首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
This study was focused on nettle ash as an alternative adsorbent for the removal of nickel (II) and cadmium (II) from wastewater. Batch experiments were conducted to determine the factors affecting adsorption of nickel (II) and cadmium (II). The adsorption process is affected by various parameters such as contact time, solution pH and adsorbent dose. The optimum pH required for maximum adsorption was found to be 6. The experimental data were tested using Langmuir, Freundlich and Tempkin equations. The data were fitted well to the Langmuir isotherm with monolayer adsorption capacity of 192.3 and 142.8 mg/g for nickel and cadmium, respectively. The adsorption kinetics were best described by the pseudo second order model. The cost of removal is expected to be quite low, as the adsorbent is cheap and easily available in large quantities. The present study showed that nettle ash was capable of removing nickel and cadmium ions from aqueous solution.  相似文献   

2.
Adsorption of hexavalent chromium from aqueous solutions by wheat bran   总被引:7,自引:6,他引:1  
In this research, adsorption of chromium (VI) ions on wheat bran has been studied through using batch adsorption techniques. The main objectives of this study are to 1) investigate the chromium adsorption from aqueous solution by wheat bran, 2) study the influence of contact time, pH, adsorbent dose and initial chromium concentration on adsorption process performance and 3) determine appropriate adsorption isotherm and kinetics parameters of chromium (VI) adsorption on wheat bran. The results of this study showed that adsorption of chromium by wheat bran reached to equilibrium after 60 min and after that a little change of chromium removal efficiency was observed. Higher chromium adsorption was observed at lower pHs, and maximum chromium removal (87.8 %) obtained at pH of 2. The adsorption of chromium by wheat bran decreased at the higher initial chromium concentration and lower adsorbent doses. The obtained results showed that the adsorption of chromium (VI) by wheat bran follows Langmuir isotherm equation with a correlation coefficient equal to 0.997. In addition, the kinetics of the adsorption process follows the pseudo second-order kinetics model with a rate constant value of 0.131 g/mg.min The results indicate that wheat bran can be employed as a low cost alternative to commercial adsorbents in the removal of chromium (VI) from water and wastewater.  相似文献   

3.
Adsorption of chromium and copper in aqueous solutions using tea residue   总被引:2,自引:3,他引:2  
In this study, adsorption of copper and chromium was investigated by residue of brewed tea (Tea Waste) from aqueous solutions at various values of pH. It was shown that adsorbent dose, copper and chromium ion concentrations in such solutions influence the degree of these heavy metal ions’ obviation. The adsorption level of the prepared solutions was measured by visible spectrophotometer. The tea residue adsorbed copper (II) and chromium (VI) ions at initial solution pH by 25 % and 3 %, respectively. During the experiments the peak adsorption occured in hydrated copper nitrate aqueous solution at pH range of 5–6. Likewise the maximum adsorption appeared in potassium chromate aqueous solution at pH range of 2–3. In addition, tea residue adsorbed about 60 mg/g of copper (II) ion at pH=5, while chromium adsorption was registered at about 19 mg/g at pH=2. The data obtained at the equilibrium state, was compared with Langmuir and Freundlich models. Results showed that regarding the kinetics of adsorption, the uptake of copper (II) and chromium (VI) ions by tea residue was comparatively faster, with the adsorption process exhaustion completed within the first 20 min of the experiments. Furthermore, results revealed that adsorption data concerning the kinetic phase is closely correlated with a pseudo-second order model with R2> 0.99 for copper (II) and chromium (VI) ions  相似文献   

4.
The removal of the chromium (VI) ion from aqueous solutions with the Lewatit FO36 ion-exchange resin is described at different conditions. The effects of adsorbent dose, initial metal concentration, contact time and pH on the removal of chromium (VI) were investigated. The batch ion exchange process was relatively fast and it reached equilibrium after about 90 min of contact. The ion exchange process, which is pH dependent showed maximum removal of chromium (VI) in the pH range 5.0–8.0 for an initial chromium (VI) concentration of 0.5 mg/dm3. The equilibrium related to Lewatit FO36 ion- exchange capacity and the amounts of the ion exchange were obtained using the plots of the Langmuir adsorption isotherm. It was observed that the maximum ion exchange capacity of 0.29 mmol of chromium (VLVg for Lewatit FO36 was achieved at optimum pH value of 6.0. The ion exchange of chromium (VI) on this cation-exchange resin followed first-order reversible kinetics.  相似文献   

5.
In the present study, the retention capacity of carbonaceous material obtained from the diesel engine exhaust mufflers for Cr(VI) removal has been investigated. The physicochemical properties such as density, pH of aqueous slurry, pH at point of zero charge, ash content, moisture content, volatile matter, surface area, scanning electron microscopy and electron dispersive spectroscopy of the carbonaceous material were determined. The capacity of adsorbent for removal of Cr(VI) from aqueous solution was observed under different experimental condition like contact time, initial concentration of metal ions, pH and temperatures on the adsorption capacity of the adsorbent. Maximum adsorption of Cr(VI) ions was found at low pH. The adsorption process was found to follow second-order kinetics. The rate constant was evaluated at different temperatures along with other thermodynamic parameters like activation energy, Gibbs free energy change, enthalpy change and entropy change. Both Langmuir and Freundlich isotherms were used to describe the adsorption equilibrium of carbonaceous material at different temperatures. Langmuir isotherm shows better fit than Freundlich isotherm at given conditions. The result shows that low-cost carbonaceous material from diesel engine exhaust mufflers can be efficiently used for wastewater treatment containing Cr(VI) ions.  相似文献   

6.
Hexavalent chromium has been proved to be the reason of several health hazards. This study aimed at evaluating the application of pomegranate seeds powder for chromium adsorption (VI) from aqueous solution. Chromium adsorption percentage (VI) increased with increasing the adsorbent dosage. Chromium adsorption capacity (VI), at pH = 2 and 10 mg/L initial metal concentration, decreased from 3.313 to 1.6 mg/g through increasing dosage of adsorbent from 0.2 to 0.6 g/100 ml. The adsorption rate increased through increase in chromium initial concentration (VI). However, there was a removal percentage reduction of chromium (VI). Chromium adsorption kinetics by different models (pseudo-first-order, modified pseudo-first-order, pseudo-second-order, Elovich, intraparticle diffusion, Boyd kinetic) was investigated as well. Studies on adsorption kinetic indicated that the experimental data were matched by pseudo-second-order model (R 2 = 0.999) better. Obtained results demonstrated the pomegranate seeds can be used as an effective biomaterial and biosorbent for hexavalent chromium adsorption from aqueous solutions.  相似文献   

7.
The discharge of industrial effluents containing hexavalent chromium can be very harmful for the environment. Therefore, Cr(VI) should be removed from contaminated water, and especially from wastewater, to prevent its discharge into the environment. This study is aimed at analyzing the factors that affect the removal of Cr(VI) with the use of almond green hull and ash adsorbent. The effects of pH (2–10), adsorbent dose (2–24 g/L), Cr(VI) concentration (10–100 mg/L), exposure time (1–60 min), and temperature (5–50 °C) were examined. The surface morphology, pore size of adsorbent surfaces were characterized with SEM, EDX, FTIR. Maximum removal occurred at pH = 2. Results showed that the removal yield increased with the rise of exposure time and temperature. The data indicate that due to limited site on adsorbent surface, the removal efficiency decreased as initial Cr(VI) concentration increased. When the adsorbent dose was increased, the removal yield increased in the case of the bioadsorbent as well; however, in the ash adsorbent, there was an increase followed by a decreasing trend. The study highlights that almond green hull can be more efficient than its ash in the removal of Cr(VI) from aqueous solution. As a general result of study, it can be argued that almond green hull bioadsorbent and the obtained carbon are able to remove Cr(VI) from aqueous solutions; thus, they can be used as efficient and economical substitutes for existing adsorbents like activated carbon, for the removal of chromium from polluted aqueous solutions.  相似文献   

8.
The batch removal of Cr(VI) from aqueous solution using lignocellulosic solid wastes such as sawdust and pine leaves under different experimental conditions was investigated in this study. The influence of pH, temperature, contact time, initial concentration of Cr(VI) and particle size on the chromium removal was investigated. Adsorption of Cr(VI) is highly pH-dependent and the results indicate that the optimum pH for the removal is 2. The capacity of chromium adsorption at equilibrium by these natural wastes increased with absorbent concentration. Temperature in the range of 20–60 °C showed a restricted effect on the adsorption capacity of pine leaves, but had a considerable effect on the adsorption capacity of sawdust. The capacity of chromium adsorption at the equilibrium increased with the decrease in particle sizes. The suitability of adsorbents was tested with Langmuir and Freundlich isotherms and their constants were evaluated. Results indicated that the Freundlich model gave a better fit to the experimental data in comparison with the Langmuir equation. The study showed that lignocellulosic solid wastes such as sawdust and pine leaves can be used as effective adsorbents for removal of Cr(VI) from wastewater.  相似文献   

9.
Beidellite, a low-cost, locally available and natural mineral was used as an adsorbent for the removal of lead and cadmium ions from aqueous solutions in batch experiments. The kinetics of adsorption process was tested for the pseudo first-order, pseudo second-order reaction and intra-particle diffusion models. The rate constants of adsorption for all these kinetic models were calculated. Comparison amongst the models showed that the sorption kinetics was best described by the pseudo second-order model. Langmuir and Freundlich isotherm models were applied to the experimental equilibrium data for different temperatures. The adsorption capacities (Q°) of beidellite for lead and cadmium ions were calculated from the Langmuir isotherm. It was found that adsorption capacity was in the range of 83.3–86.9 for lead and 42–45.6 mg/g for cadmium at different temperatures. Thermodynamic studies showed that the metal uptake reaction by beidellite was endothermic in nature. Binary metal adsorption studies were also conducted to investigate the interactions and competitive effects in binary adsorption process. Based on the optimum parameters found, beidellite can be used as adsorbent for metal removal processes.  相似文献   

10.
The biosorption of chromium (VI) ions from aqueous solutions by two adsorbents viz. mango and neem sawdust was studied under a batch mode. An initial pH of 2.0 was most favorable for chromium (VI) removal by both the adsorbents. The results obtained for the final concentration of chromium (VI) and chromium (DI) at a pH range of 2–8 indicated that a combined effect of biosorption and reduction was involved in the chromium (VI) removal specially when the pH value is lower than 3. The maximum loading capacity was calculated from adsorption isotherms by applying the Langmuir model and found to be higher for neem sawdust (58.82 mg/g). Evaluation of experimental data in terms of biosorption kinetics showed that the biosorption of chromium (VI) by neem sawdust followed pseudo second-order kinetics. Therefore, the rate limiting step may be chemical sorption or chemisorption. The efficiency of this process was examined in using tannery wastewater contaminated with chromium (VI) ions in column mode.  相似文献   

11.
The removal of poisonous Pb (II) from wastewater by different low-cost abundant adsorbents was investigated. Rice husks, maize cobs and sawdust, were used at different adsorbent/metal ion ratios. The influence of pH, contact time, metal concentration, adsorbent concentration on the selectivity and sensitivity of the removal process was investigated. The adsorption efficiencies were found to be pH dependent, increasing by increasing the solution pH in the range from 2.5 to 6.5. The equilibrium time was attained after 120 min and the maximum removal percentage was achieved at an adsorbent loading weight of 1.5 gm. The equilibrium adsorption capacity of adsorbents used for lead were measured and extrapolated using linear Freundlich, Langmuir and Temkin isotherms and the experimental data were found to fit the Temkin isotherm model.  相似文献   

12.
Biofilms wasted from biotrickling filters was dried and used as biosorbent for Cd(II) removal from aqueous solutions. The adsorption condition and effect, adsorption isotherms and kinetics of Cd(II) removal were investigated, and the effects of competitive metal ions on Cd(II) removal were also examined. Results showed that the dry waste biofilms reached the maximum adsorption capacity of 42 mg/g of Cd(II) at 25 °C for 120 min when the initial concentration of Cd(II) and their pH were 50 mg/L and 6.0, respectively. Under these conditions, the removal efficiency of Cd(II) reached to 89.3% when the biosorbent dosage was 2.0 g/L. The Langmuir isotherm model correlated with the isotherm data better than the Freundlich isotherm model, and the pseudo-second-order model fitted the kinetic data better than the pseudo-first-order model. These results indicated that the adsorption was monolayer accompanied with chemical adsorption. In the presence of other metal ions, divalent metal ions of Ca and Zn inhibited the performance of Cd(II) biosorption significantly, while Na(I), K(I) and Fe(III) which had a higher or lower valence than Ca(II) affected slightly when containing 50 mg/L Cd(II), 0.5 g/L adsorbent dosage and pH 6.0. The analyses of scanning electron microscopy and Fourier transform infrared spectroscopy illuminated that the biosorbent had porous structures and the amide group was the majorly responsible for Cd(II) removal. Dry biofilms were novel sorbents for effective removal Cd(II), and it could be reused and recycled if necessary.  相似文献   

13.
The charged sites on soil particles are important for the retention/adsorption of metals. Metallic counterions can neutralize the intrinsic charges on the surfaces of soil particles by forming complexes. In this study, efforts have been made to determine the effect of surface potential, pH, and ionic strength on the adsorption of four metal ions, hexavalent chromium Cr(VI), trivalent chromium Cr(III), nickel Ni(II) and cadmium Cd(II), in glacial till soil. Batch tests were performed to determine the effect of pH (2–12) and ionic strength (0.001–0.1 M KCl) on zeta potential of the glacial till soil. The point of zero charge (pH PZC ) of glacial till was found to be 7.0±2.5. Surface charge experiments revealed the high buffering capacity of the glacial till. Batch adsorption experiments were conducted at natural pH (8.2) using various concentrations of selected metals. The adsorption data was described by the Freundlich adsorption model. Overall glacial till shows lower adsorption affinity to Cr(VI) as compared to cationic metals, Cr(III), Ni(II) and Cd(II).  相似文献   

14.
Poly(amidoamine)-graft-poly(methyl acrylate) magnetic nanocomposite was synthesized via radical polymerization of methyl acrylate onto modified magnetic nanoparticles followed by the functionalization of the methyl ester groups with poly(amidoamine) dendrimer. The resulting poly(amidoamine)-graft-poly(methyl acrylate) magnetic nanocomposite was then characterized by infrared spectroscopy, transmission electron microscopy, thermogravimetric analysis, scanning electron microscope and X-ray diffraction analysis. Its application as an adsorbent for the removal of Pb(II) ions was studied. The removal capability of the adsorbent was investigated in different pH values, contact time (kinetics) and initial concentration of lead. Moreover, adsorption isotherms were investigated to describe the mechanistic feature of this nanocomposite for adsorption. Accordingly, its high adsorption capacity (310 mg/g) and efficient adsorption toward lead ions in aqueous solution were shown. To further study of the chemistry behind the adsorption process, a comprehensive density functional theory-based study was performed, and a relatively strong interaction between metal ions and adsorbent was observed based on the calculated adsorption free energies.  相似文献   

15.
Barium ion cross-linked alginate beads have shown great affinity to toxic hexavalent chromium ions in aqueous solution, in contrast to the traditionally used calcium alginate beads. Our adsorption experiments were carried out by the batch contact method. The optimal pH for removal was found to be pH 4. The equilibrium was established in 4 h, and the removal efficiency of chromium(VI) was found to be 95 %. The adsorption data were applied to Langmuir, Freundlich, Dubinin–Redushkevich (D–R), and Temkin isotherm equations. Both Langmuir and Freundlich isotherm constants indicated a favorable adsorption. The value of mean sorption energy calculated from D–R isoterm indicates that the adsorption is essentially physical. The high maximum chromium(VI) adsorption capacity was determined from the Langmuir isotherm as 36.5 mg/g dry alginate beads. The chromium(VI) adsorption data were analyzed using several kinetic models such as the pseudo-first-order, pseudo-second-order, intraparticle diffusion, and Elovich models, and the rate constants were quantified. Our study suggests that barium alginate beads can be used as cost-effective and efficient adsorbents for the removal of chromium(VI) from contaminated waters.  相似文献   

16.
In this study, the feasibility of using a low-cost adsorbent mixture composed of leonardite (L) and clinoptilolite (C) was evaluated by batch adsorption method using different parameters such as mixing ratio, contact time, pH, temperature, and adsorbent amount for the removal of Zn (II) ions from an aqueous solution. The adsorbents were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, and Raman spectroscopy. Additionally, leonardite–clinoptilolite mixture was analyzed by scanning electron microscopy coupled with energy dispersive X-ray. The Zn (II) adsorption along with an unprecedented adsorption capacity of 454.55 mg g?1 for unmodified natural sorbents was obtained by mixing leonardite and clinoptilolite (LC) without any pretreatment at a ratio of 3:1, using 0.1 g of sorbent at a pH 6, for 2 h of contact time. The experimental data showed a good fit for the Langmuir isotherm model. The thermodynamic parameters revealed that the present adsorption process was spontaneous and exothermic in nature (25–50 °C). The kinetic results of the adsorption showed that the Zn (II) adsorption onto the LC follows pseudo-second-order model. The resultant LC mixture has an excellent adsorption capacity of a Zn (II) aqueous solution, and data obtained may form the basis for utilization of LC as an unpretreated low-cost adsorbent for treatment of metalliferous industrial wastewater.  相似文献   

17.
An investigation was undertaken regarding the adsorption of different heavy metal ions from aqueous solutions using ??-diketone-functionalized styrene divinylbenzene resin under different experimental conditions such as initial concentration of metal ions, contact time, pH, and chelating capacity. The functionalization of resin was carried out by the condensation reaction of sodium salt of ??-diketones (pentane-1,3-dione) and chloromethylated styrene?Cdivinylbenzene resin in dichloromethane. Functionalized resin beads were characterized by Fourier transform infrared spectroscopy. The batch method was employed using different metal ions solution from 5 to 15?mg/L at different contact times. The adsorption kinetics was tested for the pseudo-first order, pseudo-second order reaction at different experimental conditions. The rate constant of adsorption kinetic models were also calculated and good correlation coefficient (R 2?>?0.9941) was obtained for pseudo-second order kinetic model. The maximum adsorption value obtain for lead (0.725728?mg/g), chromium (0.9199?mg/g), nickel (0.4974?mg/g), cobalt (0.6196?mg/g) and cadmium (0.6519?mg/g) at equilibrium condition, which shows that ??-diketone-functionalized styrene divinylbenzene resin is an effective adsorbent for toxic metal ions.  相似文献   

18.
In recent years, the need for safe and economical methods to eliminate heavy metals from contaminated waters has necessitated research on the production of low-cost alternatives to commercially available activated carbon. In the present work, in order to enhance the removal of heavy metals from contaminated water, Zizyphus vulgaris wastes were modified chemically to produce an adsorbent rich in carboxylic groups to enhance the removal of heavy metals from contaminated water. Adsorption of Zn(II) ions on the produced adsorbent was then optimized. The optimal ratio for esterification involved the treatment of Z. vulgaris wastes (1 g) with 0.0037 mmol malic acid in the presence of a very small amount of water for 2 h at 140 °C. The maximum values for adsorption capacity, q max, were 28.7 and 164.6 mg/g on native and modified Z. vulgaris wastes, respectively, at pH 5 and 30 °C with a contact time 2 h and an initial metal ion concentration of 400 mg/L. The equilibrium data were well fitted by the Langmuir and Freundlich adsorption models and demonstrated the significant capacity for Z. vulgaris wastes in the removal of Zn(II) ions from aqueous solutions.  相似文献   

19.
通过十六烷基三甲基溴化铵(CTMAB)与钠基蒙脱土离子交换制备出季胺盐阳离子插层蒙脱土(CTMA’-M),采用小角X射线衍射仪、傅里叶变换红外光谱仪和高分辨透射电镜表征微观结构,研究CTMA’的插层量、溶液的初始pH值、初始浓度和其他共存离子对吸附铀性能的影响,考察了CTMA’-M处理铀矿水)台废水的应用性能。结果表明:CTMA’插层后蒙脱土的层间距由1.21nm增加到4.09nm,但仍保持钠基蒙脱土原有的晶体结构。随CTMAB用量的增加,插层到蒙脱土层间的CTMA’量增加,对铀离子的吸附容量逐渐增大,当CTMAB的用量超过阳离子交换容量的1.4倍时,铀吸附容量基本保持不变。溶液pH和接触时间对铀离子吸附性能影响较大.CTMA’-M最佳吸附pH值为6.0,平衡吸附时间为80min,CTMA’插层能够改善蒙脱土对铀离子的选择性吸附。在1L含有15mg/L铀的废水中加入1.5gCTMA’-M时,铀的去除率达到98%以上。  相似文献   

20.
In this study, the adsorption behavior of Ni(II) in an aqueous solution system using natural adsorbent Peganum harmala-L was measured via batch mode. The prepared sorbent was characterized by scanning electron microscope, Fourier transform infrared spectroscopy, N2 adsorption–desorption and pHzpc. Adsorption experiments were carried out by varying several conditions such as contact time, metal ion concentration and pH to assess kinetic and equilibrium parameters. The equilibrium data were analyzed based on the Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherms. Kinetic data were analyzed using the pseudo-first-order, pseudo-second-order and intra-particular diffusion models. Experimental data showed that at contact time 60 min, metal ion concentration 50 mg/L and pH 6, a maximum amount of Ni(II) ions can be removed. The experimental data were best described by the Langmuir isotherm model as is evident from the high R 2 value of 0.988. The adsorption capacity (q m) obtained was 68.02 mg/g at an initial pH of 6 and a temperature of 25 °C. Kinetic studies of the adsorption showed that equilibrium was reached within 60 min of contact and the adsorption process followed the pseudo-first-order model. The obtained results show that P. harmala-L can be used as an effective and a natural low-cost adsorbent for the removal of Ni(II) from aqueous solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号