首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A mechanism of damped oscillations of a coronal loop is investigated. The loop is treated as a thin toroidal flux rope with two stationary photospheric footpoints, carrying both toroidal and poloidal currents. The forces and the flux-rope dynamics are described within the framework of ideal magnetohydrodynamics (MHD). The main features of the theory are the following: i) Oscillatory motions are determined by the Lorentz force that acts on curved current-carrying plasma structures and ii) damping is caused by drag that provides the momentum coupling between the flux rope and the ambient coronal plasma. The oscillation is restricted to the vertical plane of the flux rope. The initial equilibrium flux rope is set into oscillation by a pulse of upflow of the ambient plasma. The theory is applied to two events of oscillating loops observed by the Transition Region and Coronal Explorer (TRACE). It is shown that the Lorentz force and drag with a reasonable value of the coupling coefficient (c d ) and without anomalous dissipation are able to accurately account for the observed damped oscillations. The analysis shows that the variations in the observed intensity can be explained by the minor radial expansion and contraction. For the two events, the values of the drag coefficient consistent with the observed damping times are in the range c d ≈2 – 5, with specific values being dependent on parameters such as the loop density, ambient magnetic field, and the loop geometry. This range is consistent with a previous MHD simulation study and with values used to reproduce the observed trajectories of coronal mass ejections (CMEs).  相似文献   

2.
Newly formed stars have magnetic fields provided by the compression of the interstellar field, and contrary to a widely accepted idea these fields are not destroyed by convective motions. For the same reason, the fallacy of ‘turbulent diffusion’, turbulent dynamo action is not possible in any star. Thus all stellar magnetic fields have a common origin, and persist throughout the lifetime of each star, including degenerate phases. This common origin, and a general similarity in stellar evolutionary processes, suggest that the fields may develop similar structural characteristics and MHD effects. This would open new possibilities of coordinating the studies of different types of stars and relating them to solar physics which has tended to become isolated from general stellar physics. As an initial step we consider three features of solar magnetic fields and their MHD effects. First, the solar magnetic field comprises two separate components: a poloidal field and a toroidal field. The former is a dipole field, permeating the entire Sun and closely aligned with the rotational axis; at the surface it is always concealed by much stronger elements of the toroidal field. The latter is probably wound from the former by differential rotation at latitudes below about 35°, where sections emerge through the solar surface and are then carried polewards. The second feature of solar magnetic fields is that all flux is concentrated into flux tubes of strength some kG, isolated within a much larger volume of non-magnetic plasma. The third feature is that the flux tubes are helically twisted into flux ropes (up to ?1022Mx) and smaller elements ranging down to flux fibres (? 1018Mx). Some implications of similar features in other stars are discussed.  相似文献   

3.
The astrophysical jet experiment at Caltech generates a T=2–5 eV, n=1021–1022 m−3 plasma jet using coplanar disk electrodes linked by a poloidal magnetic field. A 100 kA current generates a toroidal magnetic field; the toroidal field pressure inflates the poloidal flux surface, magnetically driving the jet. The jet travels at up to 50 km/s for ∼20–25 cm before colliding with a cloud of initially neutral gas. We study the interaction of the jet and the cloud in analogy to an astrophysical jet impacting a molecular cloud. Diagnostics include magnetic probe arrays, a 12-channel spectroscopic system and a fast camera with optical filters. When a hydrogen plasma jet collides with an argon target cloud, magnetic measurements show the magnetic flux compressing as the plasma jet deforms. As the plasma jet front slows and the plasma piles up, the density of the frozen-in magnetic flux increases.  相似文献   

4.
Oscillations of magnetic flux tubes are of great importance as they contain information about the geometry and fine structure of the flux tubes. Here we derive and analytically solve in terms of Kummer’s functions the linear governing equations of wave propagation for sausage surface and body modes (m=0) of a magnetically twisted compressible flux tube embedded in a compressible uniformly magnetized plasma environment in cylindrical geometry. A general dispersion relation is obtained for such flux tubes. Numerical solutions for the phase velocity are obtained for a wide range of wavenumbers and for varying magnetic twist. The effect of magnetic twist on the period of oscillations of sausage surface modes for different values of the wavenumber and vertical magnetic field strength is calculated for representative photospheric and coronal conditions. These results generalize and extend previous studies of MHD waves obtained for incompressible or for compressible but nontwisted flux tubes. It is found that magnetic twist may change the period of sausage surface waves of the order of a few percent when compared to counterparts in straight nontwisted flux tubes. This information will be most relevant when high-resolution observations are used for diagnostic exploration of MHD wave guides in analogy to solar-interior studies by means of global eigenoscillations in helioseismology.  相似文献   

5.
6.
Themagnetorotational instability (MRI) in cylindrical Taylor‐Couette flow with external helical magnetic field is simulated for infinite and finite aspect ratios. We solve the MHD equations in their small Prandtl number limit and confirm with timedependent nonlinear simulations that the additional toroidal component of the magnetic field reduces the critical Reynolds number from O (106) (axial field only) to O (103) for liquid metals with their small magnetic Prandtl number. Computing the saturated state we obtain velocity amplitudes which help designing proper experimental setups. Experiments with liquid gallium require axial field ∼50 Gauss and axial current ∼4 kA for the toroidal field. It is sufficient that the vertical velocity uz of the flow can be measured with a precision of 0.1 mm/s.We also show that the endplates enclosing the cylinders do not destroy the traveling wave instability which can be observed as presented in earlier studies. For TC containers without and with endplates the angular momentum transport of the MRI instability is shown as to be outwards. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
Jun-Ichi Sakai 《Solar physics》1989,120(1):117-124
We report on the results of plasma jet and shock formation during the current loop coalescence in solar flares. It is shown by a theoretical model based on the ideal MHD equation that the spiral, two-sided plasma jet can be explosively driven by the plasma rotational motion induced during the two current loop coalescence process. The maximum velocity of the jet can exceed the Alfvén velocity, depending on the plasma (= c s 2 v A 2 ) ratio. The acceleration time getting to the maximum jet velocity is quite short and le than 1 s. The rebound following the plasma collapse driven by magnetic pinch effect can strongly induce super-Alfvénic flow. We present the condition of the shock formation. We briefly discuss the high-energy particle acceleration during the plasma collapse as well as by the shocks.  相似文献   

8.
A number of independent arguments indicate that the toroidal flux system responsible for the sunspot cycle is stored at the base of the convection zone in the form of flux tubes with field strength close to 105 G. Although the evidence for such strong fields is quite compelling, how such field strength can be reached is still a topic of debate. Flux expulsion by convection should lead to about the equipartition field strength, but the magnetic energy density of a 105-G field is two orders of magnitude larger than the mean kinetic energy density of convective motions. Line stretching by differential rotation (i.e., the “Ω effect” in the classical mean-field dynamo approach) probably plays an important role, but arguments based on energy considerations show that it does not seem feasible that a 105-G field can be produced in this way. An alternative scenario for the intensification of the toroidal flux system in the overshoot layer is related to the explosion of rising, buoyantly unstable magnetic flux tubes, which opens a complementary mechanism for magnetic-field intensification. A parallelism is pointed out with the mechanism of “convective collapse” for the intensification of photospheric magnetic flux tubes up to field strengths well above equipartition; both mechanisms, which are fundamentally thermal processes, are reviewed.  相似文献   

9.
We study the effect of radiative heating on the evolution of thin magnetic flux tubes in the solar interior and on the eruption of magnetic flux loops to the surface. Magnetic flux tubes experience radiative heating because (1) the mean temperature gradient in the lower convection zone and the overshoot region deviates substantially from that of radiative equilibrium, and hence there is a non-zero divergence of radiative heat flux; and (2) the magnetic pressure of the flux tube causes a small change of the thermodynamic properties within the tube relative to the surrounding field-free fluid, resulting in an additional divergence of radiative heat flux. Our calculations show that the former constitutes the dominant source of radiative heating experienced by the flux tube.In the overshoot region, the radiative heating is found to cause a quasi-static rising of the toroidal flux tubes with an upward drift velocity 10-3|| cm s-1, where ead < 0 describes the subadiabaticity in the overshoot layer. The upward drift velocity does not depend sensitively on the field strength of the flux tubes. Thus in order to store toroidal flux tubes in the overshoot region for a period comparable to the length of the solar cycle, the magnitude of the subadiabaticity (< 0) in the overshoot region must be as large as 3 × 10–4. We discuss the possibilities for increasing the magnitude of and for reducing the rate of radiative heating of the flux tubes in the overshoot region.Using numerical simulations we study the formation of -shaped emerging loops from toroidal flux tubes in the overshoot region as a result of radiative heating. The initial toroidal tube is assumed to be non-uniform in its thermodynamic properties along the tube and lies at varying depths beneath the base of the convection zone. The tube is initially in a state of neutral buoyancy with the internal density of the tube plasma equal to the local external density. We find from our numerical simulations that such a toroidal tube rises quasi-statically due to radiative heating. The top portion of the nonuniform tube first enters the convection zone and may be brought to an unstable configuration which eventually leads to the eruption of an anchored flux loop to the surface. Assuming reasonable initial parameters, our numerical calculations yield fairly short rise times (2–4 months) for the development of the emerging flux loops. This suggests that radiative heating is an effective way of causing the eruption of magnetic flux loops, leading to the formation of active regions at the surface.The National Solar Observatory is one of the National Optical Astronomy Observatories by the Association of Universities for Research in Astronomy, Inc., under cooperative agreement with the National Science Foundation.  相似文献   

10.
Considering a plasma with an initially weak large scale field subject to nonhelical turbulent stirring, Zeldovich (1957), for two‐dimensions, followed by others for three dimensions, have presented formulae of the form 〈b2〉 = f(RM) . Such “Zeldovich relations” have sometimes been interpreted to provide steady‐state relations between the energy associated with the fluctuating magnetic field and that associated with a large scale or mean field multiplied by a function f that depends on spatial dimension and a magnetic Reynolds number RM. Here we dissect the origin of these relations and pinpoint pitfalls that show why they are inapplicable to realistic, dynamical MHD turbulence and that they disagree with many numerical simulations. For 2D, we show that when the total magnetic field is determined by a vector potential, the standard Zeldovich relation applies only transiently, characterizing a maximum possible value that the field energy can reach before necessarily decaying. In 3D, we show that the standard Zeldovich relations are derived by balancing subdominant terms. In contrast, balancing the dominant terms shows that the fluctuating field can grow to a value independent of RM and the initially imposed , as seen in numerical simulations. We also emphasize that these Zeldovich relations of nonhelical turbulence imply nothing about the amount mean field growth in a helical dynamo. In short, by re‐analyzing the origin of the Zeldovich relations, we highlight that they are inapplicable to realistic steady‐states of large RM MHD turbulence. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
Using steady, axisymmetric, ideal magnetohydrodynamics (MHD) we analyze relativistic outflows by means of examining the momentum equation along the flow and in the transfield direction. We argue that the asymptotic Lorentz factor is γ ~ μ ? σ M , and the asymptotic value of the Poynting-to-matter energy flux ratio—the so-called σ function—is given by σ/(1 + σ) ~ σ M /μ, where σ M is the Michel's magnetization parameter and μc 2 the total energy-to-mass flux ratio. We discuss how these values depend on the conditions near the origin of the flow. By employing self-similar solutions we verify the above result, and show that a Poynting-dominated flow near the source reaches equipartition between Poynting and matter energy fluxes, or even becomes matter-dominated, depending on the value of σ M /μ.  相似文献   

12.
A linear analysis of axial sheared flow in magnetohydrodynamic (MHD) jets with helical magnetic fields is presented. A linearized set of ideal MHD equations allows the investigation of plasmas with both magnetic shear and flow shear included in the equilibrium profile. These equations are integrated numerically by following the linear development in time of an initial seed perturbation. Global instability growth rates are obtained after the numerical solution converges to the fastest growing mode. It is shown that axial sheared flow reduces the growth of current-driven instabilities in plasma jets with constant magnetic pitch P = rB z /B θ.  相似文献   

13.
We have modeled the solar coronal active loop heating by discrete Alfvén waves. Discrete Alfvén waves (DAW) are a new class of Alfvén waves which can be described by the two-fluid model with finite ion-cyclotron frequency, or the MHD model with plasma current along the magnetic field line as shown by Appert, Vaclavik, and Villar (1984). We have modeled the coronal loop as a semi-toroidal plasma with the major toroidal radius much larger than the plasma radius. We have shown that the absorption of discrete Alfvén waves by the plasma through viscosity can account for at least 30% of the coronal heating rate density of 10–4 J m–3 s–1.  相似文献   

14.
Simple exact solutions of the magnetohydrodynamic equations are found for rotating, magnetic stars. The velocity and magnetic field are axisymmetric and purely toroidal, and the magnetic energy density equals the kinetic energy density. For constant mass density, the solution reduces to that of Chandrasekhar (1956), which is stable even against non-axisymmetric perturbations. For an ideal gas equation of state, the condition for radiative thermal equilibrium is solved to lowest order in the non-spherical perturbation. The velocity, magnetic field and non-spherical pressure and temperature perturbations all vanish within cones centered around the rotation axis, |cos |>x i a zero of a Legendre polynomial. Low-order, long-period stellar oscillations may be excited by MHD instabilities near the equatorial region which become damped near the axis.  相似文献   

15.
The influence of low-frequency electrostatic turbulence on the flux of precipitating magnetospheric electrons is analyzed in the framework of the quasilinear kinetic equation. It is shown that an electron population in a turbulent region, with an electric field parallel to the ambient magnetic field, can be separated into two parts by introducing a pitch angle dependent runaway velocity vr(θ). Lower energy electrons with parallel velocity v < vr are effectively scattered by plasma waves, so that they remain in the main population and are subjected to an anomalous transport equation. A distribution function fv?4 (or the particle flux vs energy JE?1) is established in this velocity range. Faster electrons with v ? vr are freely accelerated by a parallel electric field, so that they contribute directly to hot electron fluxes which are observed at ionospheric altitudes. New expressions are derived for the magnetic-field aligned current and the electron energy flux implied by this model. These expressions agree well with empirical relations observed in auroral inverted-V structures.  相似文献   

16.
The dispersion properties of the sausage eigenmodes of oscillations in a thin magnetic flux tube are numerically analyzed in terms of ideal magnetohydrodynamics (MHD). The period of the modes accompanied by the emission of MHD waves into the surrounding medium, which leads to acoustic damping of oscillations, is determined by the radius of the tube, not by its length. The dissipation of the sausage oscillations in comparatively high (?0.7R ) and tenuous (?6 × 108 cm?3) coronal loops is considered. Their Q factor has bound found to be determined by the acoustic damping mechanism. The ratio of the plasma densities outside and inside the loop and the characteristic height of the emission source have been estimated by assuming the quasi-periodic pulsations of meter-wavelength radio emission to be related to the sausage oscillations.  相似文献   

17.
Ming L. Xue  James Chen 《Solar physics》1983,84(1-2):119-124
A study is made of equilibrium and stability properties of a semi-toroidal current loop imbedded in a high temperature plasma. The loop carries a toroidal current density J t and poloidal current density J p. By explicity including the global curvature of the loop, the net Lorentz and pressure forces acting along the major radius are calculated. Requirement of equilibrium force-balance gives rise to conditions that must be satisfied by the physical parameters and geometry. On the basis of these conditions, we deduce a class of equilibrium semi-toroidal current loops satisfying c #X2212;1 J × B ? ▽p = 0. It is found that the averge pressure inside the loop is less than the ambient coronal pressure in equilibrium. Furthermore, this class of equilibria is shown to be stable to a number of destructive MHD modes. The theoretical results are discussed in the context of solar bipolar current loops.  相似文献   

18.
Energy accumulation in a current sheet (CS) can occur during the injection of a fast plasma jet in a perpendicular magnetic field. A similar situation can occur in the solar corona when a flux of plasma appears under a magnetic arch. The flare can be produced at the CS disruption. The CS creation during plasma jet interaction with the magnetic field is demonstrated by numerical MHD simulation. The choice of dimensionless parameters Re, Rem,, II, which are suitable for simulation of coronal phenomena, is discussed. When jet injection ceases, the CS evolution produces an unstable state and fast magnetic energy dissipation is observed.  相似文献   

19.
We consider the process of flux tubes straightening in the Venus magnetotail on the basis of MHD model. We estimate the distance x t, where flux tubes are fully straightened due to the magnetic tension and the magnetotail with the characteristic geometry of field lines (“slingshot” geometry) ends. We investigate the influence of the transversal current sheet scale on the process of flux tubes straightening. The assumption of a thin current sheet allows to obtain a lower estimate of the magnetotail length, x t > 31R V (R V is the Venus radius), while the assumption of a broad current sheet allows to obtain an upper estimate, x t < 44R V. We show that kinetic effects associated with the losses of particles with small pitch angles from the flux tube and the influx of magnetosheath plasma into the flux tube do not significantly affect the estimate of the magnetotail length. The model predicts the existence of energetic fluxes of protons H+ (2–5 keV) and oxygen ions O+ (35–80 keV) in the distant tail. We discuss the magnetotail structure at x > x t.  相似文献   

20.
We report here results from a dynamo model developed on the lines of the Babcock-Leighton idea that the poloidal field is generated at the surface of the Sun from the decay of active regions. In this model magnetic buoyancy is handled with a realistic recipe – wherein toroidal flux is made to erupt from the overshoot layer wherever it exceeds a specified critical field B c (105 G). The erupted toroidal field is then acted upon by the α-effect near the surface to give rise to the poloidal field. In this paper we study the effect of buoyancy on the dynamo generated magnetic fields. Specifically, we show that the mechanism of buoyant eruption and the subsequent depletion of the toroidal field inside the overshoot layer, is capable of constraining the magnitude and distribution of the magnetic field there. We also believe that a critical study of this mechanism may give us new information regarding the solar interior and end with an example, where we propose a method for estimating an upper limit of the difusivity within the overshoot layer. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号