首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
The angular correlation function ο(θ) of faint galaxies is affected both by non-linear gravitational evolution and by magnification bias resulting from gravitational lensing. We compute the resulting ο(θ) for different cosmological models and show how its shape and redshift evolution depend on Ω and Λ. For galaxies at redshift greater than 1 ( R magnitude fainter than about 24), magnification bias can significantly enhance or suppress ο(θ), depending on the slope of the number–magnitude relation. We show, for example, how it changes the ratio of ο(θ) for two galaxy samples with different number count slopes.  相似文献   

9.
10.
Weak lensing by large-scale mass inhomogeneities in the Universe induces correlations in the observed ellipticities of distant sources. We first review the harmonic analysis and statistics required of these correlations and discuss calculations for the predicted signal. We consider the ellipticity correlation function, the mean-square ellipticity, the ellipticity power spectrum and a global maximum-likelihood analysis to isolate a weak-lensing signal from the data. Estimates for the sensitivity of a survey of a given area, surface density, and mean intrinsic source ellipticity are presented. We then apply our results to the FIRST radio-source survey. We predict an rms ellipticity of roughly 0.011 in 1 × 1 deg2 pixels and 0.018 in 20 × 20 arcmin2 pixels if the power spectrum is normalized to σ8 Ω0.53 = 0.6, as indicated by the cluster abundance. The signal is significantly larger in some models if the power spectrum is normalized instead to the COBE anisotropy. The uncertainty in the predictions from imprecise knowledge of the FIRST redshift distribution is about 25 per cent in the rms ellipticity. We show that FIRST should be able to make a statistically significant detection of a weak-lensing signal for cluster-abundance-normalized power spectra.  相似文献   

11.
12.
13.
14.
We investigate the impact of the observed correlation between a galaxy's shape and its surrounding density field on the measurement of third-order weak lensing shear statistics. Using numerical simulations, we estimate the systematic error contribution to a measurement of the third-order moment of the aperture mass statistic (GGG) from three-point intrinsic ellipticity correlations (III), and the three-point coupling between the weak lensing shear experienced by distant galaxies and the shape of foreground galaxies (GGI and GII). We find that third-order weak lensing statistics are typically more strongly contaminated by these physical systematics compared to second-order shear measurements, contaminating the measured three-point signal for moderately deep surveys with a median redshift   z m∼ 0.7  by ∼15 per cent. It has been shown that accurate photometric redshifts will be crucial to correct for this effect, once a model and the redshift dependence of the effect can be accurately constrained. To this end we provide redshift-dependent fitting functions to our results and propose a new tool for the observational study of intrinsic galaxy alignments. For a shallow survey with   z m∼ 0.4  we find III to be an order of magnitude larger than the expected cosmological GGG shear signal. Compared to the two-point intrinsic ellipticity correlation which is similar in amplitude to the two-point shear signal at these survey depths, third-order statistics therefore offer a promising new way to constrain models of intrinsic galaxy alignments. Early shallow data from the next generation of very wide weak lensing surveys will be optimal for this type of study.  相似文献   

15.
16.
17.
18.
Using the ray-bundle method for calculating gravitational lens magnifications, we outline a method by which the magnification probability may be determined specifically in the weak lensing limit for cosmological models obtained from N -body simulations.
16 different models are investigated, which are variations on three broad classes of cold dark matter model: the standard model with  (Ω0, λ 0)=(1.0,0.0)  , the open model with  (Ω0, λ 0)=(0.3,0.0)  and the lambda model, which is a flat model with a cosmological constant  (Ω0, λ 0)=(0.3,0.7)  .
The effects of varying the Hubble parameter, H 0, the power spectrum shape parameter, Γ, and the cluster mass normalization, σ 8, are studied. It is shown that there is no signature of these parameters in the weak lensing magnification distributions. The magnification probability distributions are also shown to be independent of the numerical parameters such as the lens mass and simulation box size in the N -body simulations.  相似文献   

19.
The angular cross-correlation between two galaxy samples separated in redshift is shown to be a useful measure of weak lensing by large-scale structure. Angular correlations in faint galaxies arise as a result of spatial clustering of the galaxies as well as gravitational lensing by dark matter along the line of sight. The lensing contribution to the two-point autocorrelation function is typically small compared with the gravitational clustering. However, the cross-correlation between two galaxy samples is almost unaffected by gravitational clustering provided that their redshift distributions do not overlap. The cross-correlation is then induced by magnification bias resulting from lensing by large-scale structure. We compute the expected amplitude of the cross-correlation for popular theoretical models of structure formation. For two populations with mean redshifts of ≃0.3 and 1, we find a cross-correlation signal of ≃1 per cent on arcmin scales and ≃3 per cent on scales of a few arcsec. The dependence on the cosmological parameters Ω and Λ, the dark matter power spectrum and the bias factor of the foreground galaxy population is explored.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号