首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tectonic framework and Phanerozoic evolution of Sundaland   总被引:1,自引:0,他引:1  
Sundaland comprises a heterogeneous collage of continental blocks derived from the India–Australian margin of eastern Gondwana and assembled by the closure of multiple Tethyan and back-arc ocean basins now represented by suture zones. The continental core of Sundaland comprises a western Sibumasu block and an eastern Indochina–East Malaya block with an island arc terrane, the Sukhothai Island Arc System, comprising the Linchang, Sukhothai and Chanthaburi blocks sandwiched between. This island arc formed on the margin of Indochina–East Malaya, and then separated by back-arc spreading in the Permian. The Jinghong, Nan–Uttaradit and Sra Kaeo Sutures represent this closed back-arc basin. The Palaeo-Tethys is represented to the west by the Changning–Menglian, Chiang Mai/Inthanon and Bentong–Raub Suture Zones. The West Sumatra block, and possibly the West Burma block, rifted and separated from Gondwana, along with Indochina and East Malaya in the Devonian and were accreted to the Sundaland core in the Triassic. West Burma is now considered to be probably Cathaysian in nature and similar to West Sumatra, from which it was separated by opening of the Andaman Sea basin. South West Borneo and/or East Java-West Sulawesi are now tentatively identified as the missing “Argoland” which must have separated from NW Australia in the Jurassic and these were accreted to SE Sundaland in the Cretaceous. Revised palaeogeographic reconstructions illustrating the tectonic and palaeogeographic evolution of Sundaland and adjacent regions are presented.  相似文献   

2.
中国南方显生宙大地构造演化简史   总被引:10,自引:3,他引:10  
王清晨  蔡立国 《地质学报》2007,81(8):1025-1040
中国南方的构造格架以众多造山带围绕扬子克拉通分布为特征。这些造山带分别形成于古生代(华南造山带)和中—新生代(秦岭-大别山造山带、松潘-甘孜造山带、三江造山带、右江造山带和沿海造山带)。在造山带中散布着保山地块和南海地块等微陆块。本文以扬子克拉通为中心,概述了中国南方显生宙构造古地理演化的主体面貌,并归纳了其对海相烃源岩堆积的制约关系,指出制约和影响中国南方古地理演化的几个主要的构造事件为:新元古代晚期至古生代早期的大陆裂谷和被动大陆边缘形成事件,古生代中期华南造山带形成演化事件,古生代晚期张裂事件,中生代古特提斯洋闭合造山事件,侏罗纪以来的太平洋板块俯冲事件,新生代印度板块与欧亚大陆的碰撞事件等。本文还指出,上述这些事件延续的时间有限,变形强度在空间上也有差异,对于油气成藏和晚期调整的影响也会因时因地而异。具体事物具体分析才能对研究中国南方油气分布规律有所帮助。  相似文献   

3.
The use of actualistic analog models for paleotectonic reconstruction produces significant advances in our understanding of evolutionary continental tectonics. The sequential application of such models is possible in a cross section from the central California coast to Utah. This transect represents one of the best-understood Phanerozoic continental margins on Earth. Excellent exposure, detailed local studies, and regional syntheses all contribute to the choice of appropriate plate-tectonic models for successive intervals from the latest Neoproterozoic to the Quaternary. These models include craton, terrestrial rift, nascent ocean, intraplate continental margin, intraoceanic magmatic arc intraplate margin, Devonian-Mississippian Antler orogeny (arc-continent suturing), Mississippian-Pennsylvanian intraplate margin, Pennsylvanian-Permian Ancestral Rockies orogeny (Ouachita-Marathon continental suturing), Permian-Triassic Sonoma orogeny (arc-continent suturing), Triassic-Jurassic continental-margin magmatic arc, Late Jurassic Nevadan orogeny (arc-arc suturing), latest Jurassic-Late Cretaceous continental-margin magmatic arc, latest Cretaceous-Eocene Laramide orogeny, Oligocene ignimbrite flare-up, and Miocene-Holocene triple-junction migration, transform boundary, and regional extension of the Great Basin. The integrated result of sequential superposition of the actualistic models produces a reasonable representation of the complexity of the study area. The discipline of applying actualistic models to the evolution of this continental margin provides new insights and forces one to consider new implications of the models. The complexity of the tectonic history of this continental margin argues against simplistic general models for the growth of continental crust.  相似文献   

4.
Yellowstone is perhaps the world's most famous ‘super-volcano’ with an explosive history stretching back more than 2 million years and abundant contemporary evidence of a voluminous magmatic system. The first explosive eruption at Yellowstone was the largest, the Huckleberry Ridge Tuff with a volume estimated at 2500 km3 of deposit. However, recent work using high-precision geochronology has suggested that this ‘poster-child’ of super-eruptions is actually two distinct events separated by at least six thousand years. The geochronological data indicating differences between the constituent parts of the Huckleberry Ridge Tuff is supported by textural, geochemical and isotopic evidence from numerous studies. Advances in both technology and approaches in the sphere of geochronology are allowing for ever more closely spaced events to be temporally resolved; allowing re-investigation of deposits considered to represent ‘super-eruptions’ at much higher resolution. The appreciation that the Huckleberry Ridge Tuff represents two distinct events illustrates that these large, regionally catastrophic events from Yellowstone occurred more frequently than previously thought. Moreover, by being able to better constrain the intervals between super-eruptions we can investigate the timescales of magma generation during quiescent periods.  相似文献   

5.
The tectonic structure of the floor of the Atlantic Ocean beyond the continental margins is insufficiently studied. This is also true of its tectonic demarcation. The segmentation of the floor into regional-scale tectonic provinces of several orders proposed in this paper is primarily based on structural and historical geological features. It is shown that deep oceanic basins and fault tectonics are of particular importance in this respect. Tectonic provinces of two orders are distinguished by a set of attributes. The first-order provinces are the North, Central, South, and Antarctic domains of the Atlantic Ocean. They are separated by wide demarcation fracture zones into Transatlantic (transverse) second-order tectonic provinces. Ten such provinces are recognized (from the north southward): Greenland-Lofoten, Greenland-Scandinavia, Greenland-Ireland, Newfoundland-European, North American-African, Antilles-African, Angola-Brazil, Cape-Argentine, North Antarctic, and South Antarctic. This subdivision demonstrates significant differentiation in the geodynamic state of the oceanic lithosphere that determines nonuniform ocean formation and the tectonic features of the ocean floor. The latitudinal orientation of the second-order provinces inherits the past tectonic pattern, though newly formed structural units cannot be ruled out. The Earth rotation exerts a crucial effect on the crust and the mantle.  相似文献   

6.
R.S. Thorpe 《Tectonophysics》1977,40(3-4):T19-T26
The Mexican Volcanic Belt of active, mainly andesite volcanoes extends from the Pacific coast, through central Mexico, to the Caribbean coast. The setting of the Belt is linked with subduction of the oceanic Cocos plate below continental Mexico. The eastern-most volcano in the Belt is part of the Tuxtla volcanic area on the Caribbean coast. Volcanics from this area belong to a picrite basalt—basanitoid-alkali basalt—hawaiite association, in contrast to the calc-alkaline association of the remainder of the Volcanic Belt, and are linked with lithospheric fracturing in the tectonic setting of a destructive-type continental plate margin.  相似文献   

7.
Silicic volcanic rocks generally constitute a minor, but key product to track the magmatic evolution in mafic rock dominated large igneous provinces (LIPs). However, for their generally late-stage nature of the silicic volcanic rocks they have a poor preservation potential due to extensive post-eruption erosion. We track the eroded volcanic rocks from the ∼260 Ma Emeishan LIP by analyzing the provenance of the LIP-derived sedimentary rocks. Sandstones from a cored succession of the Late Permian Longtan Formation in the northern Youjiang Basin are rich in volcanic rock fragments, and associated mudstones have low Al2O3/TiO2 ratios. Detrital zircon grains from the Longtan Formation display typical unimodal U–Pb age spectra with a prominent peak at ca. 260 Ma. These detrital zircons show an overall geochemical affinity akin to those crystallized from within-plate/anorogenic magmas. Such petrological and geochemical characteristics are consistent with a dominant source from the Emeishan volcanic rocks. Through the sampled succession, zircon grains of ∼260 Ma from the lower Longtan Formation generally display lower U/Yb (most < 0.5) and Th/Nb (most < 10) ratios and higher εHf(t) values (mostly in the range of +3 to +8) than those from the upper part. A similar sequential variation has also been observed in the Shaiwa Formation, which is an offshore time-equivalent unit to the Longtan Formation. These consistent temporal variations through the sedimentary successions in the Youjiang Basin are interpreted to reflect erosional unroofing of the Emeishan LIP during the Late Permian. These results, integrated with previous studies on the rhyolites and trachytes in Emeishan LIP, reveal a fractional crystallization dominated petrogenetic process with diminishing crustal assimilation for the late-stage silicic volcanism.  相似文献   

8.
This paper presents characteristics of the structural regions surrounding the Siberian Platform and discusses the Vendian-present time evolution of the Siberian Paleocontinent with the Siberian Craton making up its nucleus. It shows that the paleocontinent underwent significant intraplate compressional deformations with vertical movements and formation of inversion structural features within broad areas. Such epochs of deformation took place at the Riphean-Vendian time boundary, during the Late Paleozoic, Late Triassic, Early Cretaceous, and during the Late Cenozoic. The principal rifting events took place during the Middle-Late Devonian. The paper presents paleotectonic reconstructions of East Siberia at several key time intervals.  相似文献   

9.
In the western Trans-Mexican Volcanic Belt voluminous silicic volcanism has been associated with the rifting of the Jalisco block from mainland Mexico. Rhyolitic volcanism started at 7.5 Ma after a major pulse of basaltic volcanism aged 11–8.5 Ma associated with slab detachment. This was followed by a second period, between 4.9 and 2.9 Ma, associated with rhyolitic domes and ignimbrite coexisting with basaltic volcanism. The similarity in rare earth element contents between basalts and rhyolites excludes a simple liquid line of descent. The low Ba and Sr contents and the ferroan character of the rhyolites suggest extensive fractional crystallization. Late Miocene–early Pliocene rhyolite Sr isotope values are only slightly more radiogenic than the basalts, whereas Nd isotope ratios are indistinguishable. We successfully modelled the 7.5–3 Ma silicic magmatism as a result of partial melting of crustal gabbroic complexes that we infer to have formed in the mid-lower crust due to the high-density Fe-enriched composition of the late Miocene basaltic volcanism. Slab rollback since ~7.5 Ma favoured decompression melting and arrival of additional mafic magmas that intruded in the lower crust. These basalts heated and melted the gabbroic complexes forming the silicic magmas, which subsequently underwent assimilation and fractional crystallization processes. The first silicic pulse was emplaced during a period of low tectonic activity. Extensional faulting since the Pliocene favours the eruption of both silicic magma and lesser amount of mafic lavas.  相似文献   

10.
11.
12.
Seismic-exploration and drilling data have clarified the structure of the subsalt complex of the southeastern Caspian depression and the principal features of its formation. This in turn makes it possible to assess objectively its petroleum prospects and to note the most promising structures. —Authors  相似文献   

13.
Aeromagnetic surveys help reveal the geometry of Precambrian terranes through extending the mapping of structures and lithologies from well-exposed areas into areas of younger cover. Continent-wide aeromagnetic compilations therefore help extend geological mapping beyond the scale of a single country and, in turn, help link regional geology with processes of global tectonics. In Africa, India and related smaller fragments of Gondwana, the margins of Precambrian crustal blocks that have escaped (or successfully resisted) fracture or extension in Phanerozoic time can often be identified from their aeromagnetic expression. We differentiate between these rigid pieces of Precambrian crust and the intervening lithosphere that has been subjected to deformation (usually a combination of extension and strike-slip) in one or more of three rifting episodes affecting Africa during the Phanerozoic: Karoo, Early Cretaceous and (post-) Miocene. Modest relative movements between adjacent fragments in the African mosaic, commensurate with the observed rifting and transcurrent faulting, lead to small adjustments in the position of sub-Saharan Africa with respect to North Africa and Arabia. The tight reassembly of Precambrian sub-Saharan Africa with Madagascar, India, Sri Lanka and Antarctica (see animation in http://kartoweb.itc.nl/gondwana) can then be extended north between NW India and Somalia once the Early Cretaceous movements in North Africa have been undone. The Seychelles and smaller continental fragments that stayed with India may be accommodated north of Madagascar. The reassembly includes an attempt to undo strike-slip on the Southern Trans-Africa Shear System. This cryptic tectonic transcontinental corridor, which first formed as a Pan-African shear belt 700–500 Ma, also displays demonstrable dextral and sinistral movement between 300 and 200 Ma, not only evident in the alignment of the unsuccessful Karoo rifts now mapped from Tanzania to Namibia but also having an effect on many of the eventually successful rifts between Africa-Arabia and East Gondwana. We postulate its continuation into the Tethys Ocean as a major transform or megashear, allowing minor independence of movements between West Gondwana (partnered across the Tethys Ocean with Europe) and East Gondwana (partnered with Asia), Europe and Asia being independent before the 250 Ma consolidation of the Urals suture. The relative importance of primary driving forces, such as subduction ‘pull’, and ‘jostling’ forces experienced between adjacent rigid fragments could be related to plate size, the larger plates being relatively closely-coupled to the convecting mantle in the global scheme while the smaller ones may experience a preponderance of ‘jostling’ forces from their rigid neighbours.  相似文献   

14.
R. Varne  J.D. Foden 《Tectonophysics》1987,140(2-4):275-295
In western Tasmania, small Precambrian regions are surrounded by a ramifying system of troughs filled with Cambrian sedimentary and volcanic rocks, and ophiolite complexes. The volcanic associations include a rift-related olivine tholeiite association, dacite-rhyolite and andesite associations, and a low-Ti, high-Mg andesite-tholeiite ophiolite association, and may have formed during a long-lived period of crustal thinning, punctuated by episodes of crustal rupturing, magmatism, and small scale rifting. Such extensional tectonism could occur in an active continental margin associated with strike-slip faulting of regional scale, and the volcanic associations may together constitute an igneous assemblage characteristic of magmatism in a transcurrent tectonic regime within an active continental margin undergoing break-up.

The western Tasmanian Cambrian palaeogeography and volcanism preserve a transitional stage between the Late Proterozoic Kanmantoo regime of sedimentary basins with little volcanism developed at the rifting margin of the Proterozoic craton, and the tectonic regime of the Palaeozoic Lachlan Fold Belt where the Cambrian volcanic rocks are dominated by island-arc associations and the rift-related olivine tholeiite association is absent. Eastern Australian lithosphere may have grown by the insertion of newly-formed igneous complexes within the stretched and rifted continental margin, as well as by the accretion of “terrenes” and the addition of packets of subduction complexes which developed off-shore.  相似文献   


15.
In the Central American Volcanic Arc, adakite-like volcanism has often been described as volumetrically insignificant. However, extensive silicic adakitic volcanism does occur in the Panamanian arc and provides an opportunity to evaluate the origin of this magma-type as well as to contrast its origin with other Central American silicic magmas. The Quaternary volcanic deposits of El Valle volcano are characterized by pronounced depletions in the heavy rare earth elements, low Y, high Sr, high Sr/Y, relatively high MgO, and low K2O/Na2O, when compared with other Quaternary Central American volcanics at similar SiO2. These chemical features are also diagnostic of adakitic signatures. Our new 40Ar/39Ar ages of lava flows and ash flows that compose the volcanic edifice of El Valle volcano illustrate that the eruptive volume of adakitic-like volcanism is substantial during the Quaternary (~120 km3). Adakitic-like magmas dominate the stratigraphic record. Common to all models for the origin of an adakite geochemical signature is the involvement of garnet, as a residual or fractionating phase. The stability of garnet in hydrous magmas has been recently reevaluated with important consequences; garnet is a stable primary igneous phase at pressure and temperature conditions expected for magma differentiation at the roots of a mature island arc. Moreover, adakite-like volcanism erupted at El Valle volcano displays the middle rare earth element depletion observed in other Panamanian volcanic centers that has been attributed to significant amphibole fractionation. Extensive amphibole fractionation may have occurred in two stages. The first stage of fractionation, garnet + amphibole fractionation, occurs from hydrous basaltic–andesitic parental magmas that have ponded at the base of an overthickened crust. The second stage occurs at mid-lower crustal levels where abundant amphibole + plagioclase and minor sphene crystallized from water-rich magmas. These two stages combined may have resulted in an amphibole-rich cumulate layer. This amphibole layer is likely the source of the abundant amphibole-rich cumulate enclaves and blobs found in volcanic products across the Panamanian arc. Stalling of water-rich magmas during this two-stage fractionation process could drive the interstitial liquids to the evolved compositions typical of continental crust, while leaving behind amphibole-rich cumulate rocks that may eventually be returned to the asthenosphere. Differentiation of H2O-rich magmas under the conditions appropriate for the roots of island arcs may therefore be a key process in developing a better understanding of the generation of continental crust in island arc environments.  相似文献   

16.
Hathway  & Kelley 《Sedimentology》2000,47(2):451-470
Lower Cretaceous conglomeratic strata exposed on southern Sobral Peninsula were deposited on a deep‐marine apron in the back‐arc Larsen Basin close to its faulted boundary with the Antarctic Peninsula magmatic arc. The succession is dominated by amalgamated beds of clast‐supported conglomerate, which, together with minor intercalated sandstones, consist of varied, but largely basaltic to andesitic, volcanic material and clasts derived from the Palaeozoic–Triassic (meta)sedimentary basement of the arc. Most of the volcanic clasts are thought to have been derived from lithified volcanic successions or older synvolcanic deposits, rather than from sites of coeval eruption. These mixed‐provenance strata enclose a number of intervals, consisting mainly of inverse–normally graded conglomerate and graded–stratified pebbly sandstone, in which the sand fraction is dominated by crystals and vitric grains considered to have been redeposited in the immediate aftermath of explosive silicic arc volcanism. Like syneruption deposits on non‐marine volcaniclastic aprons, these intervals are more sand‐prone than the enclosing strata and appear to show evidence of unusually rapid aggradation. Plagioclase from one such interval has yielded 40Ar/39Ar ages concordant at ≈121 Ma, similar to those obtained from the non‐marine Cerro Negro Formation, deposited within the magmatic arc. It is suggested that the two successions can be viewed as counterparts, both recording a history of mainly basaltic to andesitic volcanism, punctuated by relatively infrequent, explosive silicic eruptions. Whereas the Cerro Negro Formation consists mainly of syneruption deposits, most of the volcaniclastic material delivered to the eruption‐distal, deep‐marine apron appears to have been derived by normal degradation processes. Only rare silicic eruptions were capable of supplying pyroclastic material rapidly enough and in sufficient quantities to produce compositionally distinct syneruption intervals.  相似文献   

17.
We report the first sensitive high-resolution ion microprobe (SHRIMP) U–Pb zircon ages with geochemical data from metavolcanic rocks in the Lolotoi complex, Timor. The zircon U–Pb ages of two andesitic metavolcanic rocks yield a permissible range of the Middle Jurassic extrusion from 177 Ma to 174 Ma. The geochemical data indicate that the origins of the basaltic and andesitic metavolcanic rocks are products of prolonged oceanic crust and arc magmatism, respectively. They are originated from partial melting of lherzolites, providing an insight into the tectonic evolution of the forearc basements of the Banda volcanic arc. Thus, parts of the Banda forearc basement are pieces of allochthonous oceanic basalts and Jurassic arc-related andesites accreted to the Sundaland during the closure of Mesotethys, and are incorporated later into the Great Indonesian Volcanic Arc system along the southeastern margin of the Sundaland.  相似文献   

18.
刘红光  刘波 《地质通报》2017,36(9):1635-1644
显生宙以来,碳酸盐岩地层中有燧石结核产出的现象十分普遍。现有研究认为,硅质生物壳体是燧石结核最主要的硅质来源,随着地质历史上主要硅质生物类型的演变,燧石结核的产出环境逐渐从浅水变为深水。不同地区不同层位的燧石结核往往具有一些共同特征,包括呈孤立分散的结核状产出、硅质选择性交代方解石颗粒而保留晶形完好的白云石、硅质矿物具有隐晶硅质-微晶石英-粗晶石英的规律性变化等。基于上述主要特征及不同研究实例的特点,前人总结出了有机质氧化模式、半透膜模式、混合水硅化模式、重结晶应力控制交代模式等燧石结核成因模式,从不同角度对燧石结核的典型特征进行了解释。然而由于燧石结核成因的复杂性及其可形成于沉积-成岩的不同阶段,各个成因模式均存在一定的局限性,只可用于解释部分地质特征。鉴于燧石结核对研究区的沉积环境、成岩历史等具有很好的指示作用,对其成因的研究具有重要意义,尽管上述模式的提出时间较早,但针对特定问题的研究非常深入,在以后的研究中应加以借鉴。  相似文献   

19.
《Gondwana Research》2014,25(2):561-584
The aim of this paper is to review the main features of the Meso-Neoarchaean Belomorian eclogite province (BEP) in the northeastern Fennoscandian Shield, including regional and local geology, geochemistry, petrology and geochronology and to compare the Belomorian eclogites with Precambrian eclogites elsewhere. Two eclogite associations have been recognized within Belomorian TTG gneisses: (1) the subduction-type Salma association and (2) Gridino eclogitized mafic dykes. Protoliths of the Salma eclogites represent a sequence comprising gabbro, Fe–Ti gabbro and troctolites, formed at ~ 2.9 Ga in a slow-spreading ridge setting (like the Southwest Indian Ridge). The main subduction and eclogite-facies events occurred between ~ 2.87 and ~ 2.82 Ga. Injection of mafic magma into an active continental margin setting, recorded by the Gridino dyke swarm, is attributed to subduction of a mid-ocean ridge, commencing at 2.87 Ga. Crustal delamination of the active margin and subsequent involvement of the lower crust in subduction between 2.87 and 2.82 Ga ago caused high-pressure metamorphism of the Gridino dykes, culminating in eclogite-facies conditions between 2.82 and 2.78 Ga and accompanying amalgamation of the Karelia, Kola and Khetolamba blocks and formation of the Mesoarchaean Belomorian accretionary–collisional orogen. The clockwise PT paths of the Salma and Gridino associations cross the granulite-facies PT field. Detailed metamorphic studies indicate a complicated post-eclogite history with thermal events and fluid infiltration, related to plume activity at 2.72–2.70, ~ 2.4 and ~ 1.9 Ga. The eclogite assemblages were exhumed to mid-to-lower crustal depths at ~ 1.7 Ga, while erosion or younger tectonic events were responsible for final exhumation to the surface. Comparison of PTt paths and data for peak metamorphic parameters demonstrates the general similarity of the Archaean and Palaeoproterozoic eclogites worldwide and their association with anomalously “hot” environments. The occurrence of high-T conditions during eclogite-facies metamorphism can be attributed to either subduction of a mid-ocean ridge (Archaean, BEP) or to interaction with mantle plumes (Proterozoic).  相似文献   

20.
With the aim of constraining the Early Mesozoic tectonic evolution of the eastern section of the Central Asian Orogenic Belt (CAOB), we undertook zircon U–Pb dating and geochemical analyses (major and trace elements, Sr–Nd isotopes) of volcanic rocks of the Luoquanzhan Formation and Daxinggou Group in eastern Heilongjiang and Jilin provinces, China. The analyzed rocks consist mainly of dacite and rhyolite, with SiO2 contents of 68.52–76.65 wt%. Three samples from the Luoquanzhan Formation and one from the Daxinggou Group were analyzed using laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS) U–Pb zircon techniques. Three zircons with well-defined oscillatory zoning yielded weighted mean 206Pb/238U ages of 217 ± 1, 214 ± 2, and 208 ± 1 Ma, and one zircon with oscillatory zoning yielded a weighted mean 206Pb/238U age of 201 ± 1 Ma. These ages are interpreted to represent the timing of eruption of the volcanic rocks. The Triassic volcanic rocks are characterized by high SiO2 and low MgO concentrations, enrichment in large ion lithophile elements (LILEs) and light rare earth elements (LREEs), depletion in high field strength elements (HFSEs) and heavy rare earth elements (HREEs), (87Sr/86Sr)i = 0.7040–0.7050 (Luoquanzhan Formation) and 0.7163–0.7381 (Daxinggou Group), and εNd (t) = 1.89–3.94 (Luoquanzhan Formation) and 3.42–3.68 (Daxinggou Group). These geochemical features indicate an origin involving the partial melting of juvenile lower crust (Nd model ages (TDM2) of 651–821 Ma) and that compositional variation among the volcanic rocks arose from mineral fractionation and minor assimilation. These volcanic rocks formed within an extensional environment following collision of the NCC and Jiamusi-Khanka Massif during the Late Paleozoic–Early Triassic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号