首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
桑沟湾浮游纤毛虫丰度和生物量分布的季节变化   总被引:1,自引:0,他引:1  
于2011年4、8、10月及2012年1月对桑沟湾进行了浮游纤毛虫丰度和生物量的季节调查。纤毛虫的平均丰度为(7 552±10 979)个/L,范围为408~61 667个/L;纤毛虫的平均生物量(以碳计)为(4.79±5.77)μg/L,范围为0.35~33.09 μg/L。无壳纤毛虫丰度和生物量主要分布在湾内,湾中和湾外丰度相对较低;砂壳纤毛虫丰度和生物量在盐度较高的海区总体较高,呈现朝向外海分布的趋势。纤毛虫丰度和生物量的高值区春季主要出现在湾的西北,夏季向湾中部迁移,秋季主要出现在湾的西南,冬季主要出现在湾的西部,高值区随季节大致呈顺时针迁移的趋势。纤毛虫的丰度春季最高,冬季最低;生物量夏季最高,冬季最低。无壳纤毛虫夏季粒级较大,冬季粒级较小;砂壳纤毛虫壳的平均口径夏季较大,秋季较小。共鉴定出砂壳纤毛虫8属27种,其中拟铃虫属(Tintinnopsis)种数最多。砂壳纤毛虫在纤毛虫总丰度中的比例平均为16.3%±21.9%,夏季最高(36.3%±27.8%),冬季最低(4.9%±5.9%)。纤毛虫丰度与温度、盐度、Chl a浓度及微微型真核浮游生物丰度均没有明显的相关性,但与蓝细菌及异养细菌丰度呈显著的正相关关系。  相似文献   

2.
Direct estimation of the oxygen consumption rate in the bottom layer of Mikawa Bay where eutrophication is in progress was attempted usingin situ continuous measurement of oxygen content and other oceanographic parameters including water movement, and a value 0.65 mgl–1 day–1 was obtained in summer. This value is slightly smaller than previous estimates based on the method of incubation or indirect techniques.  相似文献   

3.
桑沟湾微微型浮游生物丰度和生物量分布的季节变化   总被引:1,自引:0,他引:1  
于2013年4月、7月、10~月和2014年1月,分四个季节在桑沟湾利用流式细胞技术对桑沟湾微微型浮游生物丰度和生物量的时空分布特征进行了研究,并统计分析了其与环境因子之间的关系。结果表明,四个季节中桑沟湾聚球藻丰度和生物量分别为0.04×10~3~408.59×10~3个/mL、0.01~10~2.15 mg/m3,微微型真核浮游生物的丰度和生物量分别为0.21×10~3~99.64×10~3个/mL、0.31~149.46 mg/m3,异养细菌的丰度和生物量分别为3.34×10~5~50.16×10~5个/mL、6.68~10~0.32 mg/m3。四个季节中,夏季桑沟湾微微型浮游生物的丰度和生物量高于其他季节。异养细菌对微微型浮游生物总生物量的四季平均贡献为62.11%,高于自养微微型浮游生物;微微型真核浮游生物占自养微微型浮游生物总生物量比例最高,平均可达86.85%。统计分析显示温度、叶绿素a和营养盐浓度是影响桑沟湾微微型浮游生物丰度和生物量分布的主要因素。上述结果为桑沟湾生态环境的检测和评估提供了基础数据。  相似文献   

4.
为了解鱼卵、仔稚鱼的种群动态以及生物多样性的变化规律,2014-2015年利用大型浮游生物网对莱州湾海域20个站位进行表层水平拖网调查.4个航次共采获鱼卵135275粒,仔稚鱼2456尾,隶属于9目16科20属.鱼卵、仔稚鱼主要种类变化依次从春季的鳀(Engraulis japonicus)和鰉(Liza haemat...  相似文献   

5.
A turbidity survey of Narragansett Bay, Rhode Island, was made during the summer months of 1971 and included measurements of the attenuation function for scalar irradiance for daylight and the volume attenuation function for white tungsten light at various depths. One hundred and three stations were made at 17 different locations. Variations in the optical parameters were large, one standard deviation at any given location ranging from 7 to 23 per cent of the mean value. This variation was only slightly dependent on the state of the tidal currents, depth of the location, or weather factors. The magnitude of turbidity variations was almost 4-fold over a north-south range of 31 km within the estuary, with clearest water at the southern mouths of the Bay. A good correlation exists between turbidity parameters and Autumn values of suspended-material concentration found by Morton (1967), with both data sets showing highest turbidity and suspended concentrations in the West Passage of the Bay. “Wedges” and “bulges” of clear water were detected throughout the Bay but were most evident at the southern (Atlantic Ocean) end.Although it was not possible to fully define the parameters producing these temporal and geographic variations in estuarine turbidity, it is suggested that knowledge of these parameters can assist those concerned with the physical and biological state of an estuary, as well as divers and photographers plying their trades within its boundaries.  相似文献   

6.
Observations of the turbidity and velocity fields in the near-bottom waters of the St Lawrence estuary were obtained with a package which includes a self-recording attenuance meter and a currentmeter. The latter also measures salinity and temperature. Time series varying in length between 26 h and 26 days, and with repetition rates between one and 15 min are discussed for 3 typical open-channel and nearshore stations. A high-frequency sampling mode provides a means to observe the passage of a frontal disturbance over the bottom during the semi-diurnal cycle. With lower frequency records having lengths of one week to one month, contributions to the turbidity fluctuations due to the spring-neap oscillations, seasonal changes in run-off, and the sudden rise in solid discharge of local tributaries following storms, can be resolved. From turbidity polar diagrams, local onshore sources of particulate suspended matter can be identified. Among other advantages, it is possible from such records to time precisely the occurrence of turbidity peaks in relation to the ebb and flow velocities, to assess the importance of resuspension, and to specify exactly the time rate of change of the turbidity. On the whole, self-recording equipments provide a wealth of information unavailable from more traditional hydrocast sampling techniques.  相似文献   

7.
Seasonal variation in the tropical Pacific is studied by use of climatological monthly mean data of upper layer thickness of a linear reduced-gravity model with realistic basin geometry. Complex empirical orthogonal function (CEOF) analysis is applied to the data on a closed circuit which consists of the equator, eastern boundary, 7° latitude, and western boundary. The first and second CEOF represent the annual and semiannual variations, respectively. At the equator, absolute maximum anomalies associated with the first CEOF can be found near 160°W in spring and fall. Westward propagation of the annual variation is remarkable west of 130°W. However, similar westward propagation cannot be detected in either the eastern or western part of the equator. Maximum anomalies at 7° and the equator can be found in similar longitude and time. These maxima at both latitudes originate from the annual variation of Ekman pumping associated with the meridional movement of wind fields. We also decomposed the model results into Kelvin and Rossby modes. The Kelvin mode is characterized by seminnual variation, while first and third-mode Rossby waves have annual variations. In the present results, first and third-mode Rossby waves do not appear to be a trigger for Kelvin waves.  相似文献   

8.
长江口水体溶解氧的季节变化及底层低氧成因分析   总被引:4,自引:0,他引:4  
利用2006-2007年“908-ST04区块”任务单元在长江口开展的春、夏、秋、冬四季多学科综合调查资料,分析了长江口水体溶解氧的季节变化,探讨了其底层低氧的形成机制,结果表明:冬季,表层和底层水体溶解氧值总体上呈近岸高、外陆架低的分布趋势,水体上下混合均匀;春季,藻华开始出现,水体层化初成,外陆架入侵的低溶解氧浓度...  相似文献   

9.
基于2018年8月福建三沙湾湾内外共两个定点站位的船基和座底三脚架观测数据,研究了三沙湾底边界动力过程及悬沙输运特征。结果表明,三沙湾湾内湾外两个站位均表现出涨落潮历时相近但涨落潮流速明显不对称的现象,即湾内涨潮流速大于落潮流速,湾外则相反。湾内水体受淡水输入影响较大,表现出落潮期间显著的温盐层化,而涨潮期间水体混合良好;湾外水体受淡水影响不明显,表现为水体温度主导的层化。通过对底边界层动力过程的分析表明,湾内(距底0.75m)、湾外(距底0.50m)站位底边界层的平均摩阻流速分别是0.016m/s、0.013m/s,且两个站位拖曳系数基本相等(2.03×10–3),表明在相同流速下湾内站位的底部切应力更大,近底沉积物再悬浮和搬运相对湾外站位更为显著。因此观测期间悬沙浓度最大值出现在湾内站位,为109mg/L,且悬沙在垂向上的分布可达上层水体;湾外站位悬沙浓度更低,并且底部悬浮泥沙仅能影响至距底5m的水体。悬沙通量机制分解结果表明,三沙湾夏季的潮周期单宽悬沙从湾外向湾内方向净输运,湾内站位向湾内方向净输运74.88 g/(m·s),平流输沙占主导作用,贡献率41....  相似文献   

10.
The residual currents in Tokyo Bay during four seasons are calculated diagnostically from the observed water temperature, salinity and wind data collected by Unokiet al. (1980). The calculated residual currents, verified by the observed ones, show an obvious seasonal variable character. During spring, a clear anticlockwise circulation develops in the head region of the bay and a strong southwestward current flows in the upper layer along the eastern coast from the central part to the mouth of the bay. During summer, the anticlockwise circulation in the head region is maintained but the southwestward current along the eastern coast becomes weak. During autumn, the preceding anticlockwise circulation disappears but a clockwise circulation develops in the central part of the bay. During winter, the calculated residual current is similar to that during autumn. As a conclusion, the seasonal variation of residual current in Tokyo Bay can be attributed to the variation of the strength of two eddies. The first one is the anticlockwise circulation in the head region of the bay, which develops in spring and summer and disappears in autumn and winter. The second one is the clockwise circulation in the central part of the bay, which develops in autumn and winter, decreases in spring and nearly disappears in summer.  相似文献   

11.
Seasonal variations in the primary production regime in the upper water column were assessed by shipboard observations using hydrocasts and natural fluorescence profiling at a fixed station in the central part of Sagami Bay, Japan. The observations were conducted as a part of ‘Project Sagami’ dedicated to the interdisciplinary study of seasonality in bathyal benthic populations and its coupling with water column processes. Based on the time-series observations at intervals of about 1 to 2 months, primary productivity in terms of chlorophyll abundance appeared to be elevated during the spring of 1997, but the observed peaks of biomass were much less significant in the spring of 1998. Meanwhile, the organic matter flux, as indicated by sediment trap data and benthic observations, had a significant peak in the spring of 1998 as well, and its magnitude was comparable to that in 1997. Satellite images of ocean color obtained during the spring of 1997 indicate the importance of events with time scales much shorter than a month, and suggest qualitative differences in the phytoplankton community in the euphotic zone for each bloom event during this period. The possible mechanisms that could yield the spring maximum of material input to the benthic community are discussed.  相似文献   

12.
Recently, bivalves have been massively killed by anoxia or hypoxia in summer at the northern part of Isahaya Bay, Japan, which constituted a major problem for fisheries. However, the mechanism behind the occurrence of hypoxic water masses is unclear. It is known that the bottom water dissolved oxygen (DO) in this area is affected by the inflow of seawater into the northern mouth of Isahaya Bay. To understand the mechanism of hypoxia, it is necessary to determine the physical processes that cause changes in the bottom DO concentrations in this area. This study shows that there is a neap-spring tidal variation in bottom DO due to a change in vertical tidal mixing, and it also suggests that the decrease in bottom DO was generated by a baroclinic flow, which is due to the internal tide, and a shear flow, which is induced by the external tide in the bottom boundary layer. In addition, our study suggests that the source of cold and hypoxic water that appears in the bottom layer at low tide is the inner area of the Ariake Sea.  相似文献   

13.
Measurement of the vertical distribution of total suspended matter (TSM) was carried out during summer throughout the Seto Inland Sea. TSM concentration near the bottom is influenced significantly by water movement and turbid bottom water is observed in all areas where median grain size (Md) of the bottom sediment is more than 47gf. The high concentration of TSM near the bottom may be due to resuspension of the surface layer of bottom sediments. Comparison of the organic content of the resuspended matter with that of the bottom sediment shows that the resuspended matter contains more organic matter with a lower C : N ratio than the bottom sediment. The C : N ratio of the resuspended matter is similar to that of TSM in the surface layer of the water column. It is thought that TSM in surface waters sinks and settles on the surface of the bottom sediment. This deposited material is then easily resuspended in the water column by tidal currents before becoming permanently incorporated into the bottom sediment.  相似文献   

14.
The vertical distributions of suspended particles in Osaka Bay were measured by using anin situ beam attenuation meter. The concentration of suspended particles near the bottom increases rapidly toward the bottom where size of sediment is in a range of silt. The settling velocity of suspended particles near the bottom was measured with the use of a settling tower in the laboratory. The settling velocity of the suspended particles with diameter from 10 to 100m is 2×10–3cm s–1 to 5×10–2cm s–1. The density of the particles ranges from 2.0 to 1.1 and decreases with increasing particle diameter.  相似文献   

15.
To investigate the seasonal variation and community structure of nano- and microzooplankton in Gyeonggi Bay of the Yellow Sea, the abundance and carbon biomass of nano- and microzooplankton were evaluated at 10-day intervals from January 1997 to December 1999. Four major groups of nano- and microzooplankton communities were classified: heterotrophic ciliates, heterotrophic dinoflagellates (HDF), heterotrophic nanoflagellates (HNF), and copepod nauplii. The total carbon biomass of nano- and microzooplankton ranged from 10.2 to 168.8 μg C L−1 and was highest during or after phytoplankton blooms. Nano- and microzooplankton communities were composed of heterotrophic ciliates (7.4–81.4%; average 41.7% of total biomass), HDF (0.1–70.3%; average 26.1% of total biomass), copepod nauplii (1.6–70.6%; average 20.7% of total biomass), and HNF (0.8–59.5%; average 11.5% of total biomass). The relative contribution of individual components in the nano- and microzooplankton communities appeared to differ by seasons. Ciliates accounted for the most major component of nano- and microzooplankton communities, except during summer and phytoplankton blooming seasons, whereas HDF were more dominant during the phytoplankton blooming seasons. The abundance and biomass of nano- and microzooplankton generally followed the seasonal dynamics of phytoplankton. The size and community distribution of nano- and microzooplankton was positively correlated with size-fractionated phytoplankton. The carbon requirement of microzooplankton ranged from 60 to 83% of daily primary production, and was relatively high when phytoplankton biomass was high. Therefore, our result suggests that the seasonal variation in the community and size composition of nano- and microzooplankton appears to be primarily governed by phytoplankton size and concentration as a food source, and their abundance may greatly affect trophic dynamics by controlling the seasonal abundance of phytoplankton.  相似文献   

16.
Hydrographic data from National Oceanographic Data Center (NODC) and Responsible National Oceanographic Data Centre (RNODC) were used to study the seasonal variability of the mixed layer in the central Bay of Bengal (8–20°N and 87–91°E), while meteorological data from Comprehensive Ocean Atmosphere Data Set (COADS) were used to explore atmospheric forcing responsible for the variability. The observed changes in the mixed-layer depth (MLD) clearly demarcated a distinct north–south regime with 15°N as the limiting latitude. North of this latitude MLD remained shallow (∼20 m) for most of the year without showing any appreciable seasonality. Lack of seasonality suggests that the low-salinity water, which is perennially present in the northern Bay, controls the stability and MLD. The observed winter freshening is driven by the winter rainfall and associated river discharge, which is advected offshore under the prevailing circulation. The resulting stratification was so strong that even a 4 °C cooling in sea-surface temperature (SST) during winter was unable to initiate convective mixing. In contrast, the southern region showed a strong semi-annual variability with deep MLD during summer and winter and a shallow MLD during spring and fall intermonsoons. The shallow MLD in spring and fall results from primary and secondary heating associated with increased incoming solar radiation and lighter winds during this period. The deep mixed layer during summer results from two processes: the increased wind forcing and the intrusion of high-salinity waters of Arabian Sea origin. The high winds associated with summer monsoon initiate greater wind-driven mixing, while the intrusion of high-salinity waters erodes the halocline and weakens the upper-layer stratification of the water column and aids in vertical mixing. The deep MLD in the south during winter was driven by wind-mixing, when the upper water column was comparatively less stable. The deep MLD between 15 and 17°N during March–May cannot be explained in the context of local atmospheric forcing. We show that this is associated with the propagation of Rossby waves from the eastern Bay. We also show that the nitrate and chlorophyll distribution in the upper ocean during spring intermonsoon is strongly coupled to the MLD, whereas during summer river runoff and cold-core eddies appear to play a major role in regulating the nutrients and chlorophyll.  相似文献   

17.
By the method of polarographic profiling performed with the help of an Au-Hg glass microelectrode, we obtained the first high-resolution vertical profiles of the distributions of oxygen, sulfides, oxidized and reduced forms of iron, reduced manganese, and iron monosulfide in pore waters of the bottom sediments in the Sevastopol Bay. It is shown that the regional features of the vertical distributions of the main polarographically active compounds are determined by the combination of several factors: the contents of organic carbon and iron and the sizes of particles of the sediments.  相似文献   

18.
The unexpected effect of a synoptic-scale event (passage of a cold front) on the advection of water across the mouth of Small Bay, Saldanha Bay, is recorded. From a current-meter record, it is shown how the strength (> 15m·s?1) and direction (NNE) of the wind relative to the mouth set up a stratified shear flow whereby the out-flowing surface water is replaced by in-flowing bottom water. The potential environmental implications for this type of event are discussed.  相似文献   

19.
20.
Particulate fluxes were determined by two methods to elucidate the behavior of settling particles in seawater. One method involves direct observation of fluxes with sediment traps, while in the other method flux is indirectly calculated from the radioactive disequilibrium between U-238 and Th-234 in seawater, which gives net flux. Observations were carried out several times throughout a year in Funka Bay. When linearly extrapolated, the observed gross fluxes of Th-234 did not converge to zero at the surface. In the subsurface water the difference between the observed and calculated fluxes showed a seasonal variation. The observed fluxes roughly coincided with the calculated net fluxes in the summer stratified water but the observedfluxes were much larger than the calculated ones in the convective winter water. Conversely the observed fluxes were smaller than the calculated ones in spring when the water was exchanging. These results suggest that we can apply this two approach method to get information not only on the behavior of settling particles in seawater but also on the physical stability of water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号