attenuation properties and the multiple scattering effects.  相似文献   

7.
The effect of hexavalent chromium on the carp,Cyprinus carpio was assessed using static bioassay. The 96h LC50 was found to be 93.6mg · l–1. In carp exposed to sublethal concentrations of chromium (15 and 25 mg · l–1), significant depletion of liver and muscle glycogen and decreasing leucocyte counts were recorded during prolonged exposure and with increasing concentration of chromium. The other blood parameters examined (haemoglobin, erythrocyte count, hematocrit, serum protein, serum glucose) increased similarly during exposure to two chromium concentrations.  相似文献   

8.
Kawah Putih is a summit crater of Patuha volcano, West Java, Indonesia, which contains a shallow, 300 m-wide lake with strongly mineralized acid–sulfate–chloride water. The lake water has a temperature of 26–34°C, pH=<0.5–1.3, Stot=2500–4600 ppm and Cl=5300–12 600 ppm, and floating sulfur globules with sulfide inclusions are common. Sulfur oxyanion concentrations are unusually high, with S4O62−+S5O62−+S6O62−=2400 – 4200 ppm. Subaerial fumaroles (<93°C) on the lake shore have low molar SO2/H2S ratios (<2), which is a favorable condition to produce the observed distribution of sulfur oxyanion species. Sulfur isotope data of dissolved sulfate and native sulfur show a significant 34S fractionation (ΔSO4–Se of 20‰), probably the result of SO2 disproportionation in or below the lake. The lake waters show strong enrichments in 18O and D relative to local meteoric waters, a result of the combined effects of mixing between isotopically heavy fluids of deep origin and meteoric water, and evaporation-induced fractionation at the lake surface. The stable-isotope systematics combined with energy-balance considerations support very rapid fluid cycling through the lake system. Lake levels and element concentrations show strong seasonal fluctuations, indicative of a short water residence time in the lake as well.Thermodynamic modeling of the lake fluids indicates that the lake water is saturated with silica phases, barite, pyrite and various Pb, Sb, Cu, As, Bi-bearing sulfides when sulfur saturation is assumed. Precipitating phases predicted by the model calculations are consistent with the bulk chemistry of the sulfur-rich bottom sediments and their identified mineral phases. Much of the lake water chemistry can be explained by congruent rock dissolution in combination with preferential enrichments from entering fumarolic gases or brines and element removal by precipitating mineral phases, as indicated by a comparison of the fluids, volcanic rocks and lake bed sediment.Flank springs on the mountain at different elevations vary in composition, and are consistent with local rock dissolution as a dominant factor and pH-dependent element mobility. Discharges of warm sulfate- and chloride-rich water at the highest elevation and a near-neutral spring at lower level may contain a small contribution of crater-lake water. The acid fluid-induced processes at Patuha have led to the accumulation of elements that are commonly associated with volcano-hosted epithermal ore deposits. The dispersal of heavy metals and other potentially toxic elements from the volcano via the local drainage system is a matter of serious environmental concern.  相似文献   

9.
In order to identify the distribution of aluminium (Al) within an acid hillslope and its release to a stream, the spatial distribution of acid ammonium oxalate extractable Al (Alo) and exchangeable Al3+ have been investigated on a podzolized hillslope in Bicknoller Combe, Somerset, UK. The eluviated Al from topsoils is mainly deposited in the lower soil horizons forming podzolic B horizons, but some Al flows downslope carried by lateral throughflow. Al oxides may provide the main source of exchangeable Al3+ on the study slope due to high soil acidity. Examination of the spatial distribution of exchangeable Al3+ suggests that the slope hollow, where active convergent throughflow occurs, and the saturation wedge at the base of the slope are the main delivery routes of dissolved Al3+ to the stream. Divalent base cations (Ca2+ and Mg2+), supplied from atmospheric input and organic decomposition and carried by throughflow, exchange Al3+ via cation exchange reactions under high water content. Laterally illuviated Al oxides in the lower hollow adjacent to the saturation wedge probably provide a pool for continuous delivery of Al either as soluble or complexed forms to the stream via the saturated wedge. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

10.
The crater lake of Kawah Ijen volcano contains extremely low pH (<0.4) waters with high SO4 (70000 mg/kg), Cl (21000 mg/kg), F (1500 mg/kg), Al (5000 mg/kg), Fe (2000 mg/kg) and trace metal (Cu 0.5, Zn 4, Pb 3 mg/kg) contents. These brines seep outward through the western crater rim and reappear on the other side as streamlets, which form the headwaters of the Banyupahit stream. The Banyupahit first mixes with fresh rivers and thermal springs in the Ijen caldera and then irrigates a coastal agricultural plain which is 30 km from the summit crater.We discuss the downstream composition changes affecting the Banyupahit waters by using stable isotope, chemical and mineralogical data collected from sites along the stream length. The saturation of the stream waters with respect to minerals was evaluated with SOLVEQ and WATEQ4F and compared with the geochemical observations. An aluminous mineralogy (alunogen, pickeringite, tamarugite and kalinite) develops in the upper part of the Banyupahit due to concentration of the headwaters by evaporation. Downstream attenuation of dissolved element concentrations results principally from dilution and from mineral precipitation. The stream pH changes from 0 at the source to >4 close to the mouth. The δD and δ18O values and the relative SO4–Cl–F contents of the Banyupahit waters indicate that the tributaries are mostly meteoric. Dissolved SO4 in the acidic stream come only from the crater lake seepages and are not involved later in microbially mediated reactions, as shown by their δ34S and δ18O values. Re-equilibration of the stream SO4 oxygen-isotope composition with H2O from tributaries does not occur.Calcium, SiO2, Al, Fe, K and SO4 behave non-conservatively in the stream waters. Gypsum, silica (amorphous or poorly ordered), a basic aluminum hydroxysulfate (basaluminite?), K-jarosite and amorphous ferric hydroxide may exert a solubility control on these elements along the entire stream length, or in certain stream sections, consistent with the thermochemical model results. Downstream concentration trends and mineral saturation levels suggest that precipitation of Sr-, Pb-rich barite and celestite consume Ba, Sr and Pb, whereas dissolved Cu, Pb and Zn may adsorb onto solid particles, especially after the junctions of the acidic stream with non-acidic rivers. We calculated that significant fluxes of SO4, F, Cl, Al, SiO2, Ti, Mn and Cu may reach the irrigation system, possibly causing serious environmental impacts such as soil acidification and induration.  相似文献   

11.
Thermal waters of the Ömer–Gecek geothermal field, Turkey, with temperatures ranging from 32 to 92°C vary in chemical composition and TDS contents. They are generally enriched in Na–Cl–HCO3 and suggest deep water circulation. Silica and cation geothermometers applied to the Ömer–Gecek thermal waters yield reservoir temperatures of 75–155°C. The enthalpy–chloride mixing model, which approximates a reservoir temperature of 125°C for the Ömer–Gecek field, accounts for the diversity in the chemical composition and temperature of the waters by a combination of processes including boiling and conductive cooling of deep thermal water and mixing of the deep thermal water with cold water. It is also determined that the solubility of silica in most of the waters is controlled by the chalcedony phase. Equilibrium states of the Ömer–Gecek thermal waters studied by means of the Na–K–Mg triangular diagram, Na–K–Mg–Ca diagram, K–Mg–Ca geoindicator diagram, activity diagrams in the systems composed of Na2O–CaO–K2O–Al2O3–SiO2–CO2–H2O phases, log SI diagrams, and finally the alteration mineralogy indicate that most of the spring and low-temperature well waters in the area can be classified as shallow or mixed waters which are likely to be equilibrated with calcite, chalcedony and kaolinite at predicted temperature ranges similar to those calculated from the chemical geothermometers. It was also observed that mineral equilibrium in the Ömer–Gecek waters is largely controlled by CO2 concentrations.  相似文献   

12.
A series of polyaluminum chloride sulfate (PACS) coagulants, which have different SO42–/Al3+ and OH/Al (γ) mole ratio, has been successfully developed using AlCl3·6H2O, Al2(SO4)3·18H2O and Na2CO3 as raw materials. The coagulation performance of PACS for removing natural organic matter (NOM) from surface water was evaluated, and the effect of SO42–/Al3+ mole ratio and γ value in coagulants PACS on DOC and UV254 removal was determined. Furthermore, the influence of pH and dosage of the selected PACS with a SO42–/Al3+ ratio of 0.0664 and a γ value of 2.0, which achieved the best coagulation performance for the removal of DOC and UV254 of all PACS coagulants, on the removal of DOC and UV254 and residual aluminum concentration in treated water was investigated. The results were compared with the ones of polyaluminum chloride (PAC) with γ value of 2.0. The experimental data show that the performance of PACS as a coagulant was highly dependent on SO42–/Al3+ mole ratio and γ value. Both for the selected PACS and for PAC, the best DOC and UV254 removal results were obtained in the range of pH from 5.0 to 8.2 and at the coagulation dose of 5.0 mg/L as Al. Under the optimum coagulation conditions, the selected PACS gave higher DOC and UV254 removal efficiencies, and lower residual aluminum concentrations in the treated water than PAC. The maximum removal of DOC and UV254 for PACS was approximately 88.0% and 93.0%, respectively. At the optimum coagulant dose and pH 6.5, the concentration of residual aluminum in treated water by both selected PACS and PAC can comply with the regulated limits. The major mechanisms of NOM removal by PACS and PAC coagulation involve complexation‐charge‐neutralization‐precipitation.  相似文献   

13.
The weight-specific respiration rate (μl O2 mg−1 AFDW h−1) of three species of leech from Lake Esrom, Denmark, Glossiphonia concolor, G. complanata and Helobdella stagnalis was measured in a closed stirred chamber with a micro electrode. At declining oxygen concentration (mg O2 l−1) all three species expressed moderate ability to regulate respiration, in G. concolor and G. complanata down to 2 mg O2 l−1, in H. stagnalis down to 0.75 mg O2 l−1. Survival in anoxia was measured in closed bottles. The time to 50% survival (LD50) was 30 days in G. concolor at 20 °C and 30 and 4 days in H. stagnalis at 10 and 20 °C, respectively. The results were discussed in relation to habitat and spatial distribution of the three species in the lake.  相似文献   

14.
15.
The purpose of the present paper is to analyse factors controlling total concentration and aqueous speciation of aluminium in the Große Ohe River, using a thermodynamic equilibrium model and a mixing approach. A model compound for humic substances is derived on the basis of the relation between anion deficit and the organic carbon content in the river as well as literature data. An equilibrium speciation model for aluminium is set up, considering this model compound and relevant inorganic solutes. Although the model cannot be verified directly, its results may be viewed as qualitatively correct. Applying the model to measured stream water samples highlights that aqueous speciation of aluminium is mainly controlled by the pH value and discharge and that free aluminium concentrations reach clearly toxic levels during acidic episodes. Comparing measured concentrations of sulfate and H+ and calculated concentrations of Al3+ with solubility curves of gibbsite like minerals and jurbanite clearly shows that total aluminium concentrations are not controlled by equilibria with these mineral phases alone. The observed relationship can be better explained from a mixture of two distinct waters, representing lowflow and highflow chemistry, and the resulting equilibrium concentrations. This indicates that total aluminium concentration, in particular during high discharge events, is mainly controlled by the mixture of waters with differing chemistry and flowpaths.  相似文献   

16.
Two seismic wave attenuation factors, scatteringattenuation Q s -1 and intrinsicabsorption Q i -1 are measured using theMultiple Lapse Time Window (MLTW) analysis method forthree different frequency bands, 1–2, 2–4, and 4–8 Hz.Data from 54 temporally deployed seismic stationslocated in northern Chile are used. This methodcompares time integrated seismic wave energies withsynthetic coda wave envelopes for a multiple isotropicscattering model. In the present analysis, the waveenergy is assumed to decay with distance in proportionto1/GSF·exp(- (Q s -1+Q i -1r/v), where r, and v are the propagationdistance, angular frequency and S wave velocity,respectively, and GSF is the geometricalspreading factor. When spatial uniformity of Q s -1, Q i -1 and v isassumed, i.e. GSF = 4r 2, theestimates of the reciprocal of the extinction length,L e -1 (= (Q s -1+Q i -1)·/v), are 0.017,0.012 and 0.010 km-1, and those of the seismicalbedo, B 0 (= Q s -1/ (Q s -1+Q i -1)), are 0.48, 0.40and 0.34 for 1–2, 2–4 and 4–8 Hz, respectively, whichindicates that scattering attenuation is comparable toor smaller than intrinsic absorption. When we assumea depth dependent velocity structure, we also findthat scattering attenuation is comparable to orsmaller than intrinsic absorption. However, since thequantitative estimates of scattering attenuationdepend on the assumed velocity structure (strength ofvelocity discontinuity and/or Moho depth), it isimportant to consider differences in velocitystructure models when comparing attenuation estimates.  相似文献   

17.
The precise knowledge of the initial 26Al/27Al ratio [(26Al/27Al)0] is crucial if we are to use the very first solid objects formed in our Solar System, calcium–aluminum-rich inclusions (CAIs) as the “time zero” age-anchor and guide future work with other short-lived radio-chronometers in the early Solar System, as well as determining the inventory of heat budgets from radioactivities for early planetary differentiation. New high-precision multi-collector inductively-coupled plasma mass spectrometry (MC-ICP-MS) measurements of 27Al/24Mg ratios and Mg-isotopic compositions of nine whole-rock CAIs (six mineralogically characterized fragments and three micro-drilled inclusions) from the CV carbonaceous chondrite, Allende yield a well-defined 26Al–26Mg fossil isochron with an (26Al/27Al)0 of (5.23 ± 0.13) × 10− 5. Internal mineral isochrons obtained for three of these CAIs (A44A, AJEF, and A43) are consistent with the whole-rock CAI isochron. The mineral isochron of AJEF with (26Al/27Al)0 = (4.96 ± 0.25) × 10− 5, anchored to our precisely determined absolute 207Pb–206Pb age of 4567.60 ± 0.36 Ma for the same mineral separates, reinstate the “canonical” (26Al/27Al)0 of 5 × 10− 5 for the early Solar System. The uncertainty in (26Al/27Al)0 corresponds to a maximum time span of ± 20 Ka (thousand years), suggesting that the Allende CAI formation events were culminated within this time span. Although all Allende CAIs studied experienced multistage formation history, including melting and evaporation in the solar nebula and post-crystallization alteration likely on the asteroidal parent body, the 26Al–26Mg and U–Pb-isotopic systematics of the mineral separates and bulk CAIs behaved largely as closed-system since their formation. Our data do not support the “supra-canonical” 26Al/27Al ratio of individual minerals or their mixtures in CV CAIs, suggesting that the supra-canonical 26Al/27Al ratio in the CV CAIs may have resulted from post-crystallization inter-mineral redistribution of Mg isotopes within an individual inclusion. This redistribution must be volumetrically minor in order to satisfy the mass balance of the precisely defined bulk CAI and bulk mineral data obtained by MC-ICP-MS.The radiogenic 208Pb/206Pb ratio obtained as a by-product from the Pb–Pb age dating is used to estimate time-integrated 232Th/238U ratio (κ value) of CAIs. Limited κ variations among the minerals within a single CAI, contrasted by much larger variations among the bulk CAIs, suggest Th/U fractionation occurred prior to crystallization of igneous CAIs. If interpreted as primordial heterogeneity, the κ value can be used to calculate the mean age of the interstellar dust from which the CAIs condensed.  相似文献   

18.
Effects of short‐term (1 h exposure) and long‐term (7 d exposure) aluminium stress on photosynthesis and reproductive capacity have been studied in Euglena gracilis strain Z. Following concentrations of Altot (added as AlCl3) were tested: 0.5 mg L‐1, 1.0 mg L‐1, 1.5 mg L‐1, 2.5 mg L‐1, 5.0 mg L‐1, 7.5 mg L‐1, 10.0 mg L‐1, and 15.0 mg L‐1 Al, respectively. Growth rates at different aluminium concentrations did not show significant differences, except at 15.0 mg L‐1Al. Initial respiration was higher in long‐term than in the short‐term experiments. It is supposed that an energy‐dependent mechanism of excretion of aluminium ions has been active in the stressed cells. Consequently, the cells of E. gracilis after long‐term exposure to aluminium are believed to be more acclimatised to the aluminium stress. Photosynthetic efficiency (PE) has been negatively affected by aluminium in all experiments performed. Differences between control algae and those treated with aluminium were significant in all cases. PE in long‐term experiments was in general significantly higher at all concentrations of aluminium studied, compared to the short‐term experiments. The aluminium concentrations tested led only to a general decrease in PE while the level of decrease was not especially concentration‐dependent. In general, aluminium tolerance of E. gracilis can be estimated as low, especially by short‐term exposure. However, good acclimatisation capacity of this green flagellate to aluminium doses by long‐term exposure can be supposed.  相似文献   

19.
Mount Cameroon (4,095 m high and with a volume of ~1,200 km3) is one of the most active volcanoes in Africa, having erupted seven times in the last 100 years. This stratovolcano of basanite and hawaiite lavas has an elliptical shape, with over a hundred cones around its flanks and summit region aligned parallel to its NE--SW-trending long axis. The 1999 (28 March–22 April) eruption was restricted to two sites: ~2,650 m (site 1) and ~1,500 m (site 2). Similarly, in the eruption in 2000 (28 May–19 June), activity occurred at two sites: ~4,095 m (site 1) and ~3,300 m (site 2). During both eruptions, the higher vents were more explosive, with strombolian activity, while the lower vents were more effusive. Accordingly, most of the lava (~8×107 m3 in 1999 and ~6×106 m3 in 2000) was emitted from the lower sites. The 1999–2000 lavas are predominantly basanites with low Ni (5–79 ppm), Cr (40–161 ppm) and mg numbers (34–40). Olivine (Fo77–85, phenocrysts and Fo68–72, microlites), clinopyroxene (Wo47En41Fs10 to Wo51En34Fs15), plagioclase (An49–67) and titanomagnetite are the principal phenocryst and groundmass phases. The lavas contain xenocrysts of olivine and clinopyroxene, which are interpreted as fragments of intrusive rocks disrupted by magma ascent. Major and trace element characteristics point to early fractionation of olivine. The clinopyroxenes (Al2O3 1.36–7.83 wt%) have high Aliv/Alvi ratios (1.3–1.8) and are rich in TiO2, characteristics typical of low pressure clinopyroxenes. Geochemical differences between the 1999–2000 lavas and those from previous eruptions, such as higher Nb/Zr of the former, suggest that different eruptions discharged magmas that evolved differently in space and time. Geophysical and petrological data indicate that these fractionated magmas originated just below the geophysical Moho (at 20–22 km) in the lithospheric mantle. During ascent, the magmas disrupted intrusions and earlier magma pockets. The main ascent path is below the summit, where newly arrived magma degasses. Degassed magma simultaneously intrudes the flank rift zones where most lava is extruded.An erratum to this article can be found at  相似文献   

20.
The edifice of Mount Rainier, an active stratovolcano, has episodically collapsed leading to major debris flows. The largest debris flows are related to argillically altered rock which leave areas of the edifice prone to failure. The argillic alteration results from the neutralization of acidic magmatic gases that condense in a meteoric water hydrothermal system fed by the melting of a thick mantle of glacial ice. Two craters atop a 2000-year-old cone on the summit of the volcano contain the world's largest volcanic ice-cave system. In the spring of 1997 two active fumaroles (T=62°C) in the caves were sampled for stable isotopic, gas, and geochemical studies.Stable isotope data on fumarole condensates show significant excess deuterium with calculated δD and δ18O values (−234 and −33.2‰, respectively) for the vapor that are consistent with an origin as secondary steam from a shallow water table which has been heated by underlying magmatic–hydrothermal steam. Between 1982 and 1997, δD of the fumarole vapor may have decreased by 30‰.The compositions of fumarole gases vary in time and space but typically consist of air components slightly modified by their solubilities in water and additions of CO2 and CH4. The elevated CO2 contents (δ13CCO2=−11.8±0.7‰), with spikes of over 10,000 ppm, require the episodic addition of magmatic components into the underlying hydrothermal system. Although only traces of H2S were detected in the fumaroles, most notably in a sample which had an air δ13CCO2 signature (−8.8‰), incrustations around a dormant vent containing small amounts of acid sulfate minerals (natroalunite, minamiite, and woodhouseite) indicate higher H2S (or possibly SO2) concentrations in past fumarolic gases.Condensate samples from fumaroles are very dilute, slightly acidic, and enriched in elements observed in the much higher temperature fumaroles at Mount St. Helens (K and Na up to the ppm level; metals such as Al, Pb, Zn Fe and Mn up to the ppb level and volatiles such as Cl, S, and F up to the ppb level).The data indicate that the hydrothermal system in the edifice at Mount Rainier consists of meteoric water reservoirs, which receive gas and steam from an underlying magmatic system. At present the magmatic system is largely flooded by the meteoric water system. However, magmatic components have episodically vented at the surface as witnessed by the mineralogy of incrustations around inactive vents and gas compositions in the active fumaroles. The composition of fumarole gases during magmatic degassing is distinct and, if sustained, could be lethal. The extent to which hydrothermal alteration is currently occurring at depth, and its possible influence on future edifice collapse, may be determined with the aid of on site analyses of fumarole gases and seismic monitoring in the ice caves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号