首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High resolution photographic magnetograms are compared with H filtergrams (both on- and off - band) for a wide variety of solar features. It is verified that H filaments overlie neutral lines or bands and that H plages always occur at magnetic field clumps. However, the brightness of H plages bear no relation to magnetic field strength or polarity, and the direction of the magnetic field with respect to threads and filaments remains obscure. Counter-examples can be found for virtually every rule that has been formulated so far.Basic questions about the usefulness and final research goal of filtergrams and magnetograms are raised. It is shown that neither filtergram or magnetogram alone is capable of furnishing a unique solution. It is suggested that the proper direction for research is to use magnetograms, together with (as yet unspecified) additional sources of data, to understand H structures.  相似文献   

2.
Fine scan (5 × 5 aperture) simultaneous Doppler and magnetograms have been obtained over solar active regions near the central meridian passage. Besides the mainly horizontal Evershed motion in sunspots, there appears a conspicuous descending motion over all active regions. A comparison of H-filtergrams with the fine scan magnetograms shows that dark filaments generally lie along the neutral longitudinal magnetic zone, while the H-fibrils lie along the field lines, joining regions of opposite polarity.  相似文献   

3.
We have analyzed the H filtergrams and vector magnetograms of the active region NOAA 7070, in which a 3B/X3.3 flare occurred on February 27, 1992. The average area per sunspot of this active region was in declining phase at the time of the flare. The vector magnetograms indicate that the magnetic field was non-potential at the flaring site. Besides non-potentiality, the longitudinal field gradient was found to be the highest at the region showing initial H brightening. Further, in H filtergrams no appreciable change in the morphology of the filament tracing the magnetic neutral line was noticed in the post-flare stage. Also, the photospheric vector magnetograms show considerable shear in post-flare magnetic field of the active region. In this paper we present the observations and discuss the possible mechanism responsible for the 3B/X3.3 flare.  相似文献   

4.
Zhao  Junwei  Fang  Cheng  De Ding  Ming 《Solar physics》1997,173(1):121-130
We obtained a set of well-observed 2D H spectral data of a 1N/M1.5 flare from the Solar Tower of Nanjing University. Using the H spectra, the sites of electron precipitation and high coronal pressure have been found, and the Doppler velocity was calculated from the red asymmetry of the H emission line by use of the bisector method. The current density distribution was also computed from magnetic field measurements. We have coaligned the H spectroheliograms and the magnetograms. It was found that the sites of electron precipitation were at the edge of a main current area. The sites of red asymmetry coincided with those of high coronal pressure. The flare reached its maximum in the magnetic shear region, though it began in a weak magnetic field. Several flare models are discussed to see which one could satisfy the observation.  相似文献   

5.
Choudhary  Debi Prasad  Gary  G. Allen 《Solar physics》1999,188(2):345-364
The high-resolution H images observed during the decay phase of a long-duration flare on 23 March 1991 are used to study the three-dimensional magnetic field configuration of the active region NOAA 6555. Whereas all the large flares in NOAA 6555 occurred at the location of high magnetic shear and flux emergence, this long-duration flare was observed in the region of low magnetic shear at the photosphere. The H loops activity started soon after the maximum phase of the flare. There were a few long loop at the initial phase of the activity. Some of these were sheared in the chromosphere at an angle of about 45° to the east-west axis. Gradually, an increasing number of shorter loops, oriented along the east-west axis, started appearing. The chromospheric Dopplergrams show blue shifts at the end points of the loops. By using different magnetic field models, we have extrapolated the photospheric magnetograms to chromospheric heights. The magnetic field lines computed by using the potential field model correspond to most of the observed H loops. The height of the H loops were derived by comparing them with the computed field lines. From the temporal evolution of the H loop activity, we derive the negative rate of appearance of H features as a function of height. It is found that the field lines oriented along one of the neutral lines were sheared and low lying. The higher field lines were mostly potential. The paper also outlines a possible scenario for describing the post-flare stage of the observed long-duration flare.  相似文献   

6.
K. A. Marsh 《Solar physics》1978,59(1):105-113
The flare-like events which are frequently seen in H in apparently quiet regions of the solar disk can in all cases be identified with bipolar features (ephemeral regions, ER) on magnetograms. These events represent the H counterpart of X-ray bright point flares.Statistically, this phenomenon is associated with the proximity of the bipolar features to the super-granulation network, in the sense that an ER is likely to flare during its lifetime if the distance to the nearest network element is less than or equal to its own pole separation. This conclusion is supported by direct study of time sequences of magnetograms and H pictures, which manifest the interaction of ER with the supergranulation network. The flare-like brightenings in some examples occurred in the region of interaction between network flux and one pole of the ER.The consequence of this interaction is that small quantities of network flux are transported over distances of the order of the ER pole separations. This may have an important effect on the long-term diffusion of magnetic flux.  相似文献   

7.
The evolution of coronal and chromospheric structures is examined together with magnetograms for the 1B flare of January 19, 1972. Soft X-ray and EUV studies are based on the OSO-7 data. The H filtergrams and magnetograms came from the Sacramento Peak Observatory. Theoretical force-free magnetic field configurations are compared with structures seen in the soft X-ray, EUV and H images. Until the flare, two prominent spots were connected by a continuous dark filament and their overlying coronal structure underwent an expansion at the sunspot separation rate of 0.1 km s–1. On January 19, the flare occurred as new magnetic fields emerged at 1019 Mx h–1 beneath the filament, which untwisted and erupted as the flare began. The pre-flare coronal emissions remained unchanged during the flare except for the temporary addition of a localized enhancement that started 5 min after flare onset. EUV lines normally emitted in the upper transition region displayed a sudden enhancement coinciding in time and location with a bright H point, which is believed to be near the flare trigger or onset point. The EUV flash and the initial H brightening, both of which occurred near the center of the activated filament, were followed by a second EUV enhancement at the end of the filament. The complete disruption of the filament was accompanied by a third EUV enhancement and a rapid rise in the soft X-ray emission spatially coincident with the disappearing filament. From the change of magnetic field inferred from H filtergrams and from force-free field calculations, the energy available for the flare is estimated at approximately 1031 erg. Apparently, changes in the overlying coronal magnetic field were not required to provide the flare energy. Rather, it is suggested that the flare actually started in the twisted filament where it was compressed by emerging fields. Clearly, the flare started below the corona, and it appears that it derived its energy from the magnetic fields in or near the filament.NCAR is sponsored by NSF.  相似文献   

8.
The active region NOAA 6555 had several locations of highly sheared magnetic field structure, yet, only one of them was the site for all the five X-class flares during its disk passage in March 1991. The pre-flare observations of high-resolution H filtergrams, vector magnetograms and H Dopplergrams of the 2B/X5.3 flare on 25 March 1991 show that the flaring site was characterized by a new rising emerging flux region (EFR) near the highly sheared magnetic field configuration. The polarity axis of the emerging flux was nearly perpendicular to the pre-existing magnetic neutral line. The location of the EFR was the site of initial brightening in H. The post-flare magnetograms show higher magnetic shear at the flare location compared to the post-flare magnetograms, which might indicate that the EFR was sheared at the time of its emergence. As the new EFR coincided with the occurrence of the flare, we suggest that it might have triggered the observed flare. Observations from Big Bear Solar Observatory and Marshall Space Flight Center also show that there was emergence of new flux at the same location prior to two other X-class flares. We find that out of five observed X-class flares in NOAA 6555, at least in three cases there are clear signatures of flare-related flux emergence. Therefore, it is concluded that EFRs might play an important role in destabilizing the observed sheared magnetic structures leading to large X-class flares of NOAA 6555.  相似文献   

9.
Based on the photospheric vector magnetograms taken at Huairou Solar Observing Station (HSOS), H images taken at Hiraiso Solar Terrestrial Research Center of Communication Research Laboratory, soft X-ray images taken by Yohkoh and an extrapolation method, the magnetic field structures and some active phenomena of the active region AR 7321 around 04:12 UT on 27 October 1992 are analyzed in this paper. A divergence of the transverse magnetic field, located at a newly formed spot, was found. At least four highly sheared magnetic field systems separately spread from this divergence to four other sites around this divergence. Vertical current concentrations are upward in this region and downward in the other four sites, and the corresponding H bright patches and soft X-ray bright loops coincide with these structures, confirming the existence of these four systems. The extrapolated magnetic force lines reconstructed by the Boundary Element Method (BEM), force-free field assumption, and boundary condition of observed photospheric vector magnetic field, coincide in space with the H bright patches and soft X-ray bright loops, showing that this extrapolation method is very effective and suggesting that the H bright patches and soft X-ray bright loops in this case represent the magnetic field structures in the upper atmosphere of the Sun.The bright structures in the H images and the soft X-ray images have a close correlation with the non-potential characteristics of the magnetic fields.  相似文献   

10.
H observations, using the Multichannel Subtractive Double Pass (MSDP) spectrograph operating on the Meudon Solar Tower, have been made of an active region filament which undergoes a disparition brusque. The period of observation was from 10 45 to 13 30 UT on 22 June, 1981. Velocity and intensity fluctuations in H were measured. The proper motions of ejecta were followed allowing their trajectories and vector velocities to be determined. To model the dynamics of ejecta several models using thermal or magnetic driving forces are compared. The most promising model explains the motion as the consequence of magnetic stresses acting on an isolated magnetized plasmoïd in a diverging flux tube.  相似文献   

11.
As a birefringent filter is tuned from the center of H to the continuum the H bright mottles appear to break up into a network of grains. The name filigree is suggested for this bright network. Its size, shape, contrast and time evolution is described as well as its relation to the abnormal granulation, magnetic field and spicules.On leave from The University of Hawaii.  相似文献   

12.
NOAA 8210 has been a region showing a remarkable level of activity well before solar maximum. Dominated by a large, rapidly rotating spot, it produced several intense flares during its disk passage at the end of April–beginning of May 1998. We examine the development of AR 8210 in H and white light (WL) and study the evolution of its complex magnetic topology. While the other principal flares are briefly reviewed, the great X1.1/3B flare of 2 May, which was observed at Kanzelhöhe Solar Observatory during a SOHO/UVCS ground support campaign, is studied in detail. This event has been documented in full-disk H and Na-D intensitygrams, Dopplergrams, and magnetograms, with a time cadence of one minute each. The flare was associated with a CME and produced significant geomagnetic effects. Furthermore, we point out the perspectives for our planned Flare Monitoring and Alerting System, since the two new instruments (Magneto-Optical Filter and Digital H camera), which made their first operational run with the campaign, are crucial components for this program.  相似文献   

13.
Leka  K.D. 《Solar physics》1999,188(1):21-40
This investigation is the second of two centering on the parameter =(×Bh)z/Bz=0Jz/Bzand its derivation from photospheric vector magnetogram data. While can be evaluated at every spatial position where the vector B is measured, for many reasons it is useful to determine a single value of to parameterize the magnetic complexity of an entire active region, here called AR(see Leka and Skumanich, 1999). As such, the limitations in today's vector magnetograph data, e.g., finite spatial resolution and limited field of view, may influence any final 'AR' value. We apply three methods of calculating 'AR' to degraded high-spatial-resolution data and find that in general the discrepancies worsen for decreasing resolution compared to the original. We apply the three methods to sub-regions centered on the constituent sunspots for AR 7815. Two of the sub-regions are shown to have magnetic twist with significant magnitude but opposite sign. We show by mosaicing or otherwise combining separate sunspot observations that a measure of ARcan be calculated which is consistent with a single large field-of-view observation. Still, the AR0 assigned for the entire active region is an average, and does not accurately represent the magnetic morphology of this flux system. To measure the validity of the ARparameterization, we demonstrate that, from each method, a relevant quantity can be calculated which describes the 'goodness of fit' of the resulting AR. Given the spatial variation of (x,y) over an active region, it is suggested that such a second parameter be used either to indicate uncertainty in ARor as a criterion for data selection, as appropriate.  相似文献   

14.
On the basis of an analytical solution of the diffusion-type kinetic equation for electrons, electron distributions and radiation spectra have been found which result from a hard injection of particles in sources of the core halo type, characterized by spatially nonuniform magnetic fields and diffusion parameters. Such radio sources are shown to possess nonlinear radiation spectra containing universal (=0.5) and diffusion-controlled power-law sections shaped by synchrotron losses, spatial diffusion and radiation conditions of the electrons. The diffusion-controlled sections can be described by spectral indices 0.5<1, if the magnetic field decreases towards the source edge, and by <0.5 where the magnetic field increases.  相似文献   

15.
The disk dynamo     
The simplest dynamo in a thin disk is analysed. It the antisymmetric helicity function (z) (wherez is a coordinate perpendicular to the disk plane) is smooth and limited, then the conditions for generating a magnetic field and the symmetry of the resulting solutions depend only on the form of at the segment (0,h) — whereh is the half-thickness of the disk — and the value of the dimensionless dynamo numberD. When (z) does not change its sign at this segment andD>D c (the critical dynamo number), the excitation of non-oscillating even (quadrupole) and oscillating odd (dipole) fields are possible. When (z) changes its sign at the segment indicated, non-oscillating odd magnetic fields can also be excited.The old exact solutions of the disk dynamo are studied and new ones are found. The results can be of importance when applied to the problem of the generation of a magnetic field in galactic and turbulent disks appearing around some X-ray sources.  相似文献   

16.
The assumption of a linearly expanding universe for the JBD-cosmological equations generates a set of solutions for the barotropic equations of statep= (=const.). These solutions turn out to be valid for closed space-except in the casep= which is for open space. The gravitational constant which is inversely proportional to the scalar field increases with time if >–1/3 and decreases for <–1/3. No solution exists for =1/3. The Brans-Dicke parameter is negative if <–1/3.  相似文献   

17.
The Oppenheimer-Penney theory to calculate the polarization of L lines from hydrogen-like ions, when the impact electrons are distributed such that their probability is more in the regions close to the magnetic field (f(cos n ), is applied by Chandra and Joshi (1984). The work of Chandra and Joshi (1984) has been reinvestigated for the pitch-angle distributionf()sin n . The degrees of polarization are still found to be independent of the atomic number of a hydrogen-like ion.  相似文献   

18.
N. Seehafer 《Solar physics》1985,96(2):307-316
Using a photospheric magnetogram of the solar activity complex HR 16862, 16863, 16864 at the end of May 1980 as boundary data a sequence of three-dimensional force-free magnetic fields with spatially constant ( defined by the equation × B = B) is calculated, including numerical field-line tracing. The field is assumed not to be frozen-in and ¦¦, which is a measure of the magnetic free energy, is assumed to increase with time due to some dynamo mechanism. Variation of , starting from = 0, produces a catastrophe-like change of the topology of a field-line system corresponding to an arch filament system connecting the leading spot of HR 16863 with the trailing spot of HR 16862. This topological change is interpreted as causing a series of large homologous flares with synchronous flaring in the two spots. The catastrophe-like behaviour of the field topology is attributed to the nonlinear field-line equations.  相似文献   

19.
N. Seehafer 《Solar physics》1978,58(2):215-223
At first it is shown that a magnetic field being force-free, i.e. satisfying × B = B, with = constant ( 0) in the whole exterior of the Sun cannot have a finite energy content and cannot be determined uniquely from only one magnetic field component given at the photosphere. Then the boundary value problem for a semi-infinite column of arbitrary cross section is solved by a Green's function method.  相似文献   

20.
Large field H observations of the Milky Way between Carina and Aquila were made through a narrow interference filter 15 wide. Characteristic large-scale features of the observed region are extended emission areas in Carina, Norma-Scorpius and Scutum-Sagittarius and some weak isolated nebulosities near the Coal Sac, Centauri and Normae. H photographs, a chart mapping the emission, and a list of identified emission regions are given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号