首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
海底扇是由沉积物重力流形成的海底沉积体。其分类学和相模式研究表明,海底扇主要由海底水道、溢岸及朵叶体等沉积单元构成。然而古代和现代海底扇沉积均无法由单一的通用相模式进行解释。以粒度差异所建立的相模式类型涵盖了多方面信息,相对简单实用。海底扇的触发机制主要包括海底沉积物失稳、洪水型异重流、海洋动力过程及复合成因机制等类型。海底扇的主导流体类型(碎屑流与浊流)、海底地貌形态(限制性与非限制性)及海洋动力条件(底流作用)深刻影响了海底扇的沉积作用、平面形态及空间组合特征,整体上分为三类。其中,浊流沉积主导的海底扇在非限制性海底环境中主要表现为扇状或指状形态,在限制性海底环境中则直接受控于盆地的地貌形态;碎屑流沉积主导的海底扇以块体搬运为特征,平面上表现为舌状和叶状展布形态;底流与重力流共同作用形成的混合型海底扇朵叶体沿底流流向侧向偏转,部分受底流改造沉积形成孤立漂积丘状形态。海底扇沉积物记录了环境信号从“源”到“汇”传输效率和保存程度,对构造变形和古气候变化具有重要的指示作用。人类世以来的现代海底扇沉积物同时也是深海微塑料、陆源有机碳的重要储库,定量评估其丰度特征对于环境评价、污染治理与管控及全球碳循环均具有深远的现实意义。  相似文献   

2.
东辛油田沙三中亚段发育大量与三角洲前缘滑塌相伴生的坡移浊积扇、滑塌浊积扇、远源浊积岩以及洪水成因的水下碎屑流,发育岩性油藏及岩性-构造油藏。纵向上,湖退体系域早期准层序组PS7~PS5是最主要的油气富集层位,其次为湖侵体系域PS8;平面上,各准层序组西部油气富集程度好于东部,含油储层主要为滑塌浊积扇及部分远源浊积岩,其次为坡移浊积扇。油气分布主要受宏观沉积相带、构造、微观储集物性和成岩作用等多种因素控制,距油源远近控制油藏纵向有利层位,砂体成因类型控制着平面有利区带。  相似文献   

3.
The Neogene Humboldt (Eel River) Basin is located along the north-eastern margin of the Pacific Ocean within the Cascadia subduction zone. This sedimentary basin originated near the base of the accretionary prism in post-Eocene time. Subduction processes since that time have elevated strata in the south-eastern portion of the basin above sea level. High-resolution chronostratigraphic data from the onshore portion of the Humboldt Basin enable correlation of time-equivalent lithofacies across the palaeomargin, reconstruction of slope-basin evolution, and preliminary delineation of climatic and tectonic influence on lithological variation. Emergent basin fill is divided into five lithofacies which clearly document shoaling of the inner trench slope from deep-water environments in early Miocene time to paralic environments in Pleistocene time. The oldest strata consist of hemipelagic mudstones and minor debris-flow breccias deposited in a deep-water setting during elevated sea level. These strata are overlain by glauconite-rich, fine-grained turbidites which heralded an increasing influx of terrigenous detritus. Water depths shoaled earlier in the eastern basin area as the palaeoshoreline prograded seaward. Turbidite deposition ceased in the eastern basin area at about 2-2 Ma, whereas 22 km to the west, turbidite deposition continued until about 1-8 Ma. Lithofacies at the western study site change abruptly across a middle Pleistocene unconformity from outer shelf to paralic deposits. In the east, a more complete Pleistocene section records transition from outer to inner shelf, beach and fluvial environments. The Humboldt Basin lithofacies sequence is overprinted by eustatic control of sediment source. Comparison of sediment character with palaeoceanographic conditions indicates dominance of hemipelagic facies during periods of elevated sea level in the middle Miocene and early Pliocene when depocentres were isolated from terrigenous sediment. Glauconite-rich facies were mobilized from an upper slope setting following these periods of elevated sea level and redeposited in a deep-marine environment. Pleistocene shoreline lithofacies display glacio-esutatic control of depositional environment by recording several cycles of nearshore to fluvial progressions. General models of accretionary prism behaviour and trench-slope basin evolution are compatible with the overall coarsening-upward lithofacies sequence filling the Humboldt Basin. Early structural barriers precluded deposition of terrigenous material except from locally derived debris flows; subsequent shoaling and burial of deactivated thrust-folds enabled turbidity flows to reach the basin floor. However, late-stage tectonism apparently controlled the onset of coarse-grained deposition in this sequence. Significant sand-rich turbidite deposition began in the middle Pliocene, synchronous with tectonic uplift of the southern basin margin. Conversely, cessation of turbidite deposition in the eastern basin area in latest Pliocene time was synchronous with growth of anticlinal structures which again blocked widespread dispersal of turbidity flows. This middle Pliocene to Holocene period of crustal shortening is synchronous with continued reduction in spreading rate along the southern Juan de Fuca ridge, and probably reflects partial coupling between the subducting lithosphere and the overlying accretionary prism.  相似文献   

4.
Sedimentary cycles in an upper Miocene succession of hemipelagic sediments (marls) and laminites (sapropels) were deposited in an outerarc basin and are related to the astronomical cycles of precession and eccentricity. Individual marl-laminite couplets correspond with the cycle of precession which has a periodicity of about 22 kyr. The lower part of the succession contains a turbidite interval comprising a number of distinct turbidite sequences. The turbidite sequences occur within or substitute entirely the laminite beds, so that turbidite deposition is similarly precession punctuated. The turbidite facies is characteristic for small, prograding fan lobes fed by small-volume turbidites. The abundant plant remains, the local palaeogeographic setting and the association with laminites (related to wet climate) suggest a river-fed submarine fan-lobe, where the timing of sediment transport is largely controlled by river floods during periods of high precipitation and continental run-off. The onset and ending of the turbidite interval is most likely linked with either autocyclic processes or by tectonic steepening of the hinterland relief. Sea-level changes seem least important for the triggering of turbidites, which is in contrast with current beliefs.  相似文献   

5.
基于TM遥感图像解译和野外调研,分析了攀西地区大渡河、安宁河深切河谷地貌特征和断裂带构造变形特征,建立了安宁河断裂带晚新生代5阶段变形历史。研究表明,中新世晚期—上新世早期,安宁河断裂以挤压走滑活动为主;上新世晚期至早更新世时期,断裂以斜张走滑活动为主,活动强度较弱;早中更新世之间发生的元谋运动使昔格达组湖相地层褶皱变形;中晚更新世时期发生断陷作用,形成安宁河两堑夹—垒的构造格局;晚更新世—全新世时期又以左旋走滑活动为主。综合安宁河、大渡河河谷地貌和晚新生代地层记录和变形特征,提出了攀西高原晚新生代4阶段隆升模式:中新世早中期(12Ma之前)以缓慢隆升与区域夷平化作用为主,中新世晚期—上新世早期(12~3.4Ma)是高原快速隆升与河流强烈下切的时期,上新世晚期—早更新世(3.4~1.1Ma)为昔格达湖盆发育时期,中晚更新世—全新世(1.1Ma以来)是高原快速隆升与河谷阶地发育时期。最后指出,至上新世晚期(3.4Ma以前),攀西高原海拔高度可能超过了3000m。  相似文献   

6.
长江口区晚新生代沉积物粒度特征和沉积地貌环境演变   总被引:7,自引:0,他引:7  
战庆  王张华  王昕  李晓 《沉积学报》2009,27(4):674-683
对长江河口区的三个晚新生代钻孔作了地层对比和粒度分析,据此探讨晚新生代长江河口的沉积地貌环境演变过程。结果表明,SG6和J18A孔上新世厚层含砾砂质沉积物粒度特征,反映了洪积扇和冲积扇相沉积环境,沉积物搬运距离短;而SG13孔缺失上新世沉积,反映古地势较高,以剥蚀为主。因此上新世长江三角洲地区古地势高差较大,侵蚀区和沉积区共存。早更新世,本区继承了上新世的冲、洪积扇沉积环境,但SG6孔泥质沉积明显变厚,J18A孔此时则以厚层含砾砂沉积为主,SG13孔也开始接受泥质沉积,反映在构造沉降作用下,冲、洪积扇体向西、南部迁移,沉积盆地范围扩大。中更新世,沉积物普遍变细且以悬浮沉积为主,显示了曲流河或曲流河冲积平原的沉积环境。晚更新世初,本区又发育含砾砂层,特别是SG13孔出现厚层含砾砂,但是粒径显著小于上新世和早更新世沉积物,反映本区再次发生显著构造沉积,河流地貌广泛发育。晚更新世中晚期和全新世沉积物以粘土和粉砂质粘土为主,悬浮沉积占优,说明本区已演变为滨、浅海沉积环境。因此在构造沉降、剥蚀和沉积的共同作用下,本区的地貌演变经历了自上新世至中更新世和自晚更新世至全新世的两次准平原化过程。  相似文献   

7.
Escanaba Trough is the southernmost segment of the Gorda Ridge and is filled by sandy turbidites locally exceeding 500 m in thickness. New results from Ocean Drilling Program (ODP) Sites 1037 and 1038 that include accelerator mass spectrometry (AMS) 14C dates and revised petrographic evaluation of the sediment provenance, combined with high-resolution seismic-reflection profiles, provide a lithostratigraphic framework for the turbidite deposits. Three fining-upward units of sandy turbidites from the upper 365 m at ODP Site 1037 can be correlated with sediment recovered at ODP Site 1038 and Deep Sea Drilling Program (DSDP) Site 35. Six AMS 14C ages in the upper 317 m of the sequence at Site 1037 indicate that average deposition rates exceeded 10 m/k.yr. between 32 and 11 ka, with nearly instantaneous deposition of one approximately 60-m interval of sand. Petrography of the sand beds is consistent with a Columbia River source for the entire sedimentary sequence in Escanaba Trough. High-resolution acoustic stratigraphy shows that the turbidites in the upper 60 m at Site 1037 provide a characteristic sequence of key reflectors that occurs across the floor of the entire Escanaba Trough. Recent mapping of turbidite systems in the northeast Pacific Ocean suggests that the turbidity currents reached the Escanaba Trough along an 1100-km-long pathway from the Columbia River to the west flank of the Gorda Ridge. The age of the upper fining-upward unit of sandy turbidites appears to correspond to the latest Wisconsinan outburst of glacial Lake Missoula. Many of the outbursts, or j?kulhlaups, from the glacial lakes probably continued flowing as hyperpycnally generated turbidity currents on entering the sea at the mouth of the Columbia River.  相似文献   

8.
Third-order sequence stratigraphic analysis of the Early Permian marine to continental facies of the Karoo Basin provides a case study for the sedimentation patterns which may develop in an underfilled foreland system that is controlled by a combination of supra- and sublithospheric loads. The tectonic regime during the accumulation of the studied section was dominated by the flexural rebound of the foreland system in response to orogenic quiescence in the Cape Fold Belt, which resulted in foredeep uplift and forebulge subsidence. Coupled with flexural tectonics, additional accommodation was created by dynamic loading related to the process of subduction underneath the basin. The long-wavelength dynamic loading led to the subsidence of the peripheral bulge below base level, which allowed for sediment accumulation across the entire foreland system.A succession of five basinwide regressive systems tracts accumulated during the Artinskian (5 My), consisting of foredeep submarine fans and correlative forebulge deltas. The progradation of submarine fans and deltaic systems was controlled by coeval forced and normal regressions of the proximal and distal shorelines of the Ecca interior seaway respectively. The deposition of each regressive systems tract was terminated by basinwide transgressive episodes, that may be related to periodic increases in the rates of long-wavelength dynamic subsidence.  相似文献   

9.
Alluvial fans are usually constructed through episodic flood events. Despite the significance of these ephemeral floods on the morphodynamics of alluvial fans, depositional responses to the variations in flood conditions are still poorly documented. This greatly limits the ability to interpret ancient sedimentary successions of fans and the associated flood hydrodynamics. The Quaternary Poplar Fan from endorheic Heshituoluogai Basin provides an optimal case for addressing this issue. Based on the variations in facies associations and flood conditions, three depositional stages – namely; lobe building stage, channel building stage and the abandonment stage – are identified. During the lobe building stage the Poplar Fan is predominately constructed through incised channel flood, sheetflood and unconfined streamflood, with coeval development of distal surficial ephemeral ponds. The channel building stage is characterized by the development of gravelly braided rivers. However, only scour pool fill deposits are preferentially preserved in the Poplar Fan. During the abandonment stage, erosional lags and aeolian sands randomly occur throughout the fan, while gully deposits can only be found in the distal fan. The distinctive facies architecture of the Poplar Fan is likely to be the result of periodicity of climate fluctuations between wetter and drier conditions during the Late Pleistocene to Holocene. The ephemeral floods formed under wetter conditions usually show high discharge and sediment concentrations which facilitate the lobe building processes. During the drier periods, only gravelly braided rivers can be developed through ephemeral floods as the intensity and frequency in precipitation, discharge and sediment concentrations of the flood flows significantly decrease. The abandonment stage of the fan may occur between recurring flood episodes or during the driest periods. Furthermore, the long-term (105 to 106 year) geomorphic evolution of the Poplar Fan shows the influence of tectonic activities. The ongoing thrust uplift tectonic activities have caused destruction of the fan but can also facilitate the fan-head trench/incision of the fan, which in turn facilitate the progradation of the fan. This study proposes a new depositional model for alluvial fans constructed through episodic flood events, which shows the character of both sheet-flood dominated and stream-flow dominated end members of alluvial fans. These findings supplement the understanding of the variability of the alluvial fans and provide means to characterize rock record of alluvial fans and their associated flood and climate conditions.  相似文献   

10.
The development of mudwaves on the levees of the modern Toyama deep‐sea channel has been studied using gravity core samples combined with 3·5‐kHz echosounder data and airgun seismic reflection profiles. The mudwaves have developed on the overbank flanks of a clockwise bend of the channel in the Yamato Basin, Japan Sea, and the mudwave field covers an area of 4000 km2. Mudwave lengths range from 0·2 to 3·6 km and heights vary from 2 to 44 m, and the pattern of mudwave aggradation indicates an upslope migration direction. Sediment cores show that the mudwaves consist of an alternation of fine‐grained turbidites and hemipelagites whereas contourites are absent. Core samples demonstrate that the sedimentation rate ranged from 10 to 14 cm ka?1 on the lee sides to 17–40 cm ka?1 on the stoss sides. A layer‐by‐layer correlation of the deposits across the mudwaves shows that the individual turbidite beds are up to 20 times thicker on the stoss side than on the lee side, whereas hemipelagite thicknesses are uniform. This differential accretion of turbidites is thought to have resulted in the pattern of upcurrent climbing mudwave crests, which supports the notion that the mudwaves have been formed by spillover turbidity currents. The mudwaves are interpreted to have been instigated by pre‐existing large sand dunes that are up to 30 m thick and were created by high‐velocity (10°ms?1), thick (c. 500 m) turbidity currents spilling over the channel banks at the time of the maximum uplift of the Northern Japan Alps during the latest Pliocene to Early Pleistocene. Draping of the dunes by the subsequent, lower‐velocity (10?1ms?1), mud‐laden turbidity currents is thought to have resulted in the formation of the accretionary mudwaves and the pattern of upflow climbing. The dune stoss slopes are argued to have acted as obstacles to the flow, causing localized loss of flow strength and leading to differential draping by the muddy turbidites, with greater accretion occurring on the stoss side than on the lee slope. The two overbank flanks of the clockwise channel bend show some interesting differences in mudwave development. The mudwaves have a mean height of 9·8 m on the outer‐bank levee and 6·2 m on the inner bank. The turbidites accreted on the stoss sides of the mudwaves are 4–6 times thicker on the outer‐bank levee than their counterparts on the inner‐bank levee. These differences are attributed to the greater flow volume (thickness) and sediment flux of the outer‐bank spillover flow due to the more intense stripping of the turbidity currents at the outer bank of the channel bend. Differential development of mudwave fields may therefore be a useful indicator in the reconstruction of deep‐sea channels and their flow hydraulics.  相似文献   

11.
张晓宝  方国庆 《地质科学》1996,31(2):154-162
利用浊积岩相、相组合和组合序列分析方法,将西秦岭上三叠统浊积岩系划分为B、C、D、E、G等5个浊积岩相;水道、越岸沉积、舌状体-水道过渡带、舌状体、盆地平原等5个相组合;盆地平原→舌状体和盆地平原→舌状体→舌状体-水道过渡带→水道等2个组合序列。研究结果表明研究层段属海底扇沉积环境,并具有浊流搬运斜坡较陡,冲刷作用强烈;堆积地形平缓,为盆底扇;巳扇体规模较小,水道与舌状体相连等特征。基于上述分析,建立了海底扇的沉积模式。  相似文献   

12.
Abstract

Deep-sea turbidite sedimentation in convergent margin settings generally is controlled by tectonic uplift, climate and eustatic sea-level variations. The rate of tectonic uplift governs the relief of the source area and the position of the base level (coinciding with sea-level), climate influences the rate and style of weathering and continental runoff and eustatic seal-level additionally shifts the base level, functioning with the concurrently working tectonic movements. Thus, these factors primarly determine the availability of sediment (yield and nature of material and the site of intermittent storage) at the basin margin which is unlocked periodically to flow downslope to the basin.

This paper attempts to decipher quantitatively the importance of the individual factors in the Late Maastrichtian to Early Eocene Schieren Flysch Croup. The flysch was deposited in a moderately converging remnant oceanic trench basin. Mean parameters are calculated on the basis of formations and the duration of nannofossil zones comprised in. For transposing these zone into absolute age intervals the problem of inconsistent durations in current time scales had to be solved by a best-fit approach. Frequencies and periodicities of turbidite events, decompacted and compacted sedimentation rates (the latter are considered as apparent denudation rates) are calculated to reveal the dynamics of sedimentation. Climatic evidence is deduced from clay mineralogy. Changing uplift rates in the drainage area are indirectly interpreted from back-stripped tectonic subsisdence rates in the basin.

The obtained data point to an immediate control of sub-duction-Iinked tectonic uplift in the bordering drainage and shelf area on turbidite sedimentation, as frequency and thickness of the turbidite events are closely correlated with the increasing tectonic subsisdence in the basin (assumed to match the rate of subduction and underplating). This general trend is modified by the temporary migration of the oceanic hinge zone towards the trench causing periodically the starvation of outer portions of the basin at the transition from Early to Late Paleocene and Late Paleocene to Eocene. Regional climatic trends additionnaly rule the turbidite facies development and apparent denudation rates. In the upper part of Early Eocene series high rate mud dominated sediments correlate with warm/humid conditions and in Late Paleocene deposits low rate sandy sediments coincide with cool ones. During the Late Paleocene period the global 2nd-order sea-level lowering probably may be responsible for the by-passing of the shelf by the coarse grained sediments.  相似文献   

13.
ABSTRACT The Upper Carboniferous deep‐water rocks of the Shannon Group were deposited in the extensional Shannon Basin of County Clare in western Ireland and are superbly exposed in sea cliffs along the Shannon estuary. Carboniferous limestone floors the basin, and the basin‐fill succession begins with the deep‐water Clare Shales. These shales are overlain by various turbidite facies of the Ross Formation (460 m thick). The type of turbidite system, scale of turbidite sandstone bodies and the overall character of the stratigraphic succession make the Ross Formation well suited as an analogue for sand‐rich turbidite plays in passive margin basins around the world. The lower 170 m of the Ross Formation contains tabular turbidites with no channels, with an overall tendency to become sandier upwards, although there are no small‐scale thickening‐ or thinning‐upward successions. The upper 290 m of the Ross Formation consists of turbidites, commonly arranged in thickening‐upward packages, and amalgamated turbidites that form channel fills that are individually up to 10 m thick. A few of the upper Ross channels have an initial lateral accretion phase with interbedded sandstone and mudstone deposits and a subsequent vertical aggradation phase with thick‐bedded amalgamated turbidites. This paper proposes that, as the channels filled, more and more turbidites spilled further and further overbank. Superb outcrops show that thickening‐upward packages developed when channels initially spilled muds and thin‐bedded turbidites up to 1 km overbank, followed by thick‐bedded amalgamated turbidites that spilled close to the channel margins. The palaeocurrent directions associated with the amalgamated channel fills suggest a low channel sinuosity. Stacks of channels and spillover packages 25–40 m thick may show significant palaeocurrent variability at the same stratigraphic interval but at different locations. This suggests that individual channels and spillover packages were stacked into channel‐spillover belts, and that the belts also followed a sinuous pattern. Reservoir elements of the Ross system include tabular turbidites, channel‐fill deposits, thickening‐upward packages that formed as spillover lobes and, on a larger scale, sinuous channel belts 2·5–5 km wide. The edges of the belts can be roughly defined where well‐packaged spillover deposits pass laterally into muddier, poorly packaged tabular turbidites. The low‐sinuosity channel belts are interpreted to pass downstream into unchannellized tabular turbidites, equivalent to lower Ross Formation facies.  相似文献   

14.
The Late Miocene to Pleistocene evolution of the northwestern Iblean plateau (Sicily) is marked by a complex interplay of subaerial and submarine volcanism, subsidence and uplift, eustatic sea-level changes, and shallow-water carbonate and clay sedimentation. Volcanic activity occurred in distinct phases, differing drastically in volume, chemical composition, eruptive and depositional sites, and eruptive mechanisms. Six of the newly defined formations in the northwestern Iblean plateau are either entirely volcanic or contain significant amounts of volcanics. The eastern part of a shallow marine basin was filled completely by Late Pliocene tholeiitic lava flows (Militello Formation) that had advanced subaerially from the south–southeast. Lava deltas advanced southwestward on top of earlier pillow breccia debris flow deposits intertongued with soft Trubi marls and chalks. True submarine eruptions (Monte Caliella Formation) simultaneously produced densely packed pillow piles up to 250?m thick. Inferred water depths based on volcanologic and paleoecologic criteria of interbedded and overlying calcarenites agree well. Subsequent alkalic, more explosive Pleistocene volcanic eruptions (Poggio Vina Formation) changed from initially submarine to late subaerial indicating growth of edifices above sea level, sea-level rise, or land Subsidence by ca. 50?m. They and the latest Militello volcanics are interlayed with minor shallow-water calcarenites. The Poggio Vina volcanics were submerged during a second sea-level rise amounting to up to 100?m. The sea was generally shallow, i.e., <100?m deep, throughout most of the Late Pliocene and early Pleistocene. The Poggio Vina volcanism took place prior to the Emilian transgression. The sea-level rise might represent a continuation of the subsidence trend that caused the Lower Pliocene Trubi marine basin. Subaerial conditions were reached twice in the approximate time interval 1.9–1.6?Ma during phases of voluminous volcanism that outpaced subsidence. Uplift of approximately 600?m (Palagonia) to 950?m (Monte Lauro) occurred subsequent to emplacement of the Pleistocene alkalic volcanics. Bioclastic carbonates deposited concurrently with uplift drape a major fault scarp east of Palagonia with uplift rates in excess of 0.5?mm/a, provided most uplift occurred during ca. 1?Ma. Basinning continued beneath the half graben of the present Piana di Catania where volcanics several hundreds of meters thick – at least some of them alkalic in composition – occur at a depth of approximately 500–1500?m below the present surface. Quaternary uplift of the northwestern Iblean plateau may have been due to a major phase of underplating or rise of partially melted mantle. Composition of the volcanic rocks, total volume, and mass eruptive rates are well-correlated. The volumetrically very minor highly mafic Messinian nephelinites may have formed in response to Messinian lithosphere unloading following draining of the Mediterranean resulting in very low-degree partial melting. The nephelinitic to basanitic Poggio Inzerillo and Poggio Pizzuto pillow lavas may herald a major mantle decompression event, possibly the rise of a mantle diapir. The remarkably homogeneous bronzite-bearing, relatively SiO2-rich Militello tholeiites, representing a very short-lived but voluminous eruptive phase, resemble E-MORB and reflect a major high-degree partial melting event. The Pleistocene Poggio Vina alkali basalts to nephelinites resemble the late-stage alkalic phase in intraplate magmatic systems. The Iblean cycle of a brief but intense phase of widespread tholeiites followed by alkali basaltic volcanism resembles that of Etna Volcano where widespread basal tholeiites erupted at approximately 0.5?Ma and were followed by (evolved) alkali basaltic lavas. The immediate cause-and-effect relationship between volcanism and tectonism remains speculative.  相似文献   

15.
Two widespread tephra deposits constrain the age of the Delta Glaciation in central Alaska. The Old Crow tephra (ca. 140,000 ± 10,000 yr), identified by electron microprobe and ion microprobe analyses of individual glass shards, overlies an outwash terrace coeval with the Delta glaciation. The Sheep Creek tephra (ca. 190,000 yr) is reworked in alluvium of Delta age. The upper and lower limiting tephra dates indicate that the Delta glaciation occurred during marine oxygen isotope stage 6. We hypothesize that glaciers in the Delta River Valley reached their maximum Pleistocene extent during this cold interval because of significant mid-Pleistocene tectonic uplift of the east-central Alaska Range.  相似文献   

16.
Syn-rift sediments in basins formed along the future southern continental margin of the Jurassic Tethys ocean, comprise, in the eastern Alps of Switzerland, up to 500 m thick carbonate turbidite sequences interbedded with bioturbated marls and limestones. In the fault-bounded troughs no submarine fans developed; in contrast, the fault scarps acted as a line source and the asymmetric geometry as well as the evolution of the basin determined the distribution of redeposited carbonates. The most abundant redeposits are bio- and lithoclastic grainstones and packstones, with sedimentary structures indicating a wide range of transport mechanisms from grain flow to high- and low-density turbidity currents. Huge chaotic megabreccias record catastrophic depositional events. Their main detrital components are Upper Triassic shallow-water carbonates and skeletal debris from nearby submarine highs. After an event of extensional tectonism, sedimentary prisms accumulated in the basins along the faults. Each prism is wedge-shaped with a horizontal upper boundary and consists of a thinning- and fining-upward megacycle. Within each megacycle six facies associations are distinguished. At the base of the fault scarp, an association of breccias was first deposited by submarine rockfall and rockfall avalanches. A narrow, approximately 4000 m wide depression along the fault was subsequently filled by the megabreccia association, in which huge megabreccias interfinger with thin-bedded turbidites and hemipelagic limestones. The thick-bedded turbidite association covered the megabreccias or formed, farther basinward, the base of the sedimentary column. Within the thick-bedded turbidites, thinning- and fining-upward cycles are common. The overlying thin-bedded turbidite association shows nearly no cyclicity and the monotonous sequence of fine-grained calciturbidites covers most of the basin area. With continuous filling and diminishing sediment supply, a basin-plain association developed comprising fine-grained and thin-bedded turbidites intercalated with bioturbated marls and limestones. On the gentle slopes opposite the fault escarpment, redeposited beds are scarce and marl/limestone alternations as well as weakly nodular limestones prevail.  相似文献   

17.
新疆东昆仑鸭子泉地区的早石炭世地层主要由深海浊流沉积组成,发育鲍玛序列的BC和DCB组合,多形成于浊积扇的中扇环境。古水流的方向表明,当时的大陆坡倾向SE。浊积岩的地球化学成分反映其形成的构造环境为活动大陆边缘,沉积物主要来源于当时其SE方向的火山岛弧。  相似文献   

18.
张岳桥  施炜  董树文 《地质学报》2019,93(5):971-1001
作为大陆内部典型的伸展断陷区和强震活动区,华北地区处于东部太平洋板块俯冲构造和西部印欧大陆碰撞构造的双重大地构造背景之下,其新构造运动相当复杂:西部沿鄂尔多斯地块周缘两个地堑盆地系引张伸展断陷作用、中部太行山块体的局部断陷和整体隆升、东部华北平原区和渤海湾海域区的区域沉降,南缘沿秦岭构造带的左旋走滑拉张活动,东缘沿郯庐断裂带的右旋挤压走滑活动。这些不同类型的断裂构造在晚新生代的阶段性活动,产生了复杂的构造地貌组合特征。综合研究发现,华北晚新生代经历了3期伸展断陷-挤压隆升演化阶段:新近纪晚期(10~2.5 Ma)、早中更新世和晚更新世以来。地壳引张应力方向或NW-SE、或NE-SW向;地块隆升导致湖盆的消亡,挤压应力方向为NE-SW至W-E向。研究认为,华北地区新构造受两个岩石圈构造过程的相互影响:印欧碰撞产生的远程效应和东部岩石圈地幔的上涌。一方面,青藏高原东北缘地块的持续推挤及其构造应力向东的传递导致鄂尔多斯地块反时针旋转和秦岭山地的向东挤出逃逸,这个挤出构造动力学统治了华北地区晚新生代的引张伸展、斜张走滑和挤压变形。尤其是,新近纪晚期强烈的NW-SE向地壳伸展变形与青藏东缘挤出造山作用同步(10~9 Ma至4.2 Ma);上新世末期(约2.5 Ma)、晚更新世早期(约200~70 ka)和晚更新世晚期—全新世(约20 ka以来)3次构造挤压事件与青藏高原东缘构造事件基本对应。另一方面,岩石圈地幔上涌主导了华北东部平原区的区域地壳沉降,同时伴随着早、中更新世的5期幔源火山活动。这两个岩石圈构造作用力此消彼长,深刻统治着华北地区新构造与现今活动构造以及地震构造。  相似文献   

19.
In southeastern Turkey, the NE-trending Antakya Graben forms an asymmetric depression filled by Pliocene marine siliciclastic sediment, Pleistocene to Recent fluvial terrace sediment, and alluvium. Along the Mediterranean coast of the graben, marine terrace deposits sit at different elevations ranging from 2 to 180 m above present sea level, with ages ranging from MIS 2 to 11. A multisegmented, dominantly sinistral fault lying along the graben may connect the Cyprus Arc in the west to the Amik Triple Junction on the Dead Sea Fault (DSF) in the east. Normal faults, which are younger than the sinistral ones, bound the graben’s southeastern margin. The westward escape of the continental ?skenderun Block, delimited by sinistral fault segments belonging to the DSF in the east and the Eastern Anatolian Fault in the north caused the development of a sinistral transtensional tectonic regime, which has opened the Antakya Graben since the Pliocene. In the later stages of this opening, normal faults developed along the southeastern margin that caused the graben to tilt to the southwest, leading to differential uplift of Mediterranean coastal terraces. Most of these normal faults remain active. In addition to these tectonic movements, Pleistocene sea level changes in the Mediterranean affected the geomorphological evolution of the area.  相似文献   

20.
太行山隆起南段新构造变形过程研究   总被引:9,自引:0,他引:9  
基于TM遥感影像解译和断裂滑动矢量资料的野外观测,结合年轻地质体热同位素和放射性同位素年代学测试结果分析,重点描述了太行山隆起南段构造地貌特征,划分了新构造变形阶段,确定了新构造应力场及其转换历史。研究表明,新近纪以来,太行山南段经历了两期重要的引张变形时期。中新世中晚期,伴随华北地区广泛的基性火山喷溢活动,太行山南段受近NE-SW向引张应力作用,构造变形集中在南段东缘和南缘断裂带上。上新世至早更新世时期,强烈的NW-SE向地壳引张导致太行山隆起南段夷平地貌的解体和地堑盆地的形成。自中晚更新世以来,太行山南缘断裂带成为新构造变形的主要边界带。断面滑动矢量分析和山前年轻冲积扇体和小冲沟沿断裂错移特征分析,表明太行山南缘断裂带是一条斜张左旋走滑边界断裂带,引张方向为NW-SE至NNW-SSE.从区域大地构造角度,中新世中国东部NE-SW向拉伸作用与东部太平洋板块向西俯仲导致的弧后扩张动力过程有关;而上新世以来新构造变形是与青藏高原快速隆升及其向东构造挤出作用有关。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号