首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ophiolites of Northern Pindos have been studied in a section close to the village of Perivoli (Grevena District). The section comprises cumulus rocks ranging from ultramafics to gabbros, overlain by dolerites (non-cumulus microgabbro) capped by thick frequently pillowed lava flows. The sequence is cut by basaltic dykes. While the cumulus rocks and the dolerites are mostly fresh, the lavas and dykes are strongly transformed.Major and trace element (Ni, Cr, Sc, Y, Zr, Nb, Sr, Ba, Zn, Cu, V, Li) data are presented for selected samples from the sequence. For some elements, the volcanic/subvolcanic rocks (flows, dykes, dolerites) exhibit wide chemical characteristics which are considered to mainly reflect variations within the parent magmas. Some lavas appear to be closely comparable with the present-day ocean-floor basalts, while other flows and most of the dykes are strongly depleted in some incompatible elements and are similar to some rocks from immature island arcs. The dolerites have transitional chemical features. The Pindos lavas differ from Western Mediterranean ophiolites in that the former have lower Ti,P,Zr,Y, higher Fe tot. and normally higher Ti/Zr ratio.The volcanic/subvolcanic rocks from Pindos have been derived from separate magmas. Some lavas were possibly produced by variable partial melting of an already depleted mantle source, while the lavas exhibiting ocean-floor affinity were probably generated by partial melting of a less depleted source. The wide chemical variations of the Pindos lavas cannot be easily explained by an ocean-ridge system. An island arc-marginal basin system could better account for the observed chemical features.  相似文献   

2.
The Dramala massif, located in the Dinarides–Hellenides orogenic belt, forms the mantle section of the Neotethyan Pindos ophiolite complex in NW continental Greece. Its southern domain is comprised mainly of voluminous harzburgite masses with variable clinopyroxene and olivine modal abundances, ranging from clinopyroxene‐bearing to typical and olivine‐rich harzburgites. The harzburgite varieties are characterized by elevated Cr# [Cr/(Cr + Al)] in Cr‐spinel (0.43–0.79), high forsterite (Fo) content in olivine (0.90–0.93), low Al2O3 content in clinopyroxene (≤1.77 wt.%) and poor whole‐rock abundances of Al2O3 (≤0.68 wt.%), CaO (≤0.68 wt.%), Sc (≤11 ppm) and REE, which are indicative of their refractory nature. In terms of fO2 values, the southern Pindos harzburgites plot between the FMQ‐2 (Fayalite–Magnetite–Quartz) and FMQ + 2 buffers. Simple batch and fractional melting models are not sufficient to explain their depleted composition. Their Ni/Yb ratios vs. Yb bulk‐rock abundances can be reproduced by up to 22–31% closed‐system non‐modal dynamic melting of an assumed spinel‐bearing lherzolite source. Cr‐spinel chemistry data suggest that the southern Dramala harzburgites were formed in an oceanic centre and then were reworked in the mantle wedge above a subducted slab. Combined petrographic and compositional data indicate that the studied harzburgites interacted with arc‐derived tholeiitic melts. This interaction resulted in substantial olivine and minor Cr‐spinel addition to the studied harzburgites, thus enhancing their refractoriness. Cryptic metasomatism was plausibly responsible for the demolition of any strong geochemical signatures suggestive of a previous melting event in a spreading centre. Comparable observations from the neighbouring Vourinos suite imply that the southern Dramala harzburgites probably represent an arc/fore‐arc mantle region within the mutual Pindos–Vourinos, Mesohellenic lithospheric mantle. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
The Pindos ophiolite complex, located in the north-western part of continental Greece, hosts various podiform chromite deposits generally characterized by low platinum-group element (PGE) grades. However, a few locally enriched in PPGE + Au (up to 29.3 ppm) chromitites of refractory type are also present, mainly in the area of Korydallos (south-eastern Pindos). The present data reveal that this enrichment is strongly dependant on chromian spinel chemistry and base metal sulfide and/or base metal alloy (BMS and BMA, respectively) content in chromitites. Consequently, we used super-panning to recover PGM from the Al-rich chromitites of the Korydallos area. The concentrate of the composite chromitite sample contained 159 PGM grains, including, in decreasing order of abundance, the following major PGM phases: Pd-Cu alloys (commonly non-stoichiometric, although a few Pd-Cu alloys respond to the chemical formula PdCu4), Pd-bearing tetra-auricupride [(Au,Pd)Cu], nielsenite (PdCu3), sperrylite (PtAs2), skaergaardite (PdCu), Pd-bearing auricupride [(Au,Pd)Cu3], Pt and Pd oxides, Pt-Fe-Ni alloys, hollingworthite (RhAsS) and Pt-Cu alloys. Isomertieite (Pd11Sb2As2), zvyagintsevite (Pd3Pb), native Au, keithconnite (Pd20Te7), naldrettite (Pd2Sb) and Rh-bearing bismuthotelluride (RhBiTe, probably the Rh analogue of michenerite) constitute minor phases. The bulk of PGE-mineralization is dominated by PGM grains that range in size from 5 to 10 µm. The vast majority of the recovered PPGM are associated with secondary BMS and BMA, thus confirming that a sulphur-bearing melt played a very important role in scavenging the PGE + Au content of the silicate magma from which chromian spinel had already started to crystallize. The implemented technique has led to the recovery of more, as well as noble, PGM grains than the in situ mineralogical examination of single chromitite samples. Although, the majority of the PGM occur as free particles and in situ textural information is lost, single grain textural evidence is observed. In summary, this research provides information on the particles, grain size and associations of PGM, which are critical with respect to the petrogenesis and mineral processing.  相似文献   

4.
Chromitite occurrences in the Pindos ophiolite complex are located in elongated dunite bodies hosted in harzburgite of the mantle sequence, and show a compositional variation from high-Al to high-Cr type. Although the majority of the chromite ores is characterized by paucity in fluid inclusions, abundant fluid inclusions were found in chromite hosted by a coarse-grained pyroxenite dike at the Spanos Valley, Pindos complex. Chromite occurs in highly variable proportion in an orthopyroxene matrix or as inclusions in orthopyroxenes. Its composition is homogeneous and has an average Cr/(Cr+Al) ratio 0.73.The investigation of chromitites revealed the presence of primary and secondary fluid inclusions. The primary inclusions are of following types: Three-phase solid-liquid-gas, three-phase liquid-liquid-gas, two-phase liquid-gas and one-phase octahedron crystal-shaped. The secondary fluid inclusions are two-phase liquid-gas and mono-phase fluid inclusions.The presence of fluid inclusions in chromite aggregates hosted in orthopyroxenite dikes, in combination with the trace element contents in chromite concentrates and the mineralogical composition of the dikes may indicate that an aqueous phase separated from the magma.  相似文献   

5.
The Cretaceous sedimentary rocks of the Pindos Zone in western Greece document the evolution of a Tethyan deep-water basin. New sedimentological and micropalaeontological studies reveal a complex basin history. Siliceous sediments with abundant radiolaria and organic-rich facies prevailed up to the early Late Cretaceous. Within the sediment-starved pre-Middle Cenomanian, marked black shale levels appear that are probably linked to oceanic anoxic events. At the change from the late Early to the early Middle Cenomanian, the sedimentary regime altered abruptly. The early Late Cretaceous is characterized by major calcareous redepositional events (orbitoline horizons) and often associated siliciclastic turbidite deposition (submarine-fan environments). In the late Late Cretaceous, carbonate supply increased rapidly, resulting in the evolution of a carbonate slope and basin-plain setting. Pelagic and allodapic limestones recorded basinwide blooms in planktonic foraminifera (elevata event) and a polyphase redepositional history that is interpreted to reflect the sensitivity of the basin to the tectonic evolution of Apulia.  相似文献   

6.
Many Neo-Tethyan ophiolitic bodies are well exposed as thrust-slices in Central Anatolia and are predominantly represented by massive hornblende gabbros, most of which are cut by Supra Subduction Zone (SSZ) plagiogranites. The allochthonous gabbros are distinct from their autochthonous counterparts, with their mineralogy including both igneous hornblende, relict diopside rimmed by replacement hornblende and their chemical composition corresponding mostly to gabbro rather than diorite.The results of major and trace element analyses of forty-two samples, and REE analyses of nine samples, indicate that the hornblende gabbros are SSZ-type and formed from a wet magma by high-degree partial melting of peridotite possibly coupled with contamination by predominantly neighbouring-slab derived fluids within an intra-oceanic back-arc basin. The mafic magmas then underwent high-level fractional crystallization involving titaniferous magnetite, diopside, tschermakite and possibly olivine. Emplacement was followed by extensive ocean–floor metamorphism, which has induced crystallization (or recrystallization) of chlorite, biotite, amphiboles and mobilisation of most of the major elements such as alkali and alkali earth elements, and some LREE.  相似文献   

7.
The chrome ores of the abandoned Eretria mine of the East Othris ophiolite occur within a pervasively serpentinized and sheared harzburgite body. They consist of massive chromitites with mylonitic fabric in imbricate shaped pods. Modal analyses of these ores average at about 90–95% chromian spinel (Cr-spinel) and 5–10% secondary silicates. Chromian spinel compositions vary in Cr# [Cr/(Cr + Al) × 100] and Mg# [Mg/(Mg + Fe2+) × 100] from 44 to 62 and from 59 to 81, respectively. Trace element (Ti, Ni, V, Mn, Zn, Sc, Co and Ga) contents in Cr-spinel do not show significant variations from grain cores to grain boundaries. However, Cr-spinel compositions show depletions in Ti, Zn and Sc when compared to the composition of accessory Cr-spinel from typical mid-ocean ridge basalts (MORB). Mineral inclusions hosted in Cr-spinel comprise a range of (hydrous and anhydrous) silicate and base metal (BM) minerals occasionally intergrown with phosphate minerals and rare intermetallic compounds. A number of these inclusions have Cr-spinel rims with higher Cr# (63–68) than those of the enclosing Cr-spinel grains.The absence of dunite sheaths around chromitites is interpreted as an artifact of dunite structural obliteration during prolonged ductile shearing within harzburgite. The microtextural characteristics of a number of inclusions in Cr-spinel imply that they were initially fully molten. Furthermore, primary hydrosilicate (amphibole, phlogopite) inclusions in Cr-spinel indicate that chromitites crystallized from a water-bearing melt. Chromian spinel rims around silicate inclusions probably represent early crystals generated from a primitive magma produced by melting of a depleted mantle source.Geochemical calculations demonstrate that the parental melts of chromitites had intermediate affinity between MORB and arc-related magmas. Our preferred hypothesis for the genesis of the Eretria chromitites is that they were formed from a melt originated within the hydrated mantle wedge beneath a nascent forearc basin during subduction initiation.  相似文献   

8.
Turbidite facies distribution and palaeocurrent analysis of submarine fan evolution in the Pindos foreland basin of west Peloponnesus peninsula (SW Greece) indicate that this part of the foreland was developed during Late Eocene to Early Oligocene in three linear sub‐basins (Tritea, Hrisovitsi and Finikounda). The basin fill conditions, with a multiple feeder system, which is characterized by axial transport of sediments and asymmetric stratigraphic thickness of the studied sediments, indicate that the Pindos Foreland Basin in this area was an underfilled foreland basin. Sediments are dominated by conglomerates, sandstones and mudstones. The flow types that controlled the depositional processes of the submarine fans were grain flows, debris flows and low‐ and high‐density turbidity currents. The sedimentary model that we propose for the depositional mechanisms and geometrical distribution of the turbidite units in the Tritea sub‐basin is a mixed sand‐mud submarine fan with a sequential interaction of progradation and retrogradation for the submarine fan development and shows a WNW main palaeocurrent direction. The Hrisovitsi sub‐basin turbidite system characterized by small‐scale channels was sediment starved, and the erosion during deposition was greater than the two other studied areas, indicating a more restricted basin topography with a NW main palaeocurrent direction. The Finikounda sub‐basin exhibits sand‐rich submarine fans, is characterized by the presence of distinct, small‐scale, thickening‐upward cycles and by the covering of a distal fan by a proximal fan. It was constructed under the simultaneous interaction of progradation and aggradation, where the main palaeocurrent direction was from NNW to SSE. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
Three conflicting models are currently proposed for the location and tectonic setting of the Eurasian continental margin and adjacent Tethys ocean in the Balkan region during Mesozoic–Early Tertiary time. Model 1 places the Eurasian margin within the Rhodope zone relatively close to the Moesian platform. A Tethyan oceanic basin was located to the south bordering a large “Serbo-Pelagonian” microcontinent. Model 2 correlates an integral “Serbo-Pelagonian” continental unit with the Eurasian margin and locates the Tethys further southwest. Model 3 envisages the Pelagonian zone and the Serbo-Macedonian zone as conjugate continental units separated by a Tethyan ocean that was sutured in Early Tertiary time to create the Vardar zone of northern Greece and former Yugoslavia. These published alternatives are tested in this paper based on a study of the tectono-stratigraphy of a completely exposed transect located in the Voras Mountains of northernmost Greece. The outcrop extends across the Vardar zone, from the Pelagonian zone in the west to the Serbo-Macedonian zone in the east.Within the Voras Massif, six east-dipping imbricate thrust sheets are recognised. Of these, Units 1–4 correlate with the regional Pelagonian zone in the west (and related Almopias sub-zone). By contrast, Units 5–6 show a contrasting tectono-stratigraphy and correlate with the Paikon Massif and the Serbo-Macedonian zone to the east. These units form a stack of thrust sheets, with Unit 1 at the base and Unit 6 at the top. Unstacking these thrust sheets places ophiolitic units between the Pelagonian zone and the Serbo-Macedonian zone, as in Model 3. Additional implications are, first, that the Paikon Massif cannot be seen as a window of Pelagonian basement, as in Model 1, and, secondly, Jurassic andesitic volcanics of the Paikon Massif locally preserve a gneissose continental basement, ruling out a recently suggested origin as an intra-oceanic arc.We envisage that the Almopias (Vardar) ocean rifted in Triassic time, followed by seafloor spreading. The Almopias ocean was consumed beneath the Serbo-Macedonian margin in Jurassic time, generating subduction-related arc volcanism in the Paikon Massif and related units. Ophiolites were emplaced onto the Pelagonian margin in the west and covered by Late Jurassic (pre-Kimmeridgian) conglomerates. Other ophiolitic rocks formed within the Vardar zone (Ano Garefi ophiolite, Unit 4) in latest Jurassic–Early Cretaceous time and were not deformed until Early Tertiary time. The Vardar zone finally sutured in the Early Tertiary creating the present imbricate thrust structure of the Voras Mountains.  相似文献   

10.
Low grade hydrothermally metamorphosed ophiolitic basic rocks from E. Liguria (Italy), Pindos (Greece) and Troodos (Cyprus) are enriched in O18 relative to the oxygen isotope ratio of fresh basalt (6.0±0.5‰). The maximum observed δO18 value of +13.22‰ corresponds to a positive isotope shift of 7‰ Enrichments in Sr87 relative to Sr86 correlate with hydrothermal alteration. The δC13 values of secondary calcite from E. Liguria are positive, and fall in the range from +0.2% to +3.6‰ Since ophiolitic rocks are considered to be fragments of the oceanic crust and upper mantle, and since the secondary metamorphic assemblages were produced before mechanical emplacement, it is considered that the hydrothermal metamorphism which affected these rocks occurred in the sub-sea-floor environment. The isotope data are directly consistent with the hypothesis that the alteration was produced by interaction of the basaltic material with introduced sea water. Water: rock ratios were sufficiently large to produce the observed isotope shifts. In the Troodos ophiolite sequence δO18 values decrease steadily downwards and change to progressively larger depletions in the Sheeted Intrusive Complex. The trend of δO18 decrease correlates with the original direction of increasing temperature. The O18 depletions, which have also been observed for oceanic “greenstones” (Muehlenbachs and Clayton, 1972b), resulted from water/rock interaction at temperatures greater than the particular temperature range above which whole rock-water fractionations became less than the isotopic difference between fresh basalt and sea water. Since this isotope geochemistry indicates that the water responsible for hydrothermal metamorphism was of sea water origin, the data support the more general hypothesis that convection of sea water within the upper 4–5 kms of the oceanic crust is a massive and active process at oceanic ridges. This process may be completely or partially responsible for (a.i.), the local scatter and low mean value of the conductive heat flux measured near ridges, (a.ii), the transfer of considerable quantities of heat from spreading oceanic ridges, (b) hydrothermal metamorphism, metasomatism and mineralization of oceanic crust, (c), the production of metal enriched, relatively reduced brines during sea water/basalt interaction, d), the high degree of scatter and low mean value of the compressional wave velocities of oceanic basement layer 2 and (e), the low natural remanent magnetization (NRM) intensity of the lower part of layer 2 and upper part of layer 3 of oceanic crust.  相似文献   

11.
12.
昆中蛇绿岩岩石学和地球化学   总被引:1,自引:0,他引:1  
作为昆南变质地体与柴达木-中阿尔金地块边界的中昆仑缝合带,沿带断续出露蛇绿杂岩.本次研究涉及布青山蛇绿岩、诺木洪蛇绿岩和阿其克库勒湖西缘蛇绿岩,通过对其岩石学、岩石化学和微量元素与稀土元素地球化学特征分析,确定其属蛇绿岩类,证明蛇绿杂岩带性质属板块缝合带.  相似文献   

13.
胡培远  李才  李林庆  解超明  吴彦旺 《地质通报》2009,28(09):1297-1308
桃形湖蛇绿岩是龙木错-双湖缝合带近期的重要发现。这一发现回答了龙木错-双湖缝合带中不存在完整蛇绿岩剖面的质疑,是该缝合带存在的重要证据,也是古特提斯洋早期裂解时间确定的主要依据之一。其中斜长花岗岩的岩石地球化学特征反映出洋脊花岗岩的属性,包括Al2O3含量较高,准铝质至过铝质(12.56%~16.19%),富Na2O,贫K2O(Na2O/K2O>3),主量元素、微量元素和稀土元素含量较低等,但是其稀土元素配分曲线、微量元素蛛网图又与标准大洋斜长花岗岩有所区别,表现为轻重稀土元素分异很明显,具强烈的Eu正异常(Eu/Eu?鄢=1.92~9.19,均值为5.18),初步推测原因是岩浆迅速上升过程中Ca分离不完全和样品中石榴子石分布不均匀。结合斜长花岗岩的野外产状及以往的研究成果,初步结论是:桃形湖蛇绿岩中的斜长花岗岩形成于近洋脊或准洋脊环境,岩浆源自地幔,与桃形湖蛇绿岩中的变质橄榄岩、堆晶辉长岩、基性熔岩的岩浆同源,是基性—超基性岩浆分异的残余,应属桃形湖蛇绿岩中的浅色岩组分,是蛇绿岩的端元岩石。  相似文献   

14.
桃形湖蛇绿岩是龙木错-双湖缝合带近期的重要发现。这一发现回答了龙木错-双湖缝合带中不存在完整蛇绿岩剖面的质疑,是该缝合带存在的重要证据,也是古特提斯洋早期裂解时间确定的主要依据之一。其中斜长花岗岩的岩石地球化学特征反映出洋脊花岗岩的属性,包括Al2O3含量较高,准铝质至过铝质(12.56%~16.19%),富Na2O,贫K2O(Na2O/K2O>3),主量元素、微量元素和稀土元素含量较低等,但是其稀土元素配分曲线、微量元素蛛网图又与标准大洋斜长花岗岩有所区别,表现为轻重稀土元素分异很明显,具强烈的Eu正异常(Eu/Eu?鄢=1.92~9.19,均值为5.18),初步推测原因是岩浆迅速上升过程中Ca分离不完全和样品中石榴子石分布不均匀。结合斜长花岗岩的野外产状及以往的研究成果,初步结论是:桃形湖蛇绿岩中的斜长花岗岩形成于近洋脊或准洋脊环境,岩浆源自地幔,与桃形湖蛇绿岩中的变质橄榄岩、堆晶辉长岩、基性熔岩的岩浆同源,是基性—超基性岩浆分异的残余,应属桃形湖蛇绿岩中的浅色岩组分,是蛇绿岩的端元岩石。  相似文献   

15.
缅甸密支那地区发现侏罗纪的SSZ型蛇绿岩   总被引:4,自引:7,他引:4  
本文报道了在缅甸的密支那地区发现的一套侏罗纪SSZ型蛇绿岩和有关的岩石单元。蛇绿岩由地幔橄榄岩、安山玄武岩、淡色辉长岩和辉长岩类、橄榄辉石岩和含长辉石岩类、以及斜长花岗岩组成。锆石的U-Pb定年获得安山玄武岩的形成年龄为166±3Ma、淡色辉长岩177±1Ma、橄榄辉石岩171±2Ma,和斜长花岗岩176±1Ma。安山玄武岩以低K2O(平均0.21%)和中TiO2(0.8%~1.2%)为特征,熔岩的球粒陨石标准化属于近平坦和LREE轻微富集型〔(La/Yb)N变化于1~1.3之间〕。微量元素MORB标准化蛛网图显示,熔岩和其他基性岩的大离子亲石元素Sr,K,Rb和Ba含量明显富集,而高场强元素Nb、Th、Ta、Zr、Ti明显亏损,为典型的SSZ构造背景成因的熔岩特征。87Sr/86Sr(i)比值为0.70367~0.70397,以及εNd(t)为正值(4~5.3),均表明它们的岩浆源区为亏损地幔源区。从空间展布看,密支那蛇绿岩与缅甸东带蛇绿岩应属同一条蛇绿岩带,与我国西藏的雅鲁藏布江缝合带相连。但不同的是,雅鲁藏布江缝合带侏罗纪时(约170Ma)为MOR型蛇绿岩,但密支那侏罗纪出现的是SSZ型蛇绿岩。两者时间如此相近,我们认为用洋内俯冲来解释较为合适。但值得注意的是,也有人将缅甸东带蛇绿岩与西藏北带的班公湖-怒江缝合带相连,并且后者在侏罗纪时也已经出现SSZ型蛇绿岩。因此,有必要进一步开展对密支那蛇绿岩构造背景的研究。  相似文献   

16.
The Pindos ophiolitic massif is considered an important key area within the Albanide–Hellenide ophiolitic belt and is represented by two tectonically distinct ophiolitic units: (1) a lower unit, including an intrusive and a volcanic section; and (2) an Upper Ophiolitic Unit, mainly including mantle harzburgites. Both units share similar metamorphic soles and tectono-sedimentary mélanges at their bases.

The intrusive section of the lower unit is composed by an alternation of troctolites with various ultramafic rock-types, including dunites, lherzolites, olivine-websterites, olivine-gabbros, anorthositic gabbros, gabbros and rare gabbronorites.

The volcanic and subvolcanic sequence of the lower unit can geochemically be subdivided into three groups of rocks: (1) basalts and basaltic andesites of the lower pillow section showing a clear high-Ti affinity; (2) basaltic andesites of the upper pillow section with high-Ti affinity, but showing many geochemical differences with respect to the first group; (3) very low-Ti (boninitic) basaltic and basaltic andesitic lava flows separating the lower and upper pillow sections, and dykes widespread throughout the Pindos ophiolites.

These different magmatic groups originated from fractional crystallization from different primary magmas, which were generated, in turn, from partial melting of mantle sources progressively depleted by previous melt extractions. Group 1 volcanics may have derived from partial melting (ca. 20%) of an undepleted lherzolitic source, while group 2 basaltic rocks may have derived from partial melting (ca. 10%) of a mantle that had previously experienced mid-ocean ridge basalt (MORB) extraction. Finally, the Group 3 boninites may have derived from partial melting (ca. 12–17%) of a mantle peridotite previously depleted by primary melt extraction of Groups 1 and 2 primary melts.

In order to explain the coexistence of these geochemically different magma groups, two petrogenetic models formerly proposed for the Albanian ophiolites are discussed.  相似文献   


17.
Petrology of Santorini Volcano, Cyclades, Greece   总被引:1,自引:1,他引:1  
The Pliocene to Recent lavas, dyke rocks, and cognate xenolithsof Santorini island group belong to four distinct series, eachof high-alumina basalt-andesite-dacite type. The oldest seriesincludes hornblende dacites and minor basaltic andesites. Theformer contain hornblende-rich cognate xenoliths of basalticcomposition, which consist essentially of crystals ‘floating’in residual acid liquid (glass). The chemical variation of theseries, like that of lavas of volcanic centres north-west ofSantorini, is of ‘calc-alkali’ type. The second and third series consist of a range of lavas frombasalt to rhyodacite. No hydrous mineral occurs as a stablephase. Augite is the phenocrystal pyroxene of basalts; augiteand hypersthene of andesites and dacites. The groundmass pyroxenesof basalts and most andesites are augite and pigeonite, whiledistinctive hornblende xenocryst-bearing andesites of the secondseries, and acid lavas of both second and third, carry augiteand hypersthene in the groundmass. Interstitial glass increasesin proportion from basalts to andesites, and forms a major componentof acid lavas. The second series, like the oldest, lacks absoluteiron enrichment. The third, however, shows weak iron enrichmentof andesitic relative to basaltic compositions. Of the youngest (historic) series, only the acid members (hyalodacites)have been extruded as lavas. The more basic members are representedby non-cumulate xenoliths of basaltic to andesitic compositionwhich, like those of the oldest series, consist of a mesh ofcrystals set in abundant glass. This modern series also displaysfeeble absolute iron enrichment. The compositional range of minerals other than plagioclase isvery limited in the two xenolithic series, but much greaterin the two lava series. Glass compositions are virtually constantwithin individual series. Estimates of temperatures and oxygenfugacities of Fe-Ti oxide mineral equilibration, and deductionsfrom liquid compositional trends indicate that the oldest serieswas characterized by higher fO2, and fH2O, and lower temperaturesthan the three younger, ‘dry’ series. Its silicaenrichment trend appears to have been controlled chiefly byfractionation of silica-poor hornblende, rather than magnetiteas in the younger series. The presence, in all series, of xenolithsof gabbroic cumulates, and the constancy of glass compositionssuggests that each series was generated by the tapping of adifferentiating highalumina basalt magma in a high level magmachamber.  相似文献   

18.
本文报道在准噶尔地区发现的石榴角闪岩,该岩石产在克拉玛依蛇绿混杂岩带的百口泉地区.石榴角闪岩主要由钙质角闪石、富钠斜长石和黝帘石组成,含少量钛铁矿、绿帘石、绿泥石、榍石、石榴石、普通辉石、金红石、磷灰石、钠长石、石英和锆石.石榴石中常包裹磷灰石、金红石、钛铁矿、石英和锆石.黝帘石 富钠斜长石组合中出现少量钙铝榴石残余.百口泉石榴角闪岩中石榴石的化学组成特征以及其中出现的金红石-钛铁矿-磷灰石-石英-锆石包体组合说明,该岩石不是异剥钙榴岩退变质的产物,而是榴辉岩退变的产物(辅助证据包括二辉橄榄岩中发育的辉石出溶结构和辉石塑性变形特征).百口泉石榴角闪岩至少记录了四个阶段:石榴石-单斜辉石-金红石-磷灰石-石英-锆石组成的阶段Ⅰ(可能为榴辉岩相),普通辉石-钛铁矿-磷灰石-角闪石组成的退变阶段Ⅱ,角闪石-斜长石-榍石-钛铁矿构成的阶段Ⅲ(角闪岩相),以及绿帘石-石英-绿泥石构成的绿片岩相变质阶段Ⅳ.尽管上述演化历史存在一些不确定性,石榴角闪岩的发现为深入研究西准噶尔地区古生代洋壳俯冲带的性质及其演化过程提供了新的物质基础.  相似文献   

19.
卡姆斯特蛇绿混杂岩的岩石学研究及其地质意义   总被引:2,自引:7,他引:2  
徐新  朱永峰陈博 《岩石学报》2007,23(7):1603-1610
东准噶尔卡姆斯特蛇绿岩剖面由玄武岩、变辉长岩、辉石岩、蛇纹石片岩、硅质岩和火山碎屑岩等组成。辉石不发育出溶结构,说明地幔岩侵位过程相对缓慢(从上地幔到下地壳迁移过程中没有发生突然抬升或者 PT 条件的巨大改变)。辉石岩中存在三类角闪石:具有出溶结构的角闪石(Amp Ⅰ,镁绿钙闪石),与 Amp Ⅰ共生的均匀角闪石(Amp Ⅱ,镁质普通角闪石),以及交代单斜辉石边部的角闪石(Amp Ⅲ,钙镁闪石质普通角闪石)。基于对辉石岩和变辉长岩中角闪石的化学组成及其结构的仔细研究,获得该蛇绿岩侵位的基本演化特征如下:地幔岩在中下地壳环境被快速抬升,导致辉石岩中的角闪石分解而形成铬磁铁矿出溶结构,当蛇绿岩侵位到中地壳环境后,岩石经受角闪岩相退变质改造,继续上升到上地壳环境后,岩石发生绿片岩相的退变质。  相似文献   

20.
The East Sulawesi Ophiolite (ESO) is tectonically dismembered and widely distributed in Central and East Sulawesi. It comprises, from base to top, residual mantle peridotite and mafic–ultramafic cumulate through layered to isotropic gabbro, to sheeted dolerites and basaltic volcanic rocks. Residual peridotite is dominantly spinel lherzolite intercalated with harzburgite and dunite. Ultramafic rocks from different locations display significant differences in rock composition and mineral. However, the clinopyroxene of peridotite displays REE pattern similarities with those of mid-ocean ridge (MOR) origin, rather than those of suprasubduction zone (SSZ) origin. The gabbroic unit consists of massive gabbro, layered gabbro, mafic and ultramafic cumulate and anorthosite. The observed crystallization sequence of gabbroic unit, which is olivine→(spinel)→plagioclase→clinopyroxene→(orthopyroxene)→(hornblende), and the mineral chemistry data indicate that the ESO gabbro has similarities with MOR setting.Major and trace element geochemistry of basalt and dolerite suggests MOR, oceanic plateau and minor SSZ origins. A possible oceanic plateau origin is supported by the following: (i) the 15-km thickness is comparable with the thickness of oceanic plateau rather than normal oceanic lithosphere; (ii) there are no or only minor olivine phenocrysts in the basalt; and (iii) predominance of aphyric texture in the basalts. The REE pattern of ESO basalt exhibits N-MORB-like signatures. However, a negative Nb anomaly in the trace element spider diagram may be attributed to mantle heterogeneity of an OPB source.The geochemical variations and disparities for both peridotite and basalt and the noncogenetic relationship between crust and mantle sections in several locations suggest that the ESO may have been formed at one tectonic setting and was later overprinted by magmatism in different environments through its birth to emplacement. A possible Cretaceous origin of an oceanic plateau component of the ESO is indicated on the basis of calculated paleopositions using plate trajectory analyses together with previously published paleolatitude data. The ESO can be traced back to the proximity of the presently active region of the SW Pacific Superplume.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号